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1. INTRO~XJCTION 

In modelling in the biological, physical and social sciences, it is sometimes 
necessary to take account of time delays inherent in the phenomena. The 
inclusion of delays explicitly in the equations is often a simplification or 
idealization that is introduced because a detailed description of the 
underlying processes is too complicated to be modelled mathematically, or 
because some of the details are unknown. In these cases, it may be necessary 
to choose between a model with discrete or sharp delays and a model with 
distributed or continuous delay. A question of great importance is whether 
two models with parallel structure, one with discrete delay and one with 
distributed delay, will exhibit the same qualitative modes of behaviour. More 
generally, how does the qualitative behaviour depend on the form and 
magnitude of the delays? In this paper we shall examine certain aspects of 
this question. 

The paper is divided into two parts. In the first part (Sections 2-6), we 
examine how the stability properties of certain models change when the 
delay is increased. It has frequently been observed that stability of an 
equilibrium may be lost when delays are increased. Less frequently. it has 
been seen that further increase in the delay may result in restabilization. In 
this paper, we examine the possibilities for several simple equations: (1) a 
first order linear differential-difference equation; (2) a second order delayed 
friction model; (3) a second order equation with delayed restoring force; and 
(4) a population growth model of J. Cushing. In (2) and (3) and in a general 
equation including both, we show that there may be arbitrarily many 
switches from stability to instability to stability as the delay is increased, but 
in (1) this is not possible. In (4), the equation has distributed delay. and 
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much of the existing analysis concerns approximations by special kernels 
that make the equation equivalent to a set of ordinary differential equations. 
This is a distributed delay version of (1). We show that in contrast to (l), a 
switch from stability to instability must be followed by a single switch back 
to stability as the mean delay is increased. 

In the second part of this paper (Sections 7-10) we relate the special 
kernels mentioned above to the transfer functions and frequency response 
associated with the corresponding set of linear equations. In particular we 
show that interpreting a linear system as generating frequency dependent 
delays can simplify the calculation of limit cycle solutions by Poincare-type 
expansions. This is illustrated in the example of Goodwin’s model. 

2. FIRST ORDER EQUATION WITH DISCRETE DELAY 

Consider the equation: 

d,u/dt = ax(t) + bx(t - T), (1) 

with constant delay r > 0. It is well-known (see Bellman and Cooke, 121) 
that the stability of the zero equilibrium solution depends on the roots of the 
transcendental equation 

,J-a-be-‘-‘=O. (2) 

If we let z = rA, p = as, 4 = br, this equation is equivalent to 

pe’ + q - ze’ = 0. (3) 

By [2, Theorem 13.81, a necessary and sufficient condition in order that all 
roots of Eq. (3) have negative real parts is that 

(i) p < 1 and 

(ii) p < -q < (19’ +p’)“*, 

where 0 is the unique root of 8 = p tan 0, 0 < 0 < 7c, or 0 = 42 if p = 0. By 
condition (i) we must have ar < 1 and by (ii) we must have (a + b) r < 0. or 
a + b < 0, and also 

-br < (8’ + a2r2)“2. 

If b > 0, these conditions reduce to ar < 1, a + b < 0; hence if a > -b or if 
a > l/r, there is instability. If there is stability when r = 0, that is, for the 
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ordinary equation d.v/dt = (a + b) x. then stability holds for all positi\pe : 
since a < 0. 

If I!J < 0 (the trivial case b = 0 is omitted), the stability conditions are 

If stability holds for r = 0. then it holds for larger r until either r = I/a or 
until the first positive root of 

(4) 

Since tan t.9 = 6’/(‘l(ar), we see that 6’ decreases as r increases (for a either 
positive or negative). hence @/r decreases as r increases. Consequently, when 
a < 161 there is a unique root r of Eq. (4). and for larger values of r 
condition (ii) is violated. 

We may therefore summarize as follows. If Eq. (1) is stable for r = 0 (that 
is. a + b < 0), then either it is stable for all r > 0, or else there is a llalue r* 
such that it is stable for r < r* and unstable for r > r*. There is no 
possibility of restabilization for large r. 

This same conclusion can be reached in a different way. For a retarded 
equation, the supremum of the real parts of the roots of the transcendental 
equation varies continuously with r (see Datko [7]). Therefore, if there is a 
transition from stability to instability, or the reverse, as r varies, it must 
correspond to a purely imaginary root 1 = im. Any purely imaginary root 
must be simple, since at a multiple root one must have (2) and 
1 + bre-‘-’ = 0, which imply that 1 = a - l/r. It then follows from standard 
arguments, since A- a -be-‘-’ is an analytic function of 1 and r. that a root 
l(r) is a differentiable function of r near iw. From the characteristic equation 
(2). we have 

dA be - ‘-‘A -=- 
dr 1 + bre-‘-” 

At a value of r (if any) for which 1= io. we have 

dA bioe -;wl 

z=- 1 + bre-i”T ’ 

- bw sin wr 

(1 + br cos COT)’ + (br sin wr)’ ’ 

On the other hand, at a root J = iw we must have 

iw - a - be piwr = 0. 
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Therefore. b sin or = -w, b cos wr = -a, and 
7 

&Rel)= Co- 
(1 - ar)’ + (ox)’ ’ 

If cc) # 0, this derivative is positive, and so the root must pass from the 
negative to the positive half-plane as r increases. On the other hand. Q = 0 
corresponds to a zero root L = 0, which is impossible since we have assumed 
that a + b # 0. Thus, roots can cross the imaginary axis only from left to 
right as r increases. If stability is lost at some critical value of r (or does not 
exist for r = 0). it can never be regained. 

Brauer [ 41 has also studied the dependence of stability for Eq. ( 1) on the 
delay r. He defines the characteristic return time to the equilibrium .Y = 0 
(when the equilibrium is stable) to be -r/umn,. where urna, is the real part of 
the characteristic root Ama, of largest real part. His principal results are as 
follows: 

(i) If b > 0. a + b < 0, the trivial solution of (i) is asymptotically 
stable for all r, and the characteristic return time is a monotone increasing 
function of r. 

(ii) If b < 0. the characteristic return time is a decreasing function of r 
for 0 < r < r’Q, where r* is defined by 

It is an increasing function of r for 5 > r*. remaining finite for all r for 
which the zero solution is asymptotically stable. 

Brauer also considered nonlinear equations of the type 

x’(t) = F[x(f - 5) I, 

where F(0) = 0 and r = -F’(O) > 0. If i7 < n/2, the zero solution is 
asymptotically stable, while if 17 > n/2, .Y = 0 is unstable but there is a 
periodic solution. The linearization around s = 0 is of the form (1) with 
a = 0, b = -r. Brauer shows that if 0 < I? < 0.63336, the characteristic 
return time is less than for r = 0. so that it may be said that a delay in this 
range tends to stabilize the system, even though a larger delay destroys 
stability of the equilibrium. Other extensions may be found in [ 3 I. 

3. DELAYED FRICTION 

We consider the equation 

d?s 
z+a$+b 

ds(t - r) 

dt 
+ m(t) = 0. (5) 
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where a, b are non-negative constants, and c > 0. a + b > 0. r > 0. This 
equation was studied by Minorsky [ 19, 201 in connection with studies of 
ship stabilization. Also, Minorsky suggested it as a model for the small 
vibrations of a pendulum of mass one, where x is the displacement from the 
equilibrium position, cx(t) is the linear restoring force, a.<(t) is the natural 
frictional force, and bi(t - r) is a frictional force introduced with a time 
delay r. The stability of the same equation was subsequently studied by 
Pinney [24]. We shall show here that for any fixed a, 6, c. with a < b. as r is 
increased from 0 to co the zero solution of the equation is alternately stable, 
unstable, and stable again. This cycle from stability to instability to stability 
can occur any finite number of times, but ultimately instability persists. This 
phenomenon was apparently detected by Ansoff and Krumhansl [ 11 by a 
method different from ours. It was observed by Mufti 1221 for third order 
equations with delay in the zero-order term. These authors did not emphasize 
the notion of continuous variation of the delay and the resulting cycling of 
stability and instability. In the present paper. we want to direct attention to 
this phenomenon. which is not now widely known. In Section 6, we apply 
similar ideas to an integro-differential equation that arises from a population 
growth model. 

