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transform from functions on a two dimensional cylinder to functions on the flat Lorentz
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1,2 which is related to the wave equation and the Radon transform. A general
method on the twistor construction of indefinite self-dual 4-spaces and indefinite Einstein–
Weyl 3-spaces are also summarized.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A twistor correspondence for self-dual Zollfrei conformal structure of the neutral signature (− − ++) was established
by C. LeBrun and L.J. Mason [9]. Here an indefinite conformal structure is called Zollfrei if and only if all the maximal null
geodesics are closed. In this theory, the twistor space is the pair (CP3, P ) where P is an embedded RP

3 in CP
3, and the

self-dual space is recovered as the space of holomorphic disks on CP
3 with boundaries lying on P . LeBrun and Mason also

showed that any neutral self-dual Zollfrei 4-manifold is compact and is homeomorphic to S2 × S2 or (S2 × S2)/Z2.
LeBrun and Mason also established twistor correspondence for indefinite Einstein–Weyl structure on R× S2 in [10] (see

also [11]). These two types of twistor correspondences are related by the Jones–Tod reduction theory [4], which say that an
Einstein–Weyl 3-space is obtained as the orbit space of 1-dimensional group action on a self-dual 4-space, and conversely
that self-dual 4-spaces are obtained from solutions of the generalized monopole equation on an Einstein–Weyl 3-space.

Following LeBrun and Mason, the author wrote down the twistor correspondence for Tod–Kamada metrics explicitly in
[12]. Tod–Kamada metrics are S1-invariant indefinite self-dual metrics on S2 × S2 which are first constructed by K.P. Tod [13]
and are also rediscovered by H. Kamada in the investigation of indefinite Kähler surfaces with Hamiltonian S1-symmetry [6].
As a consequence of this work, we find that all the Tod–Kamada metrics are Zollfrei.

The construction of Tod–Kamada metrics are based on the Jones–Tod reduction, and is obtained from solutions of the
monopole equation on the de Sitter 3-space S3

1. In the study of twistor correspondence for the Tod–Kamada metric, we
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obtain simple expressions of solutions of the monopole equation or the wave equation on S3
1 in terms of Radon-type

integral transforms from functions on S2 to functions on S3
1. This result may give a new insight for the theory of hyperbolic

PDEs.
In this article we relax the Zollfrei condition, and study the twistor correspondence for R-invariant indefinite self-dual

metrics on R
4 by a similar method as the Tod–Kamada metric case. We start from the twistor correspondence for the flat

metric and deform it respecting an R-action. This construction can also be considered as the indefinite analogue of the
taub-NUT metric (see [1] for the taub-NUT metric and its twistor space).

Similarly to the Tod–Kamada case, our twistor correspondence is related to the theory of hyperbolic PDEs and integral
transforms. In this article, we need some results for the wave equation on the Lorentz space R

1,2 = {(t, x1, x2)}:

−�u = −∂2u

∂t2
+ ∂2u

∂x2
1

+ ∂2u

∂x2
2

= 0. (1.1)

We introduce a natural integral transform from functions on a two dimensional cylinder to functions on R
1,2 of which the

image solves the wave equation (1.1). One of the two ways of the twistor correspondence, from a twistor space to a self-dual
space, is written down by using this integral transform. The converse correspondence is obtained by using a general formula
for the solutions to the wave equation (1.1) which is written in terms of Radon transform (Theorem 2.1).

In the LeBrun–Mason theory, the Zollfrei condition gives a nice restriction on the space of self-dual metrics. Instead
of assuming the Zollfrei condition, in this article we assume the rapidly decreasing condition for the solutions of wave
equation. Under this rapidly decreasing condition, we can reasonably establish the correspondence from self-dual metric to
the twistor space.

The organization of the paper is the following. In Section 2, we introduce an integral transform of which the image
solves the wave equation (1.1). Its inverse correspondence is given in Theorem 2.1. In Section 3, we summarize the general
method of twistor-type construction of indefinite self-dual 4-spaces and indefinite Einstein–Weyl 3-spaces as the space of
holomorphic disks. In Section 4, we will write down the twistor correspondence for the flat indefinite metric on R

4 and its
R-quotient explicitly. Finally we study the deformation of this standard case in Sections 5 and 6. In Section 5, we deform
the twistor space and determine the corresponding self-dual spaces, and the converse is studied in Section 6.

Notations. We denote the complex unit disk by D = {ω ∈ C | |ω| � 1}. For the pair (Z , P ) of a complex manifold Z and a
totally real submanifold P ⊂ Z , a holomorphic disk on (Z , P ) means the image of a continuous map (D, ∂D) → (Z , P ) which
is holomorphic on the interior of D.

