Characteristic functions and joint invariant subspaces

Gelu Popescu ${ }^{1}$
Department of Mathematics, The University of Texas at San Antonio, San Antonio, TX 78249, USA
Received 5 July 2005; accepted 6 January 2006
Available online 13 March 2006
Communicated by G. Pisier
Dedicated to the memory of Tiberiu Constantinescu

Abstract

Let $T:=\left[T_{1}, \ldots, T_{n}\right]$ be an n-tuple of operators on a Hilbert space such that T is a completely noncoisometric row contraction. We establish the existence of a "one-to-one" correspondence between the joint invariant subspaces under T_{1}, \ldots, T_{n}, and the regular factorizations of the characteristic function Θ_{T} associated with T. In particular, we prove that there is a non-trivial joint invariant subspace under the operators T_{1}, \ldots, T_{n}, if and only if there is a non-trivial regular factorization of Θ_{T}. We also provide a functional model for the joint invariant subspaces in terms of the regular factorizations of the characteristic function, and prove the existence of joint invariant subspaces for certain classes of n-tuples of operators.

We obtain criteria for joint similarity of n-tuples of operators to Cuntz row isometries. In particular, we prove that a completely non-coisometric row contraction T is jointly similar to a Cuntz row isometry if and only if the characteristic function of T is an invertible multi-analytic operator.

© 2006 Elsevier Inc. All rights reserved.
Keywords: Characteristic function; Factorization; Invariant subspace; Row contraction; Isometric dilation; Model theory; Fock space; Multivariable operator theory; Similarity

1. Introduction

In the classical case of a single operator, the connection between the invariant subspaces of an operator and the corresponding characteristic function was first considered, for certain particular classes of operators, in the work of Livšic, Potapov, Šmulyan, Brodskii, etc. (see the references from [26,27]). One of the fundamental results in the Sz.-Nagy-Foias theory of contractions [29]

[^0]states that the invariant subspaces of a completely non-unitary (c.n.u.) contraction T on a (separable) Hilbert space are in "one-to-one" correspondence with the regular factorizations of the characteristic function associated with T. This general result, although influenced in part by the work of the authors cited above, was obtained by Sz.-Nagy and Foiaş in [26,27], following an entirely different approach based on the geometric structure of the unitary dilation and the corresponding functional model for c.n.u. contractions.

The main goal of this paper is to obtain a multivariable version of the above-mentioned result, for n-tuples of operators, and to provide a functional model for the joint invariant subspaces in terms of the regular factorizations of the characteristic function. This comes as a natural continuation of our program to develop a free analogue of Sz.-Nagy-Foiaş theory, for row contractions.

An n-tuple $T:=\left[T_{1}, \ldots, T_{n}\right]$ of bounded linear operators acting on a common Hilbert space \mathcal{H} is called row contraction if

$$
T_{1} T_{1}^{*}+\cdots+T_{n} T_{n}^{*} \leqslant I
$$

A distinguished role among row contractions is played by the n-tuple $S:=\left[S_{1}, \ldots, S_{n}\right]$ of left creation operators on the full Fock space with n generators, $F^{2}\left(H_{n}\right)$, which satisfies the noncommutative von Neumann inequality [14] (see also [16,18])

$$
\left\|p\left(T_{1}, \ldots, T_{n}\right)\right\| \leqslant\left\|p\left(S_{1}, \ldots, S_{n}\right)\right\|
$$

for any polynomial $p\left(X_{1}, \ldots, X_{n}\right)$ in n noncommuting indeterminates. For the classical von Neumann inequality [30] (case $n=1$) and a nice survey, we refer to Pisier's book [9]. Based on the left creation operators and their representations, a noncommutative dilation theory and model theory for row contractions was developed in [4,5,10-12,15], etc. In this study, the role of the unilateral shift is played by the left creation operators and the Hardy algebra $H^{\infty}(\mathbb{D})$ is replaced by the noncommutative analytic Toeplitz algebra F_{n}^{∞}. We recall that F_{n}^{∞} was introduced in [14] as the algebra of left multipliers of $F^{2}\left(H_{n}\right)$ and can be identified with the weakly closed (or w^{*}-closed) algebra generated by the left creation operators S_{1}, \ldots, S_{n} and the identity.