In the discussion that follows. we shall use the following simple lemma. 

LEMMA. Let f (A, r) = A2 t aA t Me -‘-’ + c + de- ‘.‘. where a, b. c. d. r 
are real numbers and 5 >, 0. Then, as s varies, the sum of the multiplicities of 
zeros off in the open right half-plane can change on!ll ifa zero appears on or 
crosses the imaginary axis. 

Proof. Let A = J(.r) be any root off (1, r) = 0. If we place a small disk 
around 1(s), then for r’ sufficiently close to r. the total multiplicity of roots 
in the disk equals the multiplicity of 1(r). This follows from Rouche’s 
theorem; see Dieudonne [8, Theorem 9.17.41. In this sense. a root A(r) 
cannot suddenly disappear or appear or change its multiplicity at a finite 
point in the plane. Let M(r) be the total (finite) multiplicity of zeros in the 
open right half-plane. Suppose that M(r) changes but no roots appear on or 
cross the imaginary axis. This could only occur due to the appearance of a 
root at A = co. That is, there would exist r* and a root A(r) such that 

I W 4 co as r---t r* + 0 (or r + r* - 0), with Re l(r) > 0. But then since 
)e-‘.‘(“I < 1, we deduce that 

tends to 1 as IL(r)1 --$ 03. This contradicts f (A(r), r) = 0, and completes the 
proof. 
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i’he characteristic equation associated with Eq. (5) is 

~Z+al+bAe-‘~‘+c=O. (6) 

Suppose that A. = iw is a purely imaginary root. It suffices to seek solutions 
with w > 0 since A = 0 is not a root when c > 0 and since complex roots 
occur in conjugate pairs. We have 

co2 - c - bw sin rw = 0, w(a + b cos rw) = 0. (7) 

We shall now examine three cases. 

Case 1. u > b > 0. The equation a + b cos rw = 0 has no real solution 
w in this case. Consequently, Eq. (6) has no roots on the imaginary axis. 
Following the line of argument used in the latter part of Section 2, we reason 
that the supremum of real parts of the roots varies continuously with r. For 
r = 0, u + b > 0, c > 0, both roots lie in the left half-plane. Consequently, all 
roots satisfy Re(A) < 0 for all t > 0, and the zero solution of Eq. (5) is stable 
for every positive r. 

Case 2. 0 <a < b. From Eq. (7) we obtain 

ru = cos -‘(-a/b) + 2m (n = 0, 1, 2 )... ). 

If we define 

0, = cos - ‘(-a/b), 42 < ‘9, < 71, 

19, = cos - ’ (-a/b), 71 < e2 < 3x12 

then for the choice 8, we obtain 

sin rw = sin(B, + 2n7r) = [ 1 - (a/b)’ 1 Ii’. 

Therefore, 

w2 - (6’ - a’)‘i’ w - c = 0. 

The only positive root is 

w, = f(b2 - a2)lj2 + f(b2 - a2 + 4~)’ ?. 

If we choose 0, then the sign of sin rw is reversed and we have 

u2 + (b2 - u~)“‘~ w - c = 0. 

The only positive root is 

w2 = - f(b2 - &)‘I2 + f(b’ - a2 + 4c)l/2. 
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We see that we obtain two sequences of positive values of r corresponding to 
pure imaginary roots. These are: 

(4 h = (e, + 2n7r)/tu, (n = 0. 1. 2 . . . . ). 

(b) rn.2 = (6: + 2m)/o, (H = 0. 1. 2 ,... ). 

We can show that each of these roots is simple, for if F(A. r) is the function 
in Eq. (6) then ?F/?A = 0 takes the form 

2A+a+(b-brA)e-‘-‘=O. 

Solving Eq. (6), for 1 # 0. for em’.‘. and substituting. we obtain 

rA3 +(a+ l)A? +cr-c-o. 

For 1 = iw. this implies (as + 1) w’ + c = 0, which is impossible. Thus, any 
root on the imaginary axis is simple. We may argue as in Section 2 that any 
root A(r) is differentiable with respect to r at a value of r for which A = ictJ. 

Continuing with Case 2. we compute dA/dr from Eq. (6). obtaining 

dl b* Je r-1 bl’ 
-= 
dr 2,1+a+bem’~‘-brAem’-’ = (2A+a)e’-‘+b-brA’ 

The real part when /1 = iw is 

g(Rel)=Re$=-bw’(acosr~~J-2wsinrw+b)D ‘. 

where 

D = (a cos rw - 20~ sin mJ + b)’ + (2w cos roJ + a sin TOJ - brw)‘. 

When r = r,,,, and to = OJ,, we have cos rw = -ajb. sin rw = (I ~ a’,ib’)’ ’ 
and so 

g (Re A) = -wi[-a’ - 2o,(b’ - a’)’ ’ + b?I Dm’. 

Since D > 0 and 2w,(bz - a’)“’ > 6’ - a’, we see that d(Re A)/cls > 0. That 
is, at all those roots. the root crosses the imaginary axis from left to right as 
r increases. On the other hand, when r = r,,? and w = wz. we have cos 
ruJ = -a/b, sin rw = -( 1 - a’lb’)’ ’ and 
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Since w? > 0 and b > a, and again D > 0, we see that d(Re I)/dr < 0. Thus, 
all the roots that cross the imaginary axis at iwz cross from right to left as 7 

increases. 
The total multiplicity of roots in the right half-plane can only change 

when a root crosses the imaginary axis, by the lemma. Observe that the 
multiplicity is zero for 0 < 7 < ro., and is two for r,., < 7 < ro.?. Conse- 
quently, we have stability for 0 < 7 < r,,. , and instability for r,,, , < 7 < r,,.:. 

We shall now prove the following two propositions. 

I. For any fixed a, b and c rrith a < b there exists an integer k such 
tha: 

70.1 < 70.2 < 71.1 < 71.2 < ..’ < Tk&,., < 7kp,,2 < 7&,, (8) 

and consequently as r caries from 0 to sk., . trle have. alternate&, switching 
from stability to instability and back to stability k times. and moreover. the 
system is unstable for all r > rk., . 

II. For any spec$ed positive integer k there are parameter calues a. b, 
c with a < b for which I. holds. This can be achieced bcith a = 0. 

In order to prove these results, we must examine the conditions under 
which the two sequences (r,.,) and (r,,? 1 alternate as in I. We note 
immediately that since 

7 n+l.l . - 7, I = ww,, 7,,1.? - 7,,.2 = 274wz 

and w2 < w,, this alternation cannot persist for the whole of the sequences, 
Eventually, therefore, there is an integer k such that 

7k-I.l <‘k&l.? < 7k,I < 7k+l.l < 7k.2. (9) 

Hence for r > rk,, , the multiplicity of roots in the right half-plane is at least 
two and the system is unstable. 

To prove II., we only need to show that 240, and 27c//02 can be in any 
desired ratio. We shall, in fact, obtain specific inequalities on a, b, c 
sufficient to guarantee that (8) and (9) hold. We are looking for conditions 
under which the first k terms of the sequences (r”.,} and (rn,2} alternate, but 
7 k-l,? < 7k.L < 7k+l,l < ‘k.2. Let 8, = 7112 + Z, Bz = 3ztf2 - z (0 < z < 42). 
Since 0, < 8, and o, < w2, we need only consider the inequalities 

e, + 2~ < e, +h 
,..., 

8,+2(k- 1)7r < 8,+2k72 

*2 WI 02 WI 
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and 

8, +2(k+ 1)7-f < &+2kn 

WI 02 

Equivalently, consider 

:n+z J!L<+-. jn+z WI<7 o’< (2k+f)n+z 

w2 771-Z w2 T n - z ‘...’ a2 (2k-i)n-z 

and 

T> (2k+$)n+z 
w2 (2k+3-z' 

Since the function 

(2n + f)n+z 
(2n-f)7r-z 

is a strictly decreasing function of n for fixed z > 0 (n > 1). it is equivalent 
to require merely 

w’< (2k+ f)n+z 
w2 (2k-9-z 

and 
w’> (2k+ j)?r+z 
W2 (2k+j)K-i' 

Substitution of the expression for w, and w? transforms these inequalities to 

4kn(b’ - Q’)“~ < (z + 2z)(b2 - u’ + 4~)’ ’ 

and 

4(k + 1) n(b’ - aI)‘:: > (n + 2z)(V - a? + 4c)‘:?. 