2. Planar circles on a cylinder

We first study the geometry of circles on a two dimensional cylinder. We introduce an integral transform and explain
the relation with the wave equation on the flat Lorentz space R

1,2.

The two dimensional cylinder and planar circles. Let C = {(ω, v) ∈ R
2 ×R | |ω| = 1} � S1 ×R be a two dimensional cylinder

embedded in R
3. Each plane on R

3 cuts out a circle on C if the plane is not parallel to the v-axis. We call such circles
planar, and let M be the set of planar circles on C . Then M is an affine subset of the set of planes on R

3, and is coordinated
by (t, x) ∈ R×R

2 so that the corresponding planar circle C(t,x) is cut out by the plane {(ω, v) ∈R
2 ×R | v = t +〈ω, x〉}, that

is,

C(t,x) = {
(ω, v) ∈ C

∣∣ v = t + 〈ω, x〉}. (2.1)

Now we equip M a flat Lorentz metric

g = −dt2 + dx2
1 + dx2

2

(
x = (x1, x2)

)
. (2.2)

This metric naturally arises from the twistor correspondence which we will see later (Section 4). With respect to this Lorentz
metric, the geometry on M is nicely related to the geometry on C in the following way.

First, for each point p ∈ C let Πp ⊂ M be the set of circles passing through p, i.e.

Πp = {
(t, x) ∈ M

∣∣ p ∈ C(t,x)
} = {

(t, x) ∈ M
∣∣ v = t + 〈ω, x〉} (

p = (ω, v)
)
.

Then Πp is a null plane on (M, g), that is the metric g degenerates on Πp . Since every null plane on M is written in this
way by a unique p ∈ C , the cylinder C is identified with the set of null planes on M .

Next notice that each geodesic (i.e. straight line) on M corresponds to a 1-parameter family of planes on R
3 with a

common axis. If this axis intersects with C at two distinct points p and q, then the planes of this family cut out planar
circles passing through common points p and q. In this case, the geodesic is written as Πp ∩ Πq and is a space-like geodesic.
If the axis is tangent to C at p, then we obtain a family of planar circles which are mutually tangent at p ∈ C . In this case,
the geodesic is a null geodesic contained in the null plane Πp . If the axis is apart from C , then we obtain a family of planar
circles which folliate the cylinder C . This family corresponds to a time-like geodesic.
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Finally, let us notice the two domains Ω±
(t,x) on C which are divided by C(t,x):

Ω±
(t,x) = {

(ω, v) ∈ C
∣∣ ±(

t + 〈ω, x〉 − v
)
� 0

}
. (2.3)

Then the sets {(t′, x′) ∈ M | C(t′,x′) ⊂ Ω±
(t,x)} are the future and the past cone with vertex at (t, x) ∈ M .

Later, we also use a complex parameter z = x1 + ix2 and we write ω = (cos θ, sin θ) = eiθ identifying S1 ∼= U (1). Then
(2.1) is also written as

C(t,z) = {
(ω, v) ∈ C

∣∣ v = t + Re
(
ze−iθ )}. (2.4)

Integral transform R and the wave equation. Now we introduce an integral transform R : C∞(C ) → C∞(M) so that for
given function h(ω, v) ∈ C∞(C ) the function Rh(t, x) ∈ C∞(M) is

Rh(t, x) = 1

2π

∫
C(t,x)

h dθ = 1

2π

∫
|ω|=1

h
(
ω, t + 〈ω, x〉)dθ

(
ω = eiθ ). (2.5)

A significant property of the transform R is that its image u = Rh satisfies the wave equation (1.1). Here notice that R has a
non-trivial kernel. Actually, if the function h(ω, v) is independent of v , then Rh(t, x) is constant and is equal to the constant
term of the Fourier expansion of h = h(ω) which can be vanish for non-trivial h. One natural way to avoid such obvious
kernel is to replace the function space C∞(C ) with the rapidly decreasing functions S(C ), where S(C ) is the space of
smooth functions h on C which for any integers k, l � 0 and any differential operator D on S1 satisfy

sup
(ω,v)∈C

∣∣∣∣(1 + |v|k) ∂ l

∂vl
(Dh)(ω, v)

∣∣∣∣ < ∞.

Radon transform and the inverse of R . The inverse transform of R is obtained using the Radon transform, which we sum-
marize here (see [2] for the detail). Let M0 = {(0, x) ∈ M} �R

2 be the initial plane. Notice that each null surface Π(ω,v) ⊂ M
corresponding to (ω, v) ∈ C intersects with M0 by a straight line

l(ω,v) = Π(ω,v) ∩ M0 = {
x ∈ M0

∣∣ 〈ω, x〉 = v
}
.