In [12], we defined the standard characteristic function Θ_{T} of a row contraction (a multianalytic operator acting on Fock spaces) which, as in the classical case ($n=1$) [29], turned out to be a complete unitary invariant for completely non-coisometric row contractions (c.n.c.). We also constructed a model for c.n.c. row contractions, in which the characteristic function occurs explicitly. In a very recent paper [3], Ball and Vinnikov introduced an additional invariant L_{T} so that the pair $\left(L_{T}, \Theta_{T}\right)$ is a complete unitary invariant for the more general case when T is a completely non-unitary (c.n.u.) row contraction.

In 2000, Arveson [2] introduced and studied the curvature and Euler characteristic associated with a row contraction with commuting entries. Noncommutative analogues of these numerical invariants were defined and studied by the author [19] and, independently, by D. Kribs [6]. We showed in [23] that the curvature invariant and Euler characteristic associated with a Hilbert module generated by an arbitrary (respectively commuting) row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$ can be expressed only in terms of the (respectively constrained) characteristic function of T. We also proved in [23,24] that the constrained characteristic function is a complete unitary invariant for the class of constrained c.n.c. row contractions, and we provided a model.

In this paper, we continue the study of the characteristic function Θ_{T} associated with a row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$ in connection with joint invariant subspaces under the operators
T_{1}, \ldots, T_{n}, and the joint similarity of T to a Cuntz row isometry $W:=\left[W_{1}, \ldots, W_{n}\right]$, i.e., W_{1}, \ldots, W_{n} are isometries with

$$
W_{1} W_{1}^{*}+\cdots+W_{n} W_{n}^{*}=I
$$

After some preliminaries on multivariable noncommutative dilation theory (see Section 2), we present in Section 3 the main results of this paper.

We establish the existence of a "one-to-one" correspondence between the joint invariant subspaces under T_{1}, \ldots, T_{n}, and the regular factorizations of the characteristic function Θ_{T} associated with a completely non-coisometric row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$ (see Theorems 3.2 and 3.6). In particular, we prove that there is a non-trivial joint invariant subspace under the operators T_{1}, \ldots, T_{n}, if and only if there is a non-trivial regular factorization of Θ_{T} (see Theorem 3.7). Using the model theory for c.n.c. row contractions, we provide a functional model for the joint invariant subspaces in terms of the regular factorizations of the characteristic function (see Theorem 3.3). An important question related to the main result, Theorem 3.2, is to what extent a joint invariant subspace determines the corresponding regular factorization of the characteristic function. We address this problem in Theorem 3.8.

In Section 4, we prove the existence of a unique triangulation of type

$$
\left(\begin{array}{cc}
C .0 & 0 \\
* & C \cdot 1
\end{array}\right)
$$

for any row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$ (see Theorem 4.1), and prove the existence of nontrivial joint invariant subspaces for certain classes of row contractions. We show that there is a non-trivial joint invariant subspace under T_{1}, \ldots, T_{n} whenever the inner-outer factorization of the characteristic function associated with T is non-trivial (see Theorem 4.8). We also consider some examples that explicitly illustrate the correspondence between joint invariant subspaces and factorizations of the characteristic function.

In Section 5, we obtain criteria for joint similarity of n-tuples of operators to Cuntz row isometries. In particular, we prove that a completely non-coisometric row contraction T is jointly similar to a Cuntz row isometry if and only if the characteristic function of T is an invertible multi-analytic operator (see Theorem 5.2). Moreover, in this case, we provide a model Cuntz row isometry for similarity. This is a multivariable version of a result of Sz.-Nagy and Foiaş [28], concerning the similarity to unitary operators.

Extending some results obtained by Sz.-Nagy [25], Sz.-Nagy and Foiaş [29], and the author [10,21], we prove, in particular, that a one-to-one power bounded n-tuple [T_{1}, \ldots, T_{n}] of operators on a Hilbert space \mathcal{H} is jointly similar to a Cuntz row isometry if and only if there exists a constant $c>0$ such that

$$
\sum_{\alpha \in \mathbb{F}_{n}^{+},|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2} \geqslant c\|h\|^{2}, \quad h \in \mathcal{H}
$$

for any $k=1,2, \ldots$ (see next section for notation).
In a recent paper [7], Muhly and Solel extended the results from [12] to c.n.c. representations of the Hardy algebra $H^{\infty}(E)$ and their characteristic functions. We believe that all the results of this paper can be generalized to their setting.