These lead to the conditions 

(4k7g2 - (n + 2z)? (b2 _ a2) 
4(n + 2z)2 

< c < 42(k + I)2 ?r? 7 (n+ 2z)? 
4(7[ + 2z)I 

(b’ - a’). 

Clearly. for any specified integer k > 1, and any real non-negative numbers a 
and b with 0 < a < 6, there is a range of values c for which these inequalities 
are satisfied. This proves II. 
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Case 3. a = b. Equation (7) becomes 

w2-c-awsinrw=O, cosrw=-1. 

Thus, sin SW = 0, wZ = c. The positive root is w = 4 and the critical values 
of 5 are 5, = (2n + 1) n/h (n = 0, 1, 2 ,... ). 

In this case, it can be shown that Re(&/dr) = 0 at the critical values 
,4 = itu. Therefore, it is necessary to compute d2A/dr2 in order to determine 
whether the roots actually cross the axis. We forego this calculation here, 
since our main point has already been made in Case 2. 

The following physical interpretation may be given to these results. First, 
if a > 6, the larger part of the damping is not delayed, and the above results 
show that the zero solution remains stable, whatever be the delay in the 
delayed part of the damping. On the other hand, suppose that a < 6. so that 
the delayed damping is larger than the undelayed damping. Then there are 
intervals of values of r for which the zero solution is stable and intervals for 
which it is unstable. Instability occurs, speaking in engineering language, 
when the delay is of a size to cause a reversal of phase, so that the damping 
term in effect is reinforcing the vibrations instead of damping them. The 
larger is the restoring force c, the greater is the number of phase reversals 
permitting stability, but in all cases there is eventually instability for r 
sufficiently large. 

Finally, returning to Eq. (5), we consider the case in which the zero 
solution is unstable for r = 0. The interesting question is whether a switch to 
stability and back to instability, once or more, is possible as r is being 
increased. We will show that this is indeed the case. Instability for r = 0 
implies either u + b < 0 or c < 0. Consider the case with a + b < 0, c > 0. By 
Eq. (7), Eq. (6) has no imaginary root unless 1 bl > Ial. a + b < 0 is then 
fulfilled only if b < 0. Assuming a > 0, and defining 8, = cos -‘(-a/b), 
0 < 0, < n/2, and e2 = cos-‘(-u/b), 3x12 ( 0, ( 27~. we find from Eq. (7), 
w2 + (b2 _ u2)1:2 w-c=0,0rw,=-~(b2-u2)“2+~(b2-u2+4c)’~2for 
the choice 0,; ~~-(b~-a~)‘~~w-c=O, or w2=~(b2-a2)‘2+ 
i(b2 -a’ + 4c)‘!* for the choice 8,. Corresponding to w, and wZ there are 
sets r,,, = (0, + 2~cn)/w, and rne2 = (8, + 27rn)/w,, respectively. We note 
that 8,/B, < f. Although w, < w?, for any given a and b satisfying the 
conditions specified above for this case one can choose c > 0 sufficiently 
large so that 1 > oj,/o, > f and r,-,, = B,fw, < B2/wz = ro.2. As shown 
before, the total multiplicity of the roots for which Re L > 0 is increased by 
two as r is increased and passes through any value of rnq2, corresponding to 
the larger root w2, and is decreased by two at r, , , . Since the multiplicity for 
O<r < To., is 2, a switch to stability occurs at so., and a switch back to 
instability at ro,2. Since the intervals between subsequent values of r within 
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the sets obey 27tlw, < 2n/wz, only a finite number of such switches can 
occur. For all sufficiently large r, instability pre\:ails. 

The situation is similar if both b < 0 and a < 0. For a + b > 0 and c i 0. 
the condition 1 bJ > (al implies b > 0 and then the larger (0 is associated with 
the smaller 0, so that the first crossing of the imaginary axis increases the 
multiplicity of roots with Re i > 0. As r is further increased, crossings with 
an increase in multiplicity occur more frequently than crossings in the other 
direction. so that the zero solution remains unstable. 

4. DELAYED RESTORING FORCE 

Consider the following equation, which models a process with instan- 
taneous damping but delayed restoring force. 

2 . 
2 + a $ + b-u(t) + cs(f - t) = 0 (a. b, c > 0). ( 10) 

Let us see whether the switching of stability occurs as it did in the case of 
delayed friction. The characteristic equation is 

If A = iw is a root, then w # 0 and w’ - b = c cos rw. aw = c sin 50. Thus 

w’ + (a’ - 26) d + b’ - c’ = 0. 

If (a’ - 26)’ < 4(b’ -c’), there is no positive solution UJ’. If 
d = (a’ - 26)’ - 4(b’ -c’) > 0. or if A = 0 and 2b > a’, then there may be 
positive solutions 

There are several cases. If 26 - u’ < 0 and b’ > c’, then 4 < Ia’ - 261 and 
no positive solution exists. If b’ < c’. there is one positive solution w’ using 
the plus sign. If 2b > a2 and 6’ > c’ there are two positive solutions. If 
b2 = c2 and 26 > a’, there is one positive solution. We now examine the 
cases with A > 0. 

Case 1. 6’ < c’. We have one positive solution 
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Then 

sin rco = am/c > 0. 

The equation 
ccosrw=$[-a’+&] 

determines the sign of cos SW, and thus the quadrant in which SLC) must lie. 
Thus. r must have one of the values 

rn=$ [sin-’ (:)+2nz], n = 0, c I,..., 

where w is as given above and where sin -‘(so/c) is chosen in the first or 
second quadrant according to the sign of cos rw. These roots A = iw are 
simple. Also we have 

21g+af&cemT.’ (,$+A) =O, 

dA de - ‘.’ CA 
z= 2~+a--cre-‘~’ =(213+a)e’.‘-cr’ 

At A= iw. we have 

-$Rei)=Re$ 

cc420 cos 50 + a sin 50) 

= (a cos rw - 2w sin rw - cr)’ + (20 cos rw + a sin ru)’ * 

Since sin ro = am/c, cos rw = (w’ - b)/c, at a root, we have 

Refix 
c2w2(2wz - 2b + a?) 

dr (ab + aa2 + c2r)2 + (2w3 - 2bw + a’w)’ . 

Since 20~ = 26 - a’ + 4, d(Re A)/d r is positive at every root. Therefore, 
every time a root crosses the imaginary axis with increasing r, it crosses 
from left to right. Consequently, stability of the zero solution is lost at 
r = 7,,, and instability persists for all larger 7. 

Case 2. b’ > c*, 2b > a2. There are two positive values of cu2, 

wf={[2b-a*+&], 

mI=f[2b-a*---], 
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and corresponding sequences ( r,, , I. Is,,,}. The calculation of Re d@dr is 
unchanged. Since 

20~: - 2b + a’ = Jd, 2~: - 26 + a’ = -&. 

we see that the sign of d(Re 3L)/dT is positive for each root ioi and negative 
at each root iw,. Next, observe that A < (a? - 26)’ < a’. Hence 2c cos SW = 
-a* +fi < 0. Since sin ro is positive, the angle rw must lie in the second 
quadrant. Let 8, and 8, be determined from 

c cos 19, = 4 [-a’ + &I, 7r/2 < 8, < 71, 

c cos 19, = + [-a’ - ~571, 7112 < 6, ,< 71. 

Then rw = 0 + 2nn, and the values of r for which there are imaginary roots 
are 

+ 2nX + 2nn 
5 

8, 
n.i = 1 5 

e2 
n-2 = (n = 0, 1. 2 ,... ). 

WI 02 

Since w, > o2 and 8, < t$, we have r,,, < ro,* and also 211/o, < 27t//w2. 
Therefore, there exists an integer k such that the first k terms in the two 
sequences alternate, but then two terms in the first sequence occur 
consecutively. At each value r = r,,., , a pair of roots crosses the imaginary 
axis at iwi into the right half-plane, and at each r = r,,?, a pair of roots 
crosses at iwz back into the left half-plane. Consequently, the same 
phenomenon of a finite number of stability switches occurs that was found in 
the case of delayed friction. There is instability for all r greater than some 
value r*. 