Since l(ω,v) = l(−ω,−v) , the cylinder C is identified with the double cover of the set of straight lines on M0.
Let S(M0) be the space of rapidly decreasing functions on M0. Here a smooth function f (x) on M0 is called rapidly

decreasing if and only if, for each integer k, l,m � 0, f satisfies∣∣|x|k∂ l
x1

∂m
x2

f (x)
∣∣ < ∞.

For given function f (x) ∈ S(M0), its Radon transform f̂ (ω, v) ∈ S(C ) is defined by

f̂ (ω, v) =
∫

l(ω,v)

f dm (2.6)

where dm is the Euclid measure on the line l(ω,v) . On the other hand, for a function h(ω, v) ∈ C∞(C ), its dual Radon

transform ȟ(x) ∈ C∞(M0) is defined by

ȟ(x) = 1

2π

∫
|ω|=1

h
(
ω, 〈ω, x〉)dθ = Rh(0, x).

The inversion formula of the Radon transform for f (x) ∈ S(M0) is

f = 1

2i
(Hv∂v f̂ )∨ where Hvh(ω, v) = i

π
pv.

∞∫
−∞

h(ω,ν)

ν − v
dν. (2.7)

Recall that Hv is called the Hilbert transform.
Now the inverse of R is given in the following way.

Theorem 2.1. Suppose u(t, x) ∈ C∞(M) satisfies the following conditions:

• u solves the wave equation, i.e. �u = 0,
• f0(x) = u(0, x) and f1(x) = ut(0, x) are rapidly decreasing functions on R

2 .
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Then we can write u = Rh where h ∈ S(C ) is defined by

h = 1

4π i
Hv(∂v f̂0 + f̂1). (2.8)

This theorem is easily proved by the inversion formula (2.7) and the uniqueness theorem for the solutions to a hyperbolic
PDE (see [2]).

3. General method on the twistor correspondence

In this section, we summarize the general method to construct indefinite self-dual 4-spaces and indefinite Einstein–
Weyl 3-spaces from a family of holomorphic disks. The detail is found in [9] for the self-dual case, and in [11] for the
Einstein–Weyl case.

Partial indices of a holomorphic disk. First, we recall the notion of the partial indices of a holomorphic disk (see [8]). Let
(Z , P ) be the pair of a complex n-manifold Z and a totally real submanifold P , and (D, ∂ D) be a holomorphic disk on
(Z , P ). We write N the complex normal bundle of D in Z and NR the real normal bundle of ∂ D in P . Notice that we have
NR ⊂ N |∂ D . We can construct a virtual holomorphic vector bundle N̂ on the double CP

1 = D ∪∂ D D by patching N → D
and N → D so that NR coincides. Then we can write N̂ =O(k1) ⊕ · · · ⊕O(kn−1), and we call the (n − 1)-tuple of integers
(k1, . . . ,kn−1) the partial indices of the holomorphic disk D . These indices is uniquely determined by D up to permutation.

Construction of self-dual conformal structures of signature (− − ++). Let T be a complex 3-manifold and let TR be a
totally real submanifold on T . Suppose that there exists a family of holomorphic disks on (T ,TR) smoothly parametrized
by a real 4-manifold M . Such family is described by the following diagram:

(Z,ZR)

p (f, fR)

M (T ,TR)

(3.1)

where (Z,ZR) is a smooth (D, ∂D)-bundle on M , f is a smooth map which is holomorphic along each fiber of p, and fR is
the restriction of f. For each x ∈ M let us write Dx = f(p−1(x)) which is the holomorphic disk corresponding to x. Now we
assume the following conditions:

A1) the differential f∗ is of full-rank on Z \ZR (i.e. f is locally isomorphic on Z \ZR),
A2) the differential (fR)∗ is of full-rank, and
A3) for each x ∈ M , the partial indices of the corresponding disk Dx is (1,1).

In this setting, the following holds (see Section 10 of [9]).

Proposition 3.1. There exists a unique smooth self-dual conformal structure [g] of signature (− − ++) on M such that for each
p ∈ TR the set Sp = {x ∈ M | p ∈ ∂ Dx} gives a β-surface for [g].

Here a β-surface is a surface on which the conformal structure vanishes and of which the tangent bivector is anti-self-
dual every where.

Construction of Einstein–Weyl structure of signature (− + +). There is a similar construction for three dimensional
Einstein–Weyl structure. Recall that an Einstein–Weyl structure is the pair ([g],∇) of a conformal structure [g] and an affine
connection ∇ satisfying the compatibility condition (Weyl condition) ∇g ∝ g and the Einstein–Weyl condition R(i j) ∝ gij
where R(i j) is the symmetrized Ricci tensor of ∇ (see [3,11]).