Based on the results of the present paper, the existence of a non-trivial joint invariant subspace for T_{1}, \ldots, T_{n} is equivalent to the existence of non-trivial regular factorizations for the characteristic function Θ_{T}. This raises the following natural question: does any contractive multi-analytic operator have a non-trivial regular factorization? While this remains an open problem even in the one-variable case, it will be interesting to find, as in the classical case, sufficient conditions for the existence of non-trivial regular factorizations in our multivariable setting (see Section 4 for some examples).

Another natural open problem worth mentioning is the problem of extending the results of this paper, concerning c.n.c. row contractions, to the case of c.n.u. row contractions by using the complete invariant (L_{T}, Θ_{T}) from [3].

Recently $[23,24]$ we developed a dilation theory on noncommutative varieties determined by row contractions $\left[T_{1}, \ldots, T_{n}\right]$ subject to constraints such as $p\left(T_{1}, \ldots, T_{n}\right)=0, p \in \mathcal{P}$, where \mathcal{P} is a set of noncommutative polynomials. It would be interesting to see to what extent the results of this paper can be extended to constrained row contractions and their constrained characteristic functions.

2. Preliminaries on characteristic functions for row contractions

Let H_{n} be an n-dimensional complex Hilbert space with orthonormal basis $e_{1}, e_{2}, \ldots, e_{n}$, where $n \in\{1,2, \ldots\}$ or $n=\infty$. We consider the full Fock space of H_{n} defined by

$$
F^{2}\left(H_{n}\right):=\bigoplus_{k \geqslant 0} H_{n}^{\otimes k}
$$

where $H_{n}^{\otimes 0}:=\mathbb{C} 1$ and $H_{n}^{\otimes k}$ is the (Hilbert) tensor product of k copies of H_{n}. Define the left creation operators $S_{i}: F^{2}\left(H_{n}\right) \rightarrow F^{2}\left(H_{n}\right), i=1, \ldots, n$, by

$$
S_{i} \varphi:=e_{i} \otimes \varphi, \quad \varphi \in F^{2}\left(H_{n}\right)
$$

The noncommutative analytic Toeplitz algebra F_{n}^{∞} and its norm closed version, the noncommutative disc algebra \mathcal{A}_{n}, were introduced by the author [14] in connection with a multivariable noncommutative von Neumann inequality. F_{n}^{∞} is the algebra of left multipliers of $F^{2}\left(H_{n}\right)$ and can be identified with the weakly closed (or w^{*}-closed) algebra generated by the left creation operators S_{1}, \ldots, S_{n} acting on $F^{2}\left(H_{n}\right)$, and the identity. When $n=1, F_{1}^{\infty}$ can be identified with $H^{\infty}(\mathbb{D})$, the algebra of bounded analytic functions on the open unit disc. The algebra F_{n}^{∞} can be viewed as a multivariable noncommutative analogue of $H^{\infty}(\mathbb{D})$. There are many analogies with the invariant subspaces of the unilateral shift on $H^{2}(\mathbb{D})$, inner-outer factorizations, analytic operators, Toeplitz operators, $H^{\infty}(\mathbb{D})$-functional calculus, bounded (respectively spectral) interpolation, etc.

Let \mathbb{F}_{n}^{+}be the unital free semigroup on n generators g_{1}, \ldots, g_{n}, and the identity g_{0}. The length of $\alpha \in \mathbb{F}_{n}^{+}$is defined by $|\alpha|:=k$, if $\alpha=g_{i_{1}} g_{i_{2}} \cdots g_{i_{k}}$, and $|\alpha|:=0$, if $\alpha=g_{0}$. We also define $e_{\alpha}:=e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}}$ and $e_{g_{0}}=1$. It is clear that $\left\{e_{\alpha}: \alpha \in \mathbb{F}_{n}^{+}\right\}$is an orthonormal basis of $F^{2}\left(H_{n}\right)$. If $T_{1}, \ldots, T_{n} \in B(\mathcal{H})$, the algebra of all bounded linear operators on a Hilbert space \mathcal{H}, we define $T_{\alpha}:=T_{i_{1}} T_{i_{2}} \cdots T_{i_{k}}$ and $T_{g_{0}}:=I_{\mathcal{H}}$.