Case 3. b’ = c’, 2b > a’. There is one positive value UJ’ = 26 -a’. 
and one corresponding sequence ( rn}. At every root iw, 20’ - 26 + a’ = 
2b - a’ > 0. so that every root crosses the imaginary axis from left to right. 
and there is instability for all r after the first crossing. 

Observe that if the delayed restoring force is greater than or equal to the 
instantaneous restoring force (c’ > b*), as in Case 1 or 3, stability is lost at 
r = r,, and never regained. However, if the delayed restoring force is less than 
the instantaneous restoring force (c’ < b*), finitely many stability switches 
can occur before final instability. 

Finally, if Eq. (10) is unstable for r = 0, it remains unstable for every r. 
This follows from the fact that the smallest value of r for which there is an 
imaginary root is always associated with the larger frequency, which in turn 
implies an initial increase (from 2 to 4) of the total multiplicity of roots 
possessing positive real parts. 
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5. GENERAL SECOND ORDER EQUATION WITH ONE DELAY 

We consider now the following equation, with both delayed friction and 
delayed restoring force and the same delay. 

dx(t - r) 
dt 

+ m(t) + dx(t - r) = 0 

(a+b#O,c+d#O). (11) 

This equation can arise from a nonlinear system with one delay, upon 
linearization. The characteristic equation is 

1’ + al + bAe-.‘* + c + de m-‘r = 0. (12) 

If r = iw is a root, then w # 0 and 

c-o’+bwsinwr+dcoswr=O. 

ao+bocosor-dsinor=O. 

Thus, 
(m2 - c)~ + a2w2 = b2w2 + d2; 

co4 + (a’ - 6’ - 2c) u2 + c’ - d2 = 0. 

(13) 

(14) 

The roots are 

’ w* = ;(!I’ - a2 + 2c) f (+(b’ - a2 + 2~)’ - (c’ -d’)}“‘. 

There are two cases of interest: 

1. c’ < d2. There is one imaginary solution, 1 = io + , w + > 0. 

2. c2 > d2. There are two imaginary solutions, J. f = iw, , with 
w, > w- > 0, provided that (a) b’ -a’ + 2c > 0 and (b) (b2 - a2 + 2~)’ > 
4(c2 - d’), and no such solutions otherwise. 

The quantity of interest is again the sign of the derivative of Re 1 with 
respect to r at the points where J. is purely imaginary. From Eq. (12), 

{2A. + a + [b - r(bll + d)] e--AT} $ = l(bA + d) e -.“. 

From this it may be seen that all purely imaginary roots are simple (unless 
a=b=d=O). Also, 

= (211+ a) e.” + b r e.” - - (Id + d) 
l(bA+d) -x’ - A*+aA+c’ 
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Thus. 

sign \ We 4 / -, 
I dr 

= sign 

= sign 

\ u2 - 2(c-to?) 
= sign ) a2(o2 + ((J _ c)2 - 

6’ 1 
b’o’ + d’ \ 

= sign (a’ - b’ - 2c + 20)’ }. 

Equation (14) was used in the last step. Inserting the expression for w’, . it is 
seen that the sign is positive for ut and negative for w’-. For case 1, only 
one imaginary root exists, i = kc)+. Therefore. only crossing of the 
imaginary axis from left to right is possible as r increases. and stability of 
the zero solution can only be lost but not regained. For case 2. crossing from 
left to right with increasing r occurs whenever r assumes a value 
corresponding to cc) + , and crossing from right to left occurs for values of the 
r corresponding to LC) ~. In this case, using Eq. (13). the two sets of values of 
r for which there are imaginary roots are 

1 
r n.i 

- cos-l ) d(W;2;;);dyl ab ( ; ‘,” 
W+ 

(n = 0, I,...), 
+ I 

=-cos-’ /d(“;2;;);;yabj +g, 
(15) 

1 
5 Il.2 u- 

If Eq. (11) is stable for r = 0, then necessarily r,,, < ro.: (since the 
multiplicity of roots with positive real parts cannot become negative). Since 
5 n+ I.1 - rn.1 = 271/w+ < 271/(r~~ = r,,+,,? - r,,2, there can be only a finite 
number of switches between stability and instability. That there exist sets of 
parameters realizing any number of such switches was demonstrated in the 
special cases of Sections 3 and 4, when either b or d was zero, and it is 
certainly true when both b and d are non-zero. If Eq. (1 1) is unstable for 
r = 0, examples similar to the case in Section 3 above can be chosen in order 
to illustrate that there is a range of parameters for which ro,2 < rO.,, so that 
one or more switches from instability to stability to instability occur. 

We can summarize the general results derived in this and in the previous 
sections as follows: Consider an]’ second order, linear, homogeneous 
d&&erential-dlflerence equation of the retarded type. The number of different 
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imaginary roots (roots different in sign only not considered different) of the 
characteristic equation can be zero, one or two. (I) If there are no such roots. 
the stability of the zero solution does not change as r is increased from zero 
to infinity. (II) If there is one imaginary root, an unstable zero solution nel’er 
becomes stable. If it is stable for r = 0. then it becomes unstable at the 
smallest value of r for which an imaginary root exists and remains so as r is 
increased. (III) If there are two imaginary roots. iw, and icvp. so that 
1 (I>+ 1 > 1 w _ /, then the stabilit), of the zero solution can change a finite 
wtmber of times, at most, as r is increased, and erentuallv it becomes 
unstable. There are two infinite sets of values of r. r,,., and r,,.:. 
corresponding to iw + and io_ , respectively. They are generated by r,,,, = 
r,., + 2nn/w+ and r,,.? = r,,.? + ZTcn/oJ- (n = 0. l,...). As t is increased, the 
multiplicity of roots for which Re 1 > 0 is increased by two whenever r 
passes through a value of r,,. , . and it is decreased by two whenever r passes 
through a value of rn.?. When the zero solution is stable for r = 0, k switches 
from stability to instability to stability occur when the parameters are such 
that 

or k switches from instability to stability to instability when 

when the zero solution is unstable for r = 0. The conditions on the 
parameters in order that the above orderings be valid can be formulated 
more directly with the help of Eq. (15). Some conditions were explicitly 
found in the previous sections for the cases with b = 0 or d = 0. 

6. A POPULATION GROWTH EQUATION 

Cushing [6] has formulated and analyzed some very general population 
growth models. One of these leads to an equation of the form 

z + d(fyt)) P(t) = l_’ g(t -s) m(P(s)) P(s) ds. 
-% 

Here, d(P) is the death rate per unit time. which in this equation is assumed 
to be a function of the present population size. P(t). The function m is the 
maternity function, representing the rate of egg-laying. Here it is assumed 
that the maternity rate at time s depends only on the total population size at 
time s. The function g(s) represents the proportion of eggs laid at any 
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specific time, that survive and hatch out after time s. That is, g is a gestation 
time function, and the integral in the above equation gives the rate of 
appearance of new individuals at time I due to eggs laid at all previous times. 

Assume that the equation has a positive equilibrium P,,. Assume, with no 
loss of generality, that 

j. g(s) ds = 1. 