Let S be a complex surface and SR be a totally real submanifold on S . Suppose that there exists a family of holomor-
phic disks on (S ,SR) smoothly parametrized by a real 3-manifold M , which is described by the following diagram:

(W,WR)

p (f,f
R
)

M (S ,SR)

(3.2)

Let us assume the conditions:
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B1) the differential f∗ is of full-rank on W \WR ,
B2) the differential (f

R
)∗ is of full-rank, and

B3) for each x ∈ M , the partial index of the corresponding disk Dx = f(p−1(x)) is 2.

Then the following holds (see [11]).

Proposition 3.2. There exists a unique smooth Einstein–Weyl structure ([g],∇) of signature (− + +) on M so that for each p ∈ SR

the set Sp = {x ∈ M | p ∈ ∂ Dx} is a totally geodesic null surface on M.

Here recall that a surface on a conformal manifold (M, [g]) of signature (−++) is called null if and only if [g] degenerate
on it.

The Einstein–Weyl structure on M defined by Proposition 3.2 satisfies the following properties (cf. [11]):

• for each distinguished p,q ∈ SR , the set Sp ∩Sq is a space-like geodesic,
• for each p and non-zero v ∈ T pSR , the set Cp,v = {x ∈ M | p ∈ ∂ Dx, v ∈ T p(∂ Dx)} is a null geodesic, and
• for each ζ ∈ S \ SR , the set Cζ = {x ∈ M | ζ ∈ Dx} is a time-like geodesic.

4. Standard model

In this section, we describe the twistor correspondence for R
2,2 and R

1,2 explicitly.

Twistor correspondence for R2,2. Let H be the degree 1 holomorphic line bundle over CP
1, and we put T = H ⊕ H . The

total space of T can be embedded in CP
3 as

T = {[y0 : y1 : y2 : y3] ∈ CP
3
∣∣ (y0, y1) �= (0,0)

}
with the projection [yi] �→ [y0 : y1]. We introduce an antiholomorphic involution σ on T by σ : [y0 : y1 : y2 : y3] �−→ [ ȳ1 :
ȳ0 : ȳ3 : ȳ2], and let TR be the fixed point set of σ . Then

TR = {[
e− iθ

2 : e
iθ
2 : η : η̄] ∈CP

3
∣∣ (

eiθ , η
) ∈ S1 ×C

}
.

The space of σ -invariant holomorphic sections on T = H ⊕ H is parametrized by C
2 so that (a,b) ∈C

2 correspondes to
the section

L(a,b) = {[1 : ω : āω + b : b̄ω + a] ∈ T
∣∣ ω ∈C∪ {∞}}.

Each section L(a,b) intersect with the set TR by S1, and divided into two disks

D(a,b) = {[1 : ω : āω + b : b̄ω + a] ∈ T
∣∣ ω ∈D

}
and

D ′
(a,b) = {[ω : 1 : ā + bω : b̄ + aω] ∈ T

∣∣ ω ∈D
}
. (4.1)

Hence we obtain two C
2-families of holomorphic disks {D(a,b)} and {D ′

(a,b)
} on (T ,TR). In the rest of this article, we only

deal with the family {D(a,b)}.
The double fibration associated with the holomorphic disks {D(a,b)} is given as follows. In our case, the parameter space

M is C
2. Let p : (Z,ZR) →C

2 be the trivial (D,DR) bundle, and we define a map f : (Z,ZR) → (T ,TR) by f(a,b;ω) = [1 :
ω : āω + b : b̄ω + a]. It is easy to verify that the conditions A1 to A3 hold (see the final part of this section), so we obtain a
self-dual conformal structure on C

2 by Proposition 3.1. This conformal structure is characterized by the condition: for each
ω ∈ U (1) and each constant c ∈C the set {(a,b) ∈ C

2 | āω + b = c} is a β-surface. Since the flat metric

g = −|da|2 + |db|2 (4.2)

satisfies this condition, the induced self-dual conformal structure on C
2 is represented by this metric. We write R

2,2 for C
2

equipped with this metric g .