We need to recall from [12-14,16,17] a few facts concerning multi-analytic operators on Fock spaces. We say that a bounded linear operator A acting from $F^{2}\left(H_{n}\right) \otimes \mathcal{K}$ to $F^{2}\left(H_{n}\right) \otimes \mathcal{G}$ is multi-analytic if

$$
\begin{equation*}
A\left(S_{i} \otimes I_{\mathcal{K}}\right)=\left(S_{i} \otimes I_{\mathcal{G}}\right) A \quad \text { for any } i=1, \ldots, n \tag{2.1}
\end{equation*}
$$

Notice that A is uniquely determined by the operator $\theta: \mathcal{K} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{G}$, which is defined by $\theta k:=A(1 \otimes k), k \in \mathcal{K}$, and is called the symbol of A. We denote $A=A_{\theta}$. Moreover, A_{θ} is uniquely determined by the "coefficients" $\theta_{(\alpha)} \in B(\mathcal{K}, \mathcal{G})$, which are given by

$$
\left\langle\theta_{(\tilde{\alpha})} x, y\right\rangle:=\left\langle\theta x, e_{\alpha} \otimes y\right\rangle=\left\langle A_{\theta}(1 \otimes x), e_{\alpha} \otimes y\right\rangle, \quad x \in \mathcal{K}, y \in \mathcal{G}, \alpha \in \mathbb{F}_{n}^{+}
$$

where $\tilde{\alpha}$ is the reverse of α, i.e., $\tilde{\alpha}=g_{i_{k}} \cdots g_{i_{1}}$ if $\alpha=g_{i_{1}} \cdots g_{i_{k}}$. We can associate with A_{θ} a unique formal Fourier expansion

$$
A_{\theta} \sim \sum_{\alpha \in \mathbb{F}_{n}^{+}} R_{\alpha} \otimes \theta_{(\alpha)}
$$

where $R_{i}:=U^{*} S_{i} U, i=1, \ldots, n$, are the right creation operators on $F^{2}\left(H_{n}\right)$ and U is the unitary operator on $F^{2}\left(H_{n}\right)$ mapping $e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}}$ into $e_{i_{k}} \otimes \cdots \otimes e_{i_{2}} \otimes e_{i_{1}}$. Based on the noncommutative von Neumann inequality [16], we proved that

$$
A_{\theta}=\text { SOT- } \lim _{r \rightarrow 1} \sum_{k=0}^{\infty} \sum_{|\alpha|=k} r^{|\alpha|} R_{\alpha} \otimes \theta_{(\alpha)}
$$

where, for each $r \in(0,1)$ the series converges in the uniform norm. The set of all multi-analytic operators in $B\left(F^{2}\left(H_{n}\right) \otimes \mathcal{K}, F^{2}\left(H_{n}\right) \otimes \mathcal{G}\right)$ coincides with $R_{n}^{\infty} \bar{\otimes} B(\mathcal{K}, \mathcal{G})$, the WOT closed algebra generated by the spatial tensor product, where $R_{n}^{\infty}:=U^{*} F_{n}^{\infty} U$ (see [17,20]). The multianalytic operator A_{θ} is called:
(i) inner if A_{θ} is an isometry,
(ii) outer if $\overline{A_{\theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}=F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$,
(iii) purely contractive if $\left\|P_{\mathcal{E}_{*}} \theta h\right\|<\|h\|$ for every $h \in \mathcal{E}, h \neq 0$,
(iv) unitary constant if $A_{\theta}=I \otimes W$ for some unitary operator $W \in B(\mathcal{K}, \mathcal{G})$.