Then d(P,,) = m(Po). Cushing analyzed the local stability of this equilibrium 
in certain special cases, and found in one of these that there is a change from 
stability to instability and back to stability as the mean time delay is 
increased. We will investigate this here, using the same kinds of methods as 
we have used above. First, we linearize around P, by setting P = P, -t .I’ and 
dropping non-linear terms. This yields 

;+ [d(P,)+P,d’(P,)]~~ 

= (m(P,) + P,m’(P,)] 1.’ [ g(t - s)y(s) ds]. 
T 

Cushing 15, p. 9] indicates that under appropriate conditions the integral 
over -co < s < 0 may be discarded in discussing local asymptotic stability 
of P,. If we do this, we obtain the equation 

$ + [d(P,) + P, d’(P,)] x 

= IW,,) + P,,m’(P,,)] (-I g(t -s) x(s) ds. 
-0 

Further, Cushing specializes to the case in which d(P) is a constant, c. and 
m(P) = b(1 -P) for 0 <P < 1. Then the equation d(P,) = m(Po) yields 
PO = (b - c)/b and we assume 0 < c < b in order that 0 < PO < 1. Since 
m’(P,) = -b, the equation becomes 

dx 
dr + C.Y = (2c - 6) )-‘g(t - s) x(s) ds. (16) 

-0 

We shall study Eq. (16) for the class of kernels 

g(t) = f T-n-‘f’e-‘ir, 
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where n is a non-negative integer and T > 0 (compare Eq. (24) below). 
Cushing has given stability results for n = 0 and 1. These kernels have been 
proposed (see also MacDonald [ 161) as convenient examples of “distributed 
delay” because each one (for n >, 1) has a single maximum, occurring at 
s = nT, and the width of the peak at s = nT depends on n. By adjusting n 
and T, it is possible to obtain what looks like a reasonable version of delayed 
effect with any prescribed mean delay r = nT. Furthermore. the charac- 
teristic equation for (16) is easily obtained for these kernels, corresponding 
to the fact that (16) is equivalent to a system of ordinary differential 
equations. This version of “delay” corresponds to the engineer’s idea of 
approximating a pure delay by a cascade or series of first order differential 
equations. 

Here we shall investigate how the stability of Eq. (16) varies with the 
mean delay r and with n. In particular, we examine this question as n --) co, 
since as PI + w the delay kernel more nearly approximates a pure delay. 
Using the fact that the Laplace transform of g(t) is (Tz + I )-n ‘, we see 
that the condition for stability is that the equation 

(A+c)(TA+ l)“+‘=d. d = 2c - b, 

have all its roots in the half-plane Re 1 < 0. 
For n=O, Eq. (17) becomes (,i+c)(TA+ 1)=2c-bor 

TA’+(cT+ l)l+b-c=O. 

(17) 

Thus, b > c is necessary and sufficient for stability, and consequently 
whenever there is an equilibrum P, in 0 < P, < 1, it is stable. If n = 1. Eq. 
(17) becomes 

As Cushing has pointed out, it follows from the Routh-Hurwitz criterion 
that all roots lie in the left half-plane if and only if (given that 0 < c < b) 

2Tf CT’ T’ 
b-c 1 +2cT 

>o 

or 

b < 2/T + 6c + 2c’T. 

As T (or t = T) varies from 0 to 03, the function of T on the right side of 
this inequality decreases ,from 00 to a minimum value of 10~ at T = c-’ and 
then increases again. Therefore, if b < lOc, the inequality holds for all T. 
whereas if b > IOc, it holds for small T and large T but there is an interval of 



values of T for which it fails. In the latter case. there is a change from 
stability to instability and back to stability as T varies. 

For larger values of II. it is difftcult to use the Routh-Hurwitz criterion. If 
1 = io. Eq. (17) yields 

(($ +c?)l ? (T?& + ,)O,ill ?,ile+l!,+lr,,] =d, 

where 

e = tg -~ 1 (o/c 1. f/l = tg-‘(UT). 

Hence, 

sinlB+(rt+ I)~?l==o. 

and 

(& + c2)’ 2 (T*& + l)(n+lj ? = ,d,. 

Requiring stability for T = 0 (i.e.. 1 = d - c < 0), d < c or equivalently c < b. 
and the above conditions can be satisfied only if c < -d or equivalently 
c < b/3. This is just a necessary condition. The result, for all II. is: If 
b/3 < c < b. the steady state is stable for all T. If c < b/3 destabilization may 
be possible as T is increased from zero to infinity. (In fact. c/b must be 
smaller for small values of n than for large n.) The condition c < IdI has a 
simple interpretation, as seen from Eq. (16). Only if the coefficient of the 
delay term is larger in magnitude than that of the instantaneous feedback. 
does the possibility of switch of stability exist. This is analogous to the 
situation in the fixed delay case (Section 2). 

Some useful information can be obtained from the method vve employed 
before. For fixed II. we obtain. from Eq. ( 17). 

dl - (n + I ) A(rl + c) 
dT (n+2)TA+(w+ 1)cT-t 1’ (18) 

At the root /?. = ito. if any. we have 

drl - i(n + 1) oj(c + io) -= 
dT i(n + 2) TCO + (n + 1) CT + 1 

(12 + 1) w’ - i(n + I) cm 
=i(rz+2)To+(n+ l)cT+ I’ 

Refi= 
(n+ 1)Cu2(1 -CT) 

dT [(rz+l)cT+ l)*+(n+2)‘7%” 
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Thus, if a root crosses the imaginary axis at a value of T < cP ‘, it must 
cross from left to right, but if CT > 1, from right to left. We have not deter- 
mined how many crossings may occur for T < cm ’ and how many for 
T > CC’. However, the formula and the example n = 1 suggest that the 
switching from stability to instability may occur as T increases from zero to 
C -‘. Furthermore, we can show that there is stability for all suff’ciently large 
T, for any fixed positive integer n. 

Writing ,I = p + iw and using (18) we obtain 

-(n+ I)(p@+c)[(n+Z)pT+(n+ l)cT+ I] 

4 [ +w*[(n+2)pT+cT- 11) I -= 
dT (19) 

[(n + 2)pT+ (n + l)cT+ 11’ + (n + 2)2 w*T* 

Thus, if T > CC’, dp/dT < 0 for any p > 0. We can then write (19) as 

or 

P(T)=P(c-')-(' fV',p,w)dT' (T > CC’). 
.c-I 

As T+ co, we see from Eq. (19) thatf- (l/T)?@, w). Sincef> 0 for p > 0 
and T > CC’, if there is a root A(T) =p(T) + io(T) such that p(c-‘) 20, 
then p(T) must be a decreasing function of T for T > c- ‘. The only way p(T) 
could remain nonnegative for all, T > CC’ is if the integral on the right-hand 
side of the equation for p( 7) converges, so that $(p, w) must approach zero 
sufficiently fast as T + co. The form off’@, w) would imply that both p and 
LC) approach zero in this limit. But then (17) yields c(k + l)‘+ ’ = d? where 
k = lim TA > 0. This is not possible, since d < c if (16) is stable for T= 0 
and ,I = 0 is not a root. Thus, any root with a positive real part, if such 
exists for some T, must cross the imaginary axis and undergo an irreversible 
change of sign of the real part as T is increased. Note that for the average 
delay r = nT, this change of sign occurs only for r > nc-‘. The larger n is, 
the larger must r be made before restabilization occurs. 

The conclusion is that for the system represented by Eq. (16) a switch 
from stability to instability rnaql occur for a certain range of the parameters 
and must then be followed by a switch back to stability. MacDonald found 
this type of behavior numerically [ 171. This is in contrast to the result for 
the analogous system with fixed delay, Eq. (l), treated in Section 2. where 
stability can switch to instability but not vice versa. We conclude that at 
least with respect to the property of switching of stability the two models 
manifest different qualitative behavior. 

409:86’2 20 
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7. LINEAR SUBSYSTEMS PRESENTED AS "DELAYS" 

Consider the system given by 

dx/dt =f(x, “) 

and 

(20) 

(21) 

p and 6 are n-vectors, and A is n x n constant matrix. f is a (generally 
nonlinear) function of x and 7. The Laplace transform of Eq. (21) with zero 
initial conditions is 

sj(s) = A&) + E(s), 

from which 

F(s) = (SZ - A ) - ’ b.?(s) = G(s) T(s). (22) 

The poles of (22) are the values of s for which the determinant is zero, 
namely, 

ISI-A/=0. (23) 

Using control theory terminology, c(s) = (SZ - A) -’ b is a vector of 
“transfer functions,” relating the outputs ?;i(s), j = I...., n, to the input 2((s) 
for the linear subsystem, Eq. (2 1). 

Suppose that Eq. (23) has 9 different roots ii9 i = l...., q, with 
multiplicities ni, respectively. so that x7_, ni = t?. Then the matrix 
(SZ - A)-’ can be expressed by a partial fraction expansion as 

G-A)-‘= $ z, &; zik are matrices [ 23 1. 
1 

The inverse transform is 

L-l((SZ-A)-I}= + ;’ ‘ik 

fk-‘e.‘J. 