Twistor correspondence for R1,2 as a quotient. In this part, we establish the twistor correspondence for R
1,2 as the quotient

of R2,2. Let (T ,TR) be as above, and let us introduce a (C,R)-action on (T ,TR) by

ν · [y0 : y1 : y2 : y3] = [y0 : y1 : y2 − iν y1 : y3 + iν y0] (ν ∈C). (4.3)

Here “(C,R)-action on (T ,TR)” is a C-action on T of which the restriction to R ⊂C preserves TR .
The quotient space of this (C,R)-action is described as follows. Let S = H2 be the degree 2 holomorphic line bundle

on CP
1. We use the weighted homogeneous coordinate [y0 : y1; v] on S where [y0 : y1] is the coordinate of the base CP

1
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and [y0 : y1; v] = [λy0 : λy1;λ2 v] for λ ∈ C
∗ . We introduce an involution σ on S by [y0 : y1; v] �→ [ ȳ1 : ȳ0; v̄]. The fixed

point set of σ is identified with the real cylinder C = S1 ×R so that

C = {[
e− iθ

2 : e
iθ
2 ; v

] ∈ S
∣∣ (

eiθ , v
) ∈ S1 ×R

}
.

Let us define a map π : (T ,TR) → (S ,C ) by:

π
([y0 : y1 : y2 : y3]

) =
[

y0 : y1; y0 y2 + y1 y3

2

]
. (4.4)

Notice that each fiber of this map π is a C-orbit on T , and the real submanifold TR is mapped onto C . Hence π is the
quotient map of the (C,R)-action on (T ,TR).

Corresponding to this (C,R)-action on the twistor space (T ,TR), we can introduce an R-action on the parameter space
R

2,2 so that Dν·(a,b) = ν · D(a,b) for ν ∈ R where D(a,b) is the holomorphic disk defined in (4.1). This R-action is written
as ν · (a,b) = (a + iν,b), so its quotient map is given by � : R2,2 → R × C where �(a,b) = (Re a,b). The quotient space
R×C= {(t, z)} has a natural indefinite metric

g = −dt2 + |dz|2 (4.5)

as a quotient of the metric g in (4.2). We also write the quotient space R×C as R
1,2.

Let ∇ be the Levi-Civita connection of g . Then Jones–Tod theory [4] asserts that the Einstein–Weyl structure ([g],∇) is a
structure which corresponds to the twistor space (S ,C ) in the sense of Proposition 3.2. Actually, suppose �(a,b) = (t, z)
(i.e. (t, z) = (Re a,b)), then π maps the holomorphic disk D(a,b) to the holomorphic disk

D(t,z) =
{[

1 : ω; z

2
+ tω + z̄

2
ω2

]
∈ S

∣∣∣ ω ∈D

}
(4.6)

on (S ,C ). So the space R
1,2 is considered as the parameter space of holomorphic disks {D(t,z)} on (S ,C ). We can

construct a double fibration with respect to this family of holomorphic disks as follows. Let p : (W,WR) →R
1,2 be a trivial

D bundle, and let us define a map f : (W,WR) → (S ,C ) by f(t, z,ω) = [1 : ω; z
2 + tω+ z̄

2 ω2]. Then, we obtain the following
diagram:

(Z,ZR)

p f
Π

R
2,2

�

(W,WR)

p f

(T ,TR)

π

R
1,2 (S ,C )

(4.7)

where Π : (Z,ZR) → (W,WR) is given by (a,b,ω) �→ (Re a,b,ω). We can check that the family {D(t,z)} satisfies the
conditions B1 to B3. Since each β-plane on R

2,2 is mapped to a totally geodesic null surface on R
1,2, we see that the

induced Einstein–Weyl structure coincides to ([g],∇).
Now the observations in Section 2 for planar circles on C are explained as follows. Under the identification z = x1 + ix2,

we find that each planar circle C(t,x) on C given by (2.1) is obtained as the boundary circle of the holomorphic disk D(t,z)

on (S ,C ). The observations for null planes and geodesics are derived from the properties of the Einstein–Weyl structure
which is explained in the last part of Section 3.

Distributions. In the rest of this section, we go into more detail of the above construction. We notice the distributions on
(Z,ZR) and (W,WR) introduced from the diagram (4.7) and give an explicit description of them.

First, we define a rank 3 complex distribution E on Z \ZR by E = ker{f1,0∗ : TCZ → T 1,0T } where f
1,0∗ is the composition

of the differential f∗ : TCZ → TCT and the projection TCT → T 1,0T . If we define complex tangent vector fields m1 and m2
on Z = {(a,b;ω) ∈C