If $A_{\varphi}: F^{2}\left(H_{n}\right) \otimes \mathcal{M} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{N}$ is another multi-analytic operator, we say that A_{θ} coincides with A_{φ} if there exist two unitary operators

$$
W: \mathcal{K} \rightarrow \mathcal{M}, \quad W_{*}: \mathcal{G} \rightarrow \mathcal{N}
$$

such that

$$
\left(I \otimes W_{*}\right) A_{\theta}=A_{\varphi}(I \otimes W)
$$

For simplicity, throughout this paper, $T:=\left[T_{1}, \ldots, T_{n}\right], n=1, \ldots, \infty$, denotes either the n tuple $\left(T_{1}, \ldots, T_{n}\right)$ of bounded linear operators on a Hilbert space \mathcal{H} or the row operator matrix
[$T_{1} \cdots T_{n}$] acting from $\mathcal{H}^{(n)}$ to \mathcal{H}, where $\mathcal{H}^{(n)}:=\bigoplus_{i=1}^{n} \mathcal{H}$ is the direct sum of n copies of \mathcal{H}. Assume that $T:=\left[T_{1}, \ldots, T_{n}\right]$ is a row contraction, i.e.,

$$
T_{1} T_{1}^{*}+\cdots+T_{n} T_{n}^{*} \leqslant I
$$

The defect operators of T are

$$
\Delta_{T^{*}}:=\left(I_{\mathcal{H}}-\sum_{i=1}^{n} T_{i} T_{i}^{*}\right)^{1 / 2} \in B(\mathcal{H}) \quad \text { and } \quad \Delta_{T}:=\left(I_{\mathcal{H}^{(n)}}-T^{*} T\right)^{1 / 2} \in B\left(\mathcal{H}^{(n)}\right)
$$

and the defect spaces of T are defined by

$$
\mathcal{D}_{*}:=\overline{\Delta_{T^{*}} \mathcal{H}} \quad \text { and } \quad \mathcal{D}:=\overline{\Delta_{T} \mathcal{H}^{(n)}}
$$

The characteristic function of the row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$ is the multi-analytic operator $\Theta_{T}: F^{2}\left(H_{n}\right) \otimes \mathcal{D} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{D}_{*}$ with symbol θ_{T} is given by

$$
\theta_{T}(h):=-\sum_{i=1}^{n} T_{i} P_{i} h+\sum_{i=1}^{n}\left(S_{i} \otimes I_{\mathcal{D}_{*}}\right)\left(\sum_{\alpha \in \mathbb{F}_{n}^{+}} e_{\alpha} \otimes \Delta_{T^{*}} T_{\alpha}^{*} P_{i} \Delta_{T} h\right), \quad h \in \mathcal{D},
$$

where P_{i} denotes the orthogonal projection of $\mathcal{H}^{(n)}$ onto the i-component of $\mathcal{H}^{(n)}$, and $S:=$ [S_{1}, \ldots, S_{n}] is the model multi-shift of left creation operators acting on the full Fock space $F^{2}\left(H_{n}\right)$.

Using the characterization of multi-analytic operators on Fock spaces (see [17,20]), one can easily see that the characteristic function of T is a multi-analytic operator with the formal Fourier representation

$$
-I \otimes T+\left(I \otimes \Delta_{T^{*}}\right)\left(I-\sum_{i=1}^{n} R_{i} \otimes T_{i}^{*}\right)^{-1}\left[R_{1} \otimes I_{\mathcal{H}}, \ldots, R_{n} \otimes I_{\mathcal{H}}\right]\left(I \otimes \Delta_{T}\right)
$$

where R_{1}, \ldots, R_{n} are the right creation operators on the full Fock space $F^{2}\left(H_{n}\right)$.
The definition of the characteristic function of T arises in a natural way in the context of the theory of noncommutative isometric dilations for row contractions (see [11,12]). Let $V:=$ $\left[V_{1}, \ldots, V_{n}\right], V_{i} \in B(\mathcal{K})$, be the minimal isometric dilation of T on a Hilbert space $\mathcal{K} \supset \mathcal{H}$. Therefore,
(i) V_{1}, \ldots, V_{n} are isometries with orthogonal ranges;
(ii) $T_{i}^{*}=\left.V_{i}^{*}\right|_{\mathcal{H}}, i=1, \ldots, n$;
(iii) $\mathcal{K}=\bigvee_{\alpha \in \mathbb{F}_{n}^{+}} V_{\alpha} \mathcal{H}$.