Define 

aPf iuP 

g:(u) = ~ e p! -; (24) 
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Eq. (22) yields 

= I-’ i?(f - T) x(7) dr. 
-0 (25) 

Equation (25) satisfies the initial conditions jr(O) = 0. 
If y(O) f 0, there will be additional contributions to J?(S), and instead of 

Eq. (22) we have 

j(s) = G(s) 2(s) + G(s), k(s) = (SI - A ) ’ 4;(O). (26) 

Equation (25) is then replaced by 

x l~!~gx_;l(r)x(r-r)dr+,s(0)gX_;:(1)I. (27) 

Next, we attempt to rewrite Eq. (27) by extending the range of the 
integrals from (0, t] to (-co, t] and omitting the terms proportional to j(0) 
on the right-hand side. This implies an attempt to define the function x(t) for 
-co < t < 0 (only x(0) is given initially), by requiring that 

1.’ c(cr - r) x(r) ds = (28) 
Tz 

Note the change of integration variable in the left-hand side of (28) as 
compared to (25). Equation (28) must be satisfied for all t > 0. From 
definition (24), we can find that the functions gtTkf(t - r) may be factored as 
follows: 

k-l 

(-Ai)k 1 -j 
f?(r) = (k _ 1 -j)! (--~)~-‘-j e--‘*. 

Thus, the left-hand side of (28) can be written as 

Xj’y, (-r)k-‘-je-AzTx(r) dr . 
I 
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Inserting in (28) and comparing the coeffkients of each of the II functions 
g’.,,(t) (/ = l,..., Izi, i = 1 
.I‘“, (-rye 

,.... 4). we obtain n equations for the n integrals. 
P.‘17~u(r) dr. In other words, we obtain n constraints on the 

history function x(r) (r < 0). If all the roots /lj have negative real parts and 
x(r) is bounded (i.e.. Is(t)1 < 6 for r < 0). then the integrals exist and the 
constraints can in general be fulfilled. Note that there is still an infinite 
number of ways to define x(r). This reflects the finite dimensionality of our 
system: the solution does not actually depend on the entire history function. 

In summary: If the zero solution of the linear subsystem, dC/dt = A?;. is 
asymptotically stable, then the system (20)-( 2 1) can be reduced to Eq. (20) 
alone in \tvhich .ii is replaced bj* calues of x inrlolring “distributed delay.” 

F(f) = ((I C(t - 5) x(r) dr, (30) 
. --% 

where the uector “memory function” G(t) is general& a sum of different 
moments of the exponential distribution, of the form 

(31) 

Consider the particular case 

dxfdt = f (x, -l’,,) (32) 

and 

&,/dt = a(x -y,); ~~~j/dt = a( I)- , - ~lj). j = 2..... n. (33) 

Here, ?;,(s) = G(s).<(s) (if -F(O) = 0), with G(s) = a”/(s + a)“, 

y,(t) = I( gz-‘(t - r) x(r) dr. (34) 
-ir 

This is the case treated extensively by Cushing 15 1 and MacDonald [ 16 1, 
with a single distributed delay. There is one multiple, real, negative root, 
1=-a, to IlI-Al=0 in this case. 

The equivalence of variables of distributed delays of the form (3 I) to 
systems of linear equations was manifested also in the other direction. 
namely, starting from the integral representation (I 11. 261, see also I 16 1). 
Our objective in going through the above details is twofold: The first 
objective is to stress the relationship of generalized exponentially distributed 
delays to linear systems and the basic difference between these “delays” and 
fixed delays. As described. any subsystem of linear equations can be seen as 
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coupled to the other equations through “input” and “output” variables. and 
be replaced essentially by its “transfer functions” (in the “complex frequency 
domain”) or by their time representation. The integrals involving “delayed 
variables” are nothing but an integral representation of the linear system. 
The extension of the integration region to the entire “history” of the system 
does not imply a real dependence on the history. Unlike the equations with 
fixed delays or with other distribution functions, which possess an infinite 
number of degrees of freedom (“modes”), those with distributions as in Eq. 
(24) are characterized by a finite number of modes. As far as modelling 
natural systems by differential equations is concerned, delays may be 
introduced il order to represent implicitly some linear, intermediate process 
which the main variables of interest undergo. This naturally suggests 
distributions such as in (31). The more complex such a process is and the 
more irformation we hove about it. the more terms ma?- appear in G(t). The 
special distribution of Eq. (34) with large n, or a fixed delay. approximates 
high dimensionality but lack of “structure.” 

Our second objective is to introduce here the terms “transfer functions” 
and “frequency response” in order to give yet a different interpretation to 
generalized exponential memory distributions. This is done in Section 8. 

8. FREQUENCY DEPENDENT DELAYS 

Consider again Eqs. (20)-(22) of the previous section. x(t) is considered 
as input to (21) and any of the y(t) variables, j;.(r), e output. The corre- 
sponding transfer function cj(s) is a component of G(s) in (22). 

If the input is assumed to be sinusoidal, x =A, sin tot, and if the Iv-system 
is stable, the “steady state response” is given by 

yj = A, 1 Cj(iw)l sin(wt + qbi(w)). (35) 

1 (?j(ico)l is the magnitude of C?,(iw). and 

@j(cl>) = tg - ’ 
Im Cj(iw) 
Re G,,(iw ) ’ 

Gj and $j, for all w, constitute the “frequency response” of the linear 
subsystem 191. The general solution, p(t), will also include transient response 
functions which decay to zero as t + co. A frequency dependent delay, r(w). 
can be defined in terms of the phase-shift 4i, 

r;(o) = - ; (bj(W), (36) 
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so that 

Jj(t) =A, J~j(iU)( sin[w(t - r!(w))] = 1 G.Jiw)/ .~(t - S/(W)). (37) 

Thus, apart from transient effects, the effect of the linear system, or of the 
equivalent integral operator, Eq. (30). on x is to introduce a fixed delay into 
each frequency component of x and to change its size by a certain factor. 
This factor and the delay depend on the frequency o. The combined effect 
will be referred to as “frequency dependent delay”. It is contrasted to the 
case of a fixed delay, in which r does not depend on w. but the expression on 
the right of Eq. (37) suggests a close analogy. 

The analogy may be useful in cases where x is expanded in terms of 
frequency components. This will be illustrated in Section 10. But first, we 
discuss the possibility of stability switches in Goodwin’s model. 

9. GOODWIN’S MODEL 

The following is a normalized version of the feedback model for the 
regulation of enzyme synthesis introduced by Goodwin [ 121. 

dx,/dt =f(x,) - b,x,. 

dzc,ldt = xi , - bjx.i, j = 2,..., n. (38) 

bi > 0 for all j. f(x,) is a positive, monotone decreasing function of x, > 0. 
The steady state value of x,, denoted by x,,, is the (unique) root of 

f(xJ = ax,; a = 1’1 bj (a > 0). 

The characteristic equation is 

.i- I 

fi (A + bj) =f’(X,) (f’(xo) < 0). 

If A = iw, Eq. (40) becomes 

I i + cpj 1 =f’(x,), 
jr, 

vj = tg - ’ (w/b,), 

yielding (sincef’(x,) < 0) 

Jz, ylj=(2k+ l)n; k = 0, l,..., 

fi (bj’ + co*)“* = -f’(x,). 
j=l 

(39) 

(40 1 

(41) 

(42) 
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Obviously, a necessary condition for the existence of real nonzero o is 

a < -j-‘(x0). (43) 

Iff(x) = l/( 1 + Y), this becomes, using (39). 

p--l 

( lyx;,z > 
1 

x,(1 +?5{)’ 

or xg@ - 1) > 1. Hence p > 1 is a necessary condition. The result that there 
can be no crossing of the imaginary axis (and hence no change in the 
stability of the steady state and no bifurcation of periodic solutions) if p < 1 
in Eq. (38) for this form of f(x), is known and applies also for the fixed 
delay analogue of (20) (see [ 14, 181). Delays in the decay (diagonal) terms 
of (21) can lead to bifurcations for p = 1 [ 141. However, the biological 
meaning of such delays is not clear. 