2 ×D} by

m1 = −2
∂

∂ā
+ 2ω

∂

∂b
, m2 = −2ω

∂

∂a
+ 2

∂

∂b̄
, (4.8)

then we obtain E = 〈m1,m2,
∂

∂ω̄ 〉 on Z \ZR . Notice that on ZR we have m2 = ωm1.
We also define a rank 2 real distribution D on ZR by D = ker{(fR)∗ : TZR → T TR}. Then D ⊗C= 〈m1,m2〉. Notice that

the self-dual indefinite metric [g] on C
2 = R

2,2 is defined so that for each u ∈ ZR the tangent plane p∗(Du) in Tp(u)C
2

gives a β-plane for [g]. Such conformal structure must be represented by the flat metric (4.2) as we already explained.
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Similarly, let us define a rank 3 complex distribution E on W \WR by E = ker{f1,0
∗ : TCW → T 1,0S } and a rank 2 real

distribution D on WR by D = ker{f∗ : TWR → T C }. If we define complex tangent vector fields on W = {(t, z;ω)} by

m1 = − ∂

∂t
+ 2ω

∂

∂z
, m2 = −ω

∂

∂t
+ 2

∂

∂ z̄
, (4.9)

then we obtain

E =
〈
m1,m2,

∂

∂ω̄

〉
on W \WR,

D ⊗C = 〈m1,m2〉 on WR.

The Einstein–Weyl structure on R×C = R
1,2 is defined so that the image of each integral surface of D by the projection p

gives a totally geodesic null surface.
Notice that Π∗(mi) = mi for i = 1,2. More precisely, if we consider (Z,ZR) as the trivial R-bundle over (W,WR) with

a fiber coordinate s = Im a, then we obtain

m1 = m1 − i
∂

∂s
, m2 = m2 + iω

∂

∂s
. (4.10)

5. Deformation: from twistors to space–times

In this section, we deform the standard twistor space (T ,TR) and determine the corresponding self-dual conformal
structures explicitly. In this article, we only consider R-invariant deformation of the real twistor space TR by which the
quotient space (S ,C ) is not deformed.

Deformation of the twistor space. Recall that the map π : T → S is considered as a trivial C-bundle, and its restriction
T |C is trivialized as C ×C

∼→ T |C by(
eiθ , v;ν) �−→ [

e− iθ
2 : e

iθ
2 : e

iθ
2 (v − iν) : e− iθ

2 (v + iν)
]
. (5.1)

By this notation, the real twistor space TR is written as

TR = {(
eiθ , v;ν) ∈ C ×R

} = {(
eiθ , v;ν) ∈ T |C

∣∣ Im(ν) = 0
}
.

Now, for each smooth function h(eiθ , v) ∈ C∞(C ), we define a deformation Ph of TR by

Ph = {(
eiθ , v;ν) ∈ T |C

∣∣ Im(ν) = h
(
eiθ , v

)}
. (5.2)

Notice that P0 = TR and that all the R-invariant deformations of the twistor space fixing the quotient space (S ,C ) are
written in this way.

Recall that we defined the integral transform R : C∞(C ) → C∞(R1,2) in (2.5). Let ď and ∗̌ be the exterior derivative and
Hodge’s operator along the R

2-direction of (t, x) ∈R×R
2 =R

1,2, that is,

ďu = ∂u

∂x1
dx1 + ∂u

∂x2
dx2,

∗̌dx1 = dx2, ∗̌dx2 = −dx1 and so on.

In this section, we will show the following.

Theorem 5.1. For each h ∈ C∞(C ), there is a smooth C
2-family of holomorphic disks on (T ,Ph). Moreover if ∂t Rh < 1, a natural

self-dual conformal structure on the parameter space C2 = R×R
1,2 is induced and is represented by the metric

g(V ,A) = −V −1(ds + A)2 + V g (5.3)

where (V , A) is the pair of the function V ∈ C∞(R1,2) and the 1-form A ∈ Ω1(R1,2) defined by

V = 1 − ∂t Rh and A = ∗̌ ďRh. (5.4)

Though the self-duality of g(V ,A) defined above is deduced from the twistor construction, we can also check it directly
in the following way. First notice that the metric of the form (5.3) is well studied, and the following proposition holds (see
[5–7,12]).

Proposition 5.2. The metric g(V ,A) defined by (5.3) is self-dual if and only if (V , A) satisfies the non-degeneracy condition V > 0 and
the monopole equation ∗dV = dA.
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On the other hand, the following proposition is easily checked.

Proposition 5.3. For a function u ∈ C∞(R1,2), let us define

V = 1 − ∂t u and A = ∗̌ ďu. (5.5)

Then (V , A) solves the monopole equation ∗dV = dA if and only if u solves the wave equation �u = 0.

Since u = Rh solves the wave equation �u = 0, we obtain the following.

Corollary 5.4. The metric g(V ,A) on R
4 induced from a function h ∈ C∞(C ) by (5.3) and (5.4) is self-dual.