Consider the following subspaces of \mathcal{K} :

$$
\mathcal{L}:=\bigvee_{i=1}^{n}\left(V_{i}-T_{i}\right) \mathcal{H}, \quad \mathcal{L}_{*}:=\overline{\left(I_{\mathcal{K}}-\sum_{i=1}^{n} V_{i} T_{i}^{*}\right) \mathcal{H}}
$$

According to [11], we have the following orthogonal decompositions of the minimal isometric dilation space of T :

$$
\begin{equation*}
\mathcal{K}=\mathcal{R} \oplus M_{V}\left(\mathcal{L}_{*}\right)=\mathcal{H} \oplus M_{V}(\mathcal{L}) \tag{2.2}
\end{equation*}
$$

where \mathcal{R} reduces each operator $V_{i}, i=1, \ldots, n$,

$$
M_{V}\left(\mathcal{L}_{*}\right)=\bigoplus_{\alpha \in \mathbb{F}_{n}^{+}} V_{\alpha} \mathcal{L}_{*} \quad \text { and } \quad M_{V}(\mathcal{L})=\bigoplus_{\alpha \in \mathbb{F}_{n}^{+}} V_{\alpha} \mathcal{L}
$$

Denote by $\Phi^{\mathcal{L}}$ the unitary operator from $M_{V}(\mathcal{L})$ to $F^{2}\left(H_{n}\right) \otimes \mathcal{L}$ defined by

$$
\Phi^{\mathcal{L}}\left(\sum_{\alpha \in \mathbb{F}_{n}^{+}} V_{\alpha} \ell_{\alpha}\right):=\sum_{\alpha \in \mathbb{F}_{n}^{+}} e_{\alpha} \otimes \ell_{\alpha}, \quad \ell_{\alpha} \in \mathcal{L}, \sum_{\alpha \in \mathbb{F}_{n}^{+}}\left\|\ell_{\alpha}\right\|^{2}<\infty .
$$

One can view $\Phi^{\mathcal{L}}$ as the Fourier representation of $M_{V}(\mathcal{L})$ on Fock spaces. Then, for any $i=$ $1, \ldots, n$, we have

$$
\Phi^{\mathcal{L}} V_{i}=\left(S_{i} \otimes I_{\mathcal{L}}\right) \Phi^{\mathcal{L}}
$$

where $S:=\left[S_{1}, \ldots, S_{n}\right]$ is the model multi-shift of left creation operators acting on the full Fock space $F^{2}\left(H_{n}\right)$. Similarly, one can define the unitary operator (Fourier representation) $\Phi^{\mathcal{L}_{*}}: M_{V}\left(\mathcal{L}_{*}\right) \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{L}_{*}$. We proved in [12] that the characteristic function Θ_{T} coincides with the multi-analytic operator $\Theta_{\mathcal{L}}: F^{2}\left(H_{n}\right) \otimes \mathcal{L} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{L}_{*}$ defined by

$$
\Theta_{\mathcal{L}}:=\Phi^{\mathcal{L}^{*}}\left(\left.P_{M_{V}\left(\mathcal{L}_{*}\right)}\right|_{M_{V}(\mathcal{L})}\right)\left(\Phi^{\mathcal{L}}\right)^{*}
$$

where $P_{M_{V}\left(\mathcal{L}_{*}\right)}$ denotes the orthogonal projection of \mathcal{K} onto $M_{V}\left(\mathcal{L}_{*}\right)$.
Let $T:=\left[T_{1}, \ldots, T_{n}\right], n=1, \ldots, \infty$, be a row contraction with $T_{i} \in B(\mathcal{H})$ and consider the subspace $\mathcal{H}_{c} \subset \mathcal{H}$ defined by

$$
\mathcal{H}_{c}:=\left\{h \in \mathcal{H}: \sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2}=\|h\|^{2} \text { for any } k=1,2, \ldots\right\}
$$