The distributed delay model equivalent, in the sense of Section 7, to Eqs. 
(38) is 

(44) 

G(f) is the function whose Laplace transform is 

G(s) = 
1 

ny=z (s + bj) . 

Note that a-’ = b; ‘G(O). Condition (43) can be written as 
-G(O)f’(x,) > b,.f’(x,) is the coefficient of the delay term in the equation 
arising from Eq. (44) by linearization and b, is the coefftcient of the instan- 
taneous term. The factor c(O) arises from the fact that the kernel G(f) in 
(43) has a different normalization as compared to the one in Eq. (16) (there, 
g’(0) = 1). Thus, the interpretation of the condition in Eq. (43) is the same as 
that of c < ]d] in Section 6. The analogous equation with one fixed delay is 
of the form 

dx/dt =f(x(t - T)) - bx U-(x,) = bx,). (45) 

The characteristic equation 

A + b -f/(x,) e-.” = 0 

leads to f’(xJ cos or = b and /‘(x0) sin 07 = --w for A = iw, from which 



CC)’ = (f’(-u,))’ - 6’ > 0 yields the necessary condition b < lJ'(s,,)1 for a real 
w to exist. Iff(s) = I/( 1 + 9). this condition becomes 

or sG@ - 1) > 1, which is the same condition as that in the non-delay case. 
p > 1 is a necessary condition for destabilization of the steady state. 

One way to enable destabilization both in the non-delay, “chain-reaction” 
model (Eq. (38)), and ‘in the delay model (Eq. (45)), is to choose J(X) = 
l/( 1 + x0) with p > 2. (An alternative way is to consider parallel feedback 
loops [ 181.) For small values of p > 1, even when periodic solutions 
bifurcate from the steady state their frequency is quite restricted. This point 
was stressed by Tyson (251. It is easy to observe the restriction on the 
critical frequency at bifurcation, w, from Eq. (42). The left-hand side of the 
equation for w assumes the value u for w = 0 and is monotonically 
increasing with w’. For a given ratio +‘(~,,)/a = r, W’ is restricted to values 
smaller than some IS’, for which 

I’\( -‘) 
.i= 1 

l+-$ =r. 
I 

For p = 1. r < 1, so that real w does not exist. For p = 2, r = 2x$ 
(1 + ~6) < 2. Obviously, if b, is the smallest decay constant for some k-, 
1 + W’/b: < r implies 16 < b,. If there are several constants of the same 
order of magnitude as 6,. 5 is much smaller. In other words, the root w 
must necessarily be smaller than the smallest decay constant, or the period 
larger than the enzyme’s longest life-time. 

A way to relax the above restrictions is to consider models with more 
general feedback functions. One possibility is that x,, actively enhances the 
removal of x,. For example, 

dx,,‘dt =f (x,) - c,x,x, - b,x,, 

dxjdt = xj , - b,ixi, j = 2,..., t1. 

The characteristic equation is 

(46) 

(~ + b, + c,s~) i[ (~ it bj) =f’(-~“) ~ (c,/b,) a-~,; 
i-2 

(47) 

u = EYE, bj, and x,, is the root (unique iff(0) > LI andf’(x) < 0 for .Y > 0) 
of 

f(-r, ) -= ux,,( 1 + (c ,/b , ) x,,). (48 ) 
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A necessary condition for the existence of i, = iw with real w can be shown 
to be. as before, ~1 < -f’(.u,). However, for f(x) = l/( 1 + Y’) we now have 

r = -.‘WIa = (&;) --IL- [I + (c,/b,)s,]. 

r can be larger than 1 for p = 1 and destabilization is possible. r can be 
made much larger compared to its values for the model with c, = 0 for the 
same p, so that roots 1 = iw of Eq. (47) with larger w are possible for the 
same set (bj). 

In Eq. (46), x, can be replaced by X, with distributed delay. The 
analogous fixed delay equation is 

d.v/dt =f(x(t - 5)) - u(t) x(t - 5) - bx(t). (49) 

The equation for x0 isf(x,) = xO(cxO + 6), and the characteristic equation is 

1 + [C-K, -f’(x,)] e --ir + cx, + b = 0. (50) 

If d = iw tg w7 = -o/(cx, + b), and 

U? = [CX~ -f’(xo)]z - (CX, + bj?. (51) 

Iff’(,u,) ( C-Y,, a necessary condition for existence of real LO is -f’(x,) > 6. 
which can be satisfied even iff(x) = l/(1 + x) @ = I ). 

Finally, we consider the question of switch from stability to instability and 
back to stability for system (38). First we choose the parameter to be varied. 
If we assume that x0 remains fixed, so does c[ (Eq. (39)), so that not all the 
bi can be varied independently. As an example. consider the case 

b, = aT”-‘. bi= l/T j = 2,..., n. 

Equation (40) becomes 

(1 + aT”-‘)(/1 + l/T)“-’ =f’(<~,). (52) 

This equation is similar to Eq. (17), Section 6, and we are interested in the 
variation of ReA as T is increased from zero to infinity. From (52) we 
obtain 

dl (n - l)A(l -aT”) -= 
dT T[nAT+ (n- I)aT” + 11 . (53) 
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Thus. if 1 =p + iw. 

\dRei 
sign ) dT \ 

-(=sign ]Re ($-)-‘I 

I nT’ [(n - 1)aT” + I] Tp 
=‘lgn /(n-l)(l-oT”)+(,r-l)(l-oT’)@‘+o,l)( 

= sign ’ I 
1 -UT” 1’ 

Thus, for any ~20, dReA./dT>O if T<a-I,” and dRel/dT<O if 
T > a-““. Following the same arguments as those in Section 6, we conclude 
that whenever a switch from stability to instability occurs as T is increased 
from zero (the critical value of T is then smaller than a ’ “‘), the steady state 
becomes stable again, irreversibly, for sufficiently large T. Such a switch 
does not occur for the fixed delay model, as was shown in Section 2. In prin- 
ciple, this qualitative difference might provide some idea on the nature of 
real systems. 

10. APPROXIMATE PERIODIC SOLUTIONS 

A Poincare-type expansion method was earlier applied to calculate 
approximate periodic solutions of a first order differential equation with fixed 
delay [15] and of second order equations with fixed delay [ 13. 141. Morris 
has also applied this method both for fixed delay and for distributed delay 
with the distribution given in Eqs. (24) [21]. The calculation in the 
distributed case is not significantly different from that in the fixed delay case, 
but appears to be more tedious. Our objective in this section is to make the 
analogy with the lixed delay case more transparent and to simplify the 
calculations. In this method, the calculation of integrals is reduced to a 
single evaluation of a transfer function, which is then used at each step in the 
iteration process. 

Goodwin’s model, Eq. (38), will serve as a specific example. For the sake 
of simplicity, we study in some detail the case where bj = b for all j and 
consider b as the “bifurcation parameter.” The functionf is chosen as f(x) = 
l/( 1 + x’). If L = io, Eq. (42) becomes 

na,=7C (k=O), v = tg -‘(d), (b2 + W2)“‘Z = -f’(x,), (54) 

where x0 is the root of f(xO) = b”x,, . Thus, 

co* = b* tg’(n/n) = [-f’(~~)]“~ - b*, 
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from which we obtain 

cos”(dn) = b”l(-f’(xo)) =f(xoYxo(-f’(-ro)) 
= (1 + X;)/2X; > f. (55) 

The smallest positive integer n which fulfills the condition cos”(z/n) > f and 
allows for a purely imaginary root of the characteristic equation is 8. Thus 
in the following we choose n = 8. Then, from (55), 

x0 = xoc = l/(2 cos8(z/8) - 1)“2 = 4.0298, 

b = b, = l/[x,,( 1 + x;,)] ‘18 = 0.5885. 

and cc) = w, = b, tg(z/8) = 0.2438. (It is easily seen that b, is the largest 
critical value of 6, equivalent to the smallest average delay in Eq. (43). X,,, is 
the corresponding steady state value of x8.) 