Deformation of the holomorphic disks. In this part, we construct a family of holomorphic disks on (T ,Ph). Recall that
we have a family of holomorphic disks {D(t,z)}(t,z)∈R1,2 on (S ,C ) as in (4.6).

Proposition 5.5. For each (t, z) ∈ R
1,2 , there is an R-family of holomorphic disks {D(s,t,z)}s∈R on (T ,Ph) satisfying π(D(s,t,z)) =

D(t,z) .

Proof. First, we lift the boundary circle C(t,z) = ∂ D(t,z) to the real twistor space Ph . Recall that C(t,z) can be written as
(2.4). By the description (5.2) of Ph , any lift of C(t,z) on Ph can be written as{(

eiθ , t + Re
(
ze−iθ ), κ(

eiθ ) + iH
(
t, z; eiθ )) ∈ Ph

∣∣ eiθ ∈ S1} (5.6)

by using unknown real-valued function κ(eiθ ) ∈ C∞(S1) and the function

H
(
t, z; eiθ ) = h

(
eiθ , t + Re

(
ze−iθ )).

Now we determine κ(eiθ ) so that the circle (5.6) extends holomorphically to |ω| < 1 by putting ω = eiθ . By using the trivi-
alization (5.1), this condition is satisfied if and only if the following two functions on S1 = {|ω| = 1} extend holomorphically
to |ω| � 1:

ω
(
Re

(
zω−1) − iκ(ω) + H(t, z;ω)

)
and Re

(
zω−1) + iκ(ω) − H(t, z;ω).

If we put κ̃(ω) = κ(ω) + Im(zω−1), these functions are written as

z − ω
(
iκ̃(ω) + H(t, z;ω)

)
and z̄ω + iκ̃(ω) − iH(t, z;ω). (5.7)

Now let us take the Fourier expansion

H(t, z;ω) =
∞∑

k=−∞
Hk(t, z)ωk. (5.8)

Since H is real-valued, we have Hk(t, z) = H−k(t, z) for each integer k ∈ Z. Let us put

H±(t, z;ω) =
∞∑

k=1

H±k(t, z)ω±k, u(t, z) = H0(t, z). (5.9)

Then the functions (5.7) extend holomorphically to |ω| � 1 if and only if κ̃(ω) can be written as

κ̃(ω) = s + i
(

H+(t, z;ω) − H−(t, z;ω)
)

for some real constant s. Hence we obtain R-family of holomorphic disks {D(s,t,z)}s∈R of which the boundary ∂D(s,t,z) is
written as{(

eiθ , t + Re
(
ze−iθ ), s − Im

(
ze−iθ ) + iη

) ∈ Ph
∣∣ eiθ ∈ S1} (5.10)

where η = η(t, z;ω) = u(t, z) + 2H+(t, z;ω). By the trivialization (5.1), we obtain

D(s,t,z) = {[
1 : ω : (t − is + η)ω + z : t + is − η + z̄ω

] ∈ T
∣∣ ω ∈D

}
. � (5.11)

Notice that the constant part u of the Fourier expansion of H is written as

u(t, z) = H0(t, z) = 1

2π

2π∫
0

H
(
t, z; eiθ )dθ = Rh(t, z)

by using the integral transform R defined in (2.5).



436 F. Nakata / Differential Geometry and its Applications 30 (2012) 428–437
By the above proposition and the proof, we obtain a family of holomorphic disks {D(s,t,z)} on (T ,Ph) parametrized
by (a,b) = (t + is, z) ∈ C

2. We write the parameter space by M = {(a,b) ∈ C
2} and we write D(a,b) = D(s,t,z) when (a,b) =

(t + is, z). This family {D(a,b)} is described by the following diagram:

(Z,ZR)

p f
Π

M

�

(W,WR)

p f

(T ,P)

π

R
1,2 (S ,C )

Here p : (Z,ZR) → M is a trivial (D, ∂D)-bundle, and the map f is defined by

f(a,b;ω) = [
1 : ω : āω + b + η(Re a,b;ω) : b̄ω + a − η(Re a,b;ω)

]
.

Notice that Π : (Z,ZR) → (W,WR) is the trivial R-bundle with fiber coordinate s ∈R. The holomorphic disks are given by
D(a,b) = f(p−1(a,b)).

Self-dual metrics and the monopoles. In this part, we determine the induced self-dual conformal structure on M in the
sense of Proposition 3.1. First, the distribution D = ker{f∗ : TZR → T Ph} on ZR is determined in the following way. Here
m1 and m2 are as in (4.9).