We call T a completely non-coisometric (c.n.c.) row contraction if $\mathcal{H}_{c}=\{0\}$. We proved in [11] that \mathcal{H}_{c} is a joint invariant subspace under the operators $T_{1}^{*}, \ldots, T_{n}^{*}$, and it is also the largest subspace in \mathcal{H} on which T^{*} acts isometrically. Consequently, we have the following triangulation with respect to the decomposition $\mathcal{H}=\mathcal{H}_{c} \oplus \mathcal{H}_{c n c}$:

$$
T_{i}=\left(\begin{array}{cc}
A_{i} & 0 \\
* & B_{i}
\end{array}\right), \quad i=1, \ldots, n,
$$

where $\left[A_{1}, \ldots, A_{n}\right]$ is a coisometry, i.e., $A_{1} A_{1}^{*}+\cdots+A_{n} A_{n}^{*}=I_{\mathcal{H}_{c}}$, and $\left[B_{1}, \ldots, B_{n}\right]$ is a c.n.c. row contraction. We say that T is of class $C .0$ (or pure row contraction) if

$$
\lim _{k \rightarrow \infty} \sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2}=0 \quad \text { for any } h \in \mathcal{H}
$$

In [12], we constructed the following model for c.n.c. row contractions, in which the characteristic function occurs explicitly.

Theorem 2.1. Every completely non-coisometric row contraction $T:=\left[T_{1}, \ldots, T_{n}\right], n=$ $1,2, \ldots, \infty$, on a Hilbert space \mathcal{H} is unitarily equivalent to a row contraction $\mathbf{T}:=\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$ on the Hilbert space

$$
\mathbf{H}:=\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{D}_{*}\right) \oplus \overline{\Delta_{\Theta_{T}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{D}\right)}\right] \ominus\left\{\Theta_{T} f \oplus \Delta_{\Theta_{T}} f: f \in F^{2}\left(H_{n}\right) \otimes \mathcal{D}\right\}
$$

where $\Delta_{\Theta_{T}}:=\left(I-\Theta_{T}^{*} \Theta_{T}\right)^{1 / 2}$ and operator $\mathbf{T}_{i}, i=1, \ldots, n$, is defined by

$$
\mathbf{T}_{i}^{*}\left[f \oplus \Delta_{\Theta_{T}}\left(S_{j} \otimes I_{\mathcal{D}_{*}}\right) g\right]:= \begin{cases}\left(S_{i}^{*} \otimes I_{\mathcal{D}_{*}}\right) f \oplus \Delta_{\Theta_{T}} g & \text { if } i=j, \\ \left(S_{i}^{*} \otimes I_{\mathcal{D}_{*}}\right) f \oplus 0 & \text { ifi} 1 \neq j\end{cases}
$$

$i, j=1, \ldots, n$, and S_{1}, \ldots, S_{n} are the left creation operators on the full Fock space $F^{2}\left(H_{n}\right)$.
Moreover, T is a pure row contraction if and only if Θ_{T} is an inner multi-analytic operator. In this case the model reduces to

$$
\mathbf{H}=\left(F^{2}\left(H_{n}\right) \otimes \mathcal{D}_{*}\right) \ominus \Theta_{T}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{D}\right), \quad \mathbf{T}_{i}^{*} f=\left(S_{i}^{*} \otimes I_{\mathcal{D}_{*}}\right) f, \quad f \in \mathbf{H}
$$

Any contractive multi-analytic operator $\Theta: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\left(\mathcal{E}, \mathcal{E}_{*}\right.$ are Hilbert spaces) generates a c.n.c. row contraction $\mathbf{T}:=\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$. More precisely, we proved in [12] the following result.

Theorem 2.2. Let $\Theta: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ be a contractive multi-analytic operator and set $\Delta_{\Theta}:=\left(I-\Theta^{*} \Theta\right)^{1 / 2}$. Then the row contraction $\mathbf{T}:=\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$ defined on the Hilbert space

$$
\mathbf{H}:=\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus \overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right] \ominus\left\{\Theta g \oplus \Delta_{\Theta} g: g \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\}
$$

by

$$
\mathbf{T}_{i}^{*}\left(f \oplus \Delta_{\Theta} g\right):=\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) f \oplus C_{i}^{*}\left(\Delta_{\Theta} g\right), \quad i=1, \ldots, n
$$

where each operator C_{i} is defined by

$$
C_{i}\left(\Delta_{\Theta} g\right):=\Delta_{\Theta}\left(S_{i} \otimes I_{\mathcal{E}}\right) g, \quad g \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}
$$

and S_{1}, \ldots, S_{n} are the left creation operators on $F^{2}\left(H_{n}\right)$, is completely non-coisometric.
If Θ is purely contractive and

$$
\overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}=\overline{\Delta_{\Theta}\left(\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right) \ominus \mathcal{E}\right)},
$$

then Θ coincides with the characteristic function of the row contraction $\mathbf{T}:=\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$. In this case, considering \mathbf{H} as a subspace of

$$
\mathbf{K}:=\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus \overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}
$$

we have that the sequence of operators $\mathbf{V}:=\left[\mathbf{V}_{1}, \ldots, \mathbf{V}_{n}\right]$ defined on \mathbf{K} by

$$
\mathbf{V}_{i}:=\left(S_{i} \otimes I_{\mathcal{E}_{*}}\right) \oplus C_{i}, \quad i=1, \ldots, n
$$

is the minimal isometric dilation of $\mathbf{T}:=\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$.

3. Factorizations of characteristic functions and joint invariant subspaces

In this section, we establish the existence of a "one-to-one" correspondence between the joint invariant subspaces under T_{1}, \ldots, T_{n}, and the regular factorizations of the characteristic function Θ_{T} associated with a completely non-coisometric row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$. In particular, we prove that there is a non-trivial joint invariant subspace under the operators T_{1}, \ldots, T_{n}, if and only if there is a non-trivial regular factorization of Θ_{T}. Using the model theory for c.n.c. row contractions, we provide a functional model for the joint invariant subspaces in terms of the regular factorizations of the characteristic function.

Let $\Theta: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ be a contractive multi-analytic operator and assume that it has the factorization

$$
\Theta=\Theta_{2} \Theta_{1}
$$

where $\Theta_{1}: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{F}$ and $\Theta_{2}: F^{2}\left(H_{n}\right) \otimes \mathcal{F} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ are contractive multi-analytic operators. Define the operator

$$
X_{\Theta}: \overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)} \rightarrow \overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)} \oplus \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}
$$

by setting

$$
\begin{equation*}
X_{\Theta}\left(\Delta_{\Theta} f\right):=\Delta_{2} \Theta_{1} f \oplus \Delta_{1} f, \quad f \in F^{2}\left(H_{n}\right) \otimes \mathcal{E} \tag{3.1}
\end{equation*}
$$

where $\Delta_{\Theta}:=\left(I-\Theta^{*} \Theta\right)^{1 / 2}$ and $\Delta_{j}:=\left(I-\Theta_{j}^{*} \Theta_{j}\right)^{1 / 2}, j=1,2$. Notice that X_{Θ} is an isometry. Indeed, since

$$
I-\Theta^{*} \Theta=I-\Theta_{1}^{*} \Theta_{2}^{*} \Theta_{2} \Theta_{1}=\Theta_{1}^{*}\left(I-\Theta_{2}^{*} \Theta_{2}\right) \Theta_{1}+\left(I-\Theta_{1}^{*} \Theta_{1}\right)
$$

we have

$$
\begin{aligned}
\left\|\Delta_{2} \Theta_{1} f \oplus \Delta_{1} f\right\|^{2} & =\left\|\Delta_{2} \Theta_{1} f\right\|^{2}+\left\|\Delta_{1} f\right\|^{2} \\
& =\left\langle\Theta_{1}^{*}\left(I-\Theta_{2}^{*} \Theta_{2}\right) \Theta_{1} f+\left(I-\Theta_{1}^{*} \Theta_{1}\right) f, f\right\rangle \\
& \left.=\left(I-\Theta^{*} \Theta\right) f, f\right\rangle=\left\|\Delta_{\Theta} f\right\|^{2}
\end{aligned}
$$

As in the classical case (see [29]), we say that the factorization $