We will look for periodic solutions of the nonlinear system, Eq. (38). We 
are not interested in the transient behaviour, so that the contribution of the 
region from -co to 0 to the integral in (44) can be omitted. Let us introduce 
the following operator notation: 

1-I G(r) x,(t - T) dr = ex,(t), 
-0 

(56) 

This defines the linear operator G in terms of the kernel G(r). Let us assume 
that x(t) is a periodic function with basic frequency o. Then 

x,(t) = 5 (A,,, cos mot + B, sin mwr). 
m=o 

The operation of G on each component is specified by the transfer function 
G(s), which yields the frequency response as in Eq. (37). In a Poincari-type 
expansion method [ 14, 211, one usually only has to apply G to the first few 
terms of the above series. Since the method is described in detail in [21], we 
shall only outline the calculations here. 

With the help of (56), the equation under consideration is 

1 
-‘I = 1 + (Gx,)’ 

-bx,. 

z=XgEGX,, z. = ex, = b-‘x0, l/( 1 + z;) = b’z,. (57) 
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Expanding I/( 1 + z)’ about i,,. z = z, + 1’. Eq. (57) can be written as 

08) 

The first two uk are 

a,(zJ = (32; - l)/(zi + I)!. aI = 4z,( 1 ~ zi,/(zi + 1)‘. (59) 

Here (see Eqs. (56). (35)-(37)) 

G(s) = I/(s + b)‘, 1 G(inw)l = l/(b’ + ~I’o’)‘~~, 

r(m) = & 7 tg ’ (nw/b). (60) 

We make the following magnitude assignments and time renormalization 

b = b, + ~‘6. oJ=aJ,. \‘ hid (h,= 1). i= wt; 
i = 0 

E’B is the excess of b over the critical value b,, where E is an auxiliary 
parameter. (Note that periodic solutions are expected to exist for 6 < 0. when 
the steady state is locally unstable.) .1;(fl are undetermined periodic functions 
of frequency 1 on the new time scale. Inserting (61) in (58) and identifying 
coefficients of .$, j = 0, l..... yields a linear recursive system. Details of the 
calculations are given in the Appendix. 

The approximation method is applicable to more complex systems. The 
only requisite is the knowledge of the transfer function(s) G(s). 
corresponding to the linear system. whose number is equal to the number of 
output variables by which it is coupled to the nonlinear equation(s). 
(Equivalently, one has to know the Laplace transform(s) of the distribution 
functton(sj in a distributed delay problem.) Distributions G(r) with discon- 
tinuities or gaps (corresponding to G(s) of mixed polynomial-transcendental 
form) can also be treated in the same way. The operator G generalizes the 
fixed time delay operation (i.e., I@(t) = ~j(t - r)) in a straightforward way. 
The calculation does not involve additional integrations (compare with 
Morris [21. pp. 21-221). 
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APPENDIX 

We make the following expansions in powers of e 

@(inw)l = \“- c+;, 
,-c 

,Zl 
qqnw) s nwr(nw) = y c$j”‘&i; 

i--O 

Gb"' = I/(@ + ,2,;)7'2q 

qq’ = 7 tg-‘(nw,/b,). n = 0, l..... (6.2) 

and 

p(zo) = 2z,/(l + zi)’ =p(x,,) +$(x0,) z;6E2 + O(d). 

z’ =dz, 
0 

db b=b, 

= -8x,,/b,(2x;,b~ + 1). 

p’(xo,) = 2( 1 - 3x:,)/( 1 + xi,)‘. (63) 

Thus, 

= t,(e’“‘} + ((terms of order 1 in E and higher) 

with 

,?,{e’“‘/ = (wc f + b,) (eini} +p(xo,) Gr’e”“‘-@“. (64) 

If n = 1, the right-hand side of (64) becomes zero since b, and w, satisfy the 
corresponding characteristic equation. 

The first order terms yield 

Lo Ye(f) = 0. (65) 

Equation (65) is the “generating equation” and y. is the “generating 
solution,” 

r,(f) = A, cos i, (66) 

where A, is unknown. The freedom to choose the phase of the entire periodic 
solution at will is used in (66). Thus we have appled the phase condition 

(67) 



624 COOKE AND GROSShl,\N 

The second order terms in Eq. (58) yield 

&F,(i) = a,(x,,,)(G~‘~&,(f- c&“)12 

+ (terms proportional to h, and linear in cos ior sin r7. (68) 

Since cos I and sin f are solutions of the homogeneous equation I!,?;, = 0, 
terms proportional to h, would generate “secular terms” (i.e.. terms whose 
magnitudes grow indefinitely with time). Thus for .V, to be periodic we must 
require h, = 0. Then 

~~,(t~=A,cosi+B,sint+Azcos2i+Bzsin2i+K. (69) 

From Eq. (67). B, = -28, and A, in (66) can be renormalized to include the 
A,-term so that we can set A, = 0. AZ, B, and K are determined by inserting 
(69) into (68) and comparing coefficients 

K E Z?A; = u,(xoc) G;“‘A;/2(b, + p(s,,) G;‘), 

A, E xzAi = a,(~,,) Gy”v cos 24;” - u sin 24,!“‘) Ai/2(u’ + p’), 

B? E EzAi = a,(~,,) Gy”(a cos 24b” +/I sin 24;“) Ai/2(a’ + 8’): 

a = 20.1,. - p(xo,) Gr’ sin db”. 

p = 6,. + p(xo,) Gy’ cos &‘. (70) 

Comparing terms of the order 0(&j) yields 

&&(i) = -w,h,jo(~ - @,,(f3 - dp’(x,,) z;,G;“yo(t - &,“) 

-p(xo,) G’z”&(i- 4;“) +p(xo,) #‘&(i- q$,“) 

+ CL(X,,,) A;G;“’ cos’(t- 4;“) + 2a,(x,,) A;G;” cos(f- q;“) 

x (Gp’K+ Gf’)x2 cos(2i- 4:“) + Gf’B2 sin(2i- $b”)] 

+ (terms which do not generate secular terms). 

Here G\” and 4z , (” defined by Eq. (62), are expliciti)- 

G;” = -7G;“(b,6 + ofh2)/(bf + of). 

4:” = 7Gb”(-co,6 + b,w,h,)/(b~ + wf). (72) 

All the other quantities have been presented earlier. A,, and h,, to the leading 
approximation, are obtained from the requirement of no secular terms, 
namely, from the conditions that the coefficients of cos i and of sin I on the 
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right-hand side of Eq. (71) should vanish. Let us simplify the notation by 
denoting 

Gb” = G, = (bf + wf)-“‘, 

G’O’ zz G 
0 0’ 

G’2’ = G 

m=4J-2mpo 

2, 4:” =@,. 

$b2’ = $2, Po(Xo,) = P? P&~o,) = P’? 

Q,(-qJ = a, 3 a2(xoc) = a?. 

a, and aZ are given in Eq. (59), p, p’ and z(r in (63), Gr’ and 4:’ 
(n = 0, l,...) in Eq. (62). Then, with R, xZ and gI given in Eq. (70), 
b, = 0.5885, w, = 0.2438, xoc = 4.0298. and xIo = b’z,,. with z. the root of 
bszo(l + zi) = 1, we finally have 

x, E x0 + (&AO) cos wr, 

(&A,)’ z & (b - b,h 
I 

w=w,+;(b-b,), 

g=Pu,P, +Pu:T B = -PIP.1 - p2p5 3 PIP4 --iU211139 

,u, = 3 a2Gf + 2a, G,i? + a, G2(x2 cos 4 - B2 sin 4). 

p, = a, G2(E2 cos $ +x2 sin @), iu, = + sin $, + v-o,, 

~4 = ~0s $, - rib,, ,u5 = cos 4, + G, p’z;, - qb,, 

q = 7G, p/(bf + wf). (73) 

O”O 

-(b-&)/b, 

FIG. I. The theoretical and numerical values of the amplitude (Abh and Aiurn, respec- 
tively) and of the deviation from the critical frequency, (w - w,), as functions of the excess of 
the parameter b (see Eqs. (38) and (73)). The numerical and theoretical results for the 
frequency agree to within 2%. 
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Ai and ((0 - wc) are computed from (73) as functions of (h - h, j. The 

results are compared With those of the numerical integration of Eq. (38) With 

bj = b for j = I...., 8 and f‘(-y) = ( 1 + .Y’ ) ’ (Fig. 1). 
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