Proposition 5.6. The distribution D ⊗C is spanned by complex tangent vector fields

m1 = m1 − i(1 − ut − 2ωuz)
∂

∂s
and m2 =m2 + i

(
ω(1 − ut) − 2uz̄

) ∂

∂s
. (5.12)

Notice that the relation (4.10) of the standard case is recovered when h = 0, that is, when u = Rh = 0.

Proof. By construction, we have Π∗(D) = D . Hence the complex distribution D ⊗C is spanned by the vectors of the form

m j = m j + a j
∂

∂s
( j = 1,2).

Since the function H(t, z; eiθ ) = h(eiθ , t + Re(ze−iθ )) is constant along m1 and m2, we obtain mi H ≡ 0 for i = 1,2. By the
expansion (5.8), we obtain

−∂ Hk

∂t
+ 2

∂ Hk−1

∂z
= 0, −∂ Hk

∂t
+ 2

∂ Hk+1

∂ z̄
= 0.

Using these relation, we obtain

m1η = −ut − 2ωuz, m2η = ωut + 2uz̄.

Then, by m j((t − is + η)ω + z) = 0 we obtain a1 = −i(1 +m1η) and a2 = i(ω −m2η). �
Lemma 5.7. The conditions A1, A2, and A3 are satisfied if and only if ut �= 1.

Proof. By the description (5.12) of m j , we can easily check that the conditions A1 and A2 hold if and only if ut �= 1. On the
other hand, A3 always holds since E is obtained as a continuous deformation from the standard model. �
Lemma 5.8. Suppose 1 − ut > 0 on M, then the induced self-dual conformal structure on M is represented by the indefinite metric
g(V ,A) as defined in (5.3) with V = 1 − ut and A = ∗̌ ďu.

Proof. As explained in Section 3, there exists unique self-dual conformal structure on M defined by D . Hence it is enough
to check that the metric g = g(V ,A) satisfies g(m j,mk) = 0 for every j and k, which is directly checked. �

Thus the proof of Theorem 5.1 is completed.
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6. From space–times to twistors

In this section, we establish the converse correspondence, that is, we start from self-dual metrics on R
4 and determine

the corresponding twistor spaces. This is directly deduced from Theorem 2.1 under a rapidly decreasing assumption.

Self-dual metrics from monopoles. Let us start from the metric on R×R
1,2 = {(s, t, x)} of the form

g(V ,A) = −V −1(ds + A)2 + V g

where V ∈ C∞(R1,2) is a function, A ∈ Ω1(R1,2) is a 1-form, and g is the flat Lorentz metric on R
1,2 given by (4.5). As

in Proposition 5.2, g(V ,A) is self-dual if and only if V > 0 and ∗dV = dA. We call a solution to the monopole equation
∗dV = dA just a monopole.

Two pairs (V , A) and (V ′, A′) are called gauge equivalent if and only if V ′ = V and A′ = A + dφ for some function φ on
R

1,2. Notice that the metrics g(V ,A) and g(V ′,A′) are isometric if (V , A) and (V ′, A′) are gauge equivalent. Now recall that
we write M0 = {(0, x) ∈ R

1,2}.

Proposition 6.1. Let (V ′, A′) is a monopole on R
1,2 . Suppose that the restrictions (V ′ −1)|M0 and A′|M0 are rapidly decreasing on M0 .

Then there exists a pair of a unique function u ∈ C∞(R1,2) and a unique monopole (V , A) which is gauge equivalent to (V ′, A′) such
that

• V = 1 − ut and A = ∗̌ ďu,
• u solves the wave equation �u = 0, and
• the restrictions u|M0 and ut |M0 are rapidly decreasing functions on M0 .

Proof. This is proved in a completely similar way as the de Sitter case (Propositions 4.3 and 4.4 in [12]). Just one point
which we should care is to determine a function φ̌ ∈ C∞(M0) satisfying �M0 φ̌ = −∗̌ ď∗̌ A, which is cleared by the rapidly
decreasing condition. �

Summarizing all, we obtain the following.

Theorem 6.2. Let (V , A) be a monopole on R
1,2 such that the restrictions (V − 1)|M0 and A|M0 are rapidly decreasing on M0 .

Changing (V , A) by a uniquely determined gauge transform, we can write V = 1−ut and A = ∗̌ ďu by a unique solution u ∈ C∞(R1,2)

to the wave equation �u = 0 satisfying the rapidly decreasing condition u|M0 , ut |M0 ∈ S(M0). Further if V > 0, then the metric g(V ,A)

on R × R
1,2 is self-dual and is obtained from the twistor space (T ,Ph) by the twistor construction where the function h ∈ C∞(C )

is determined from u by Theorem 2.1.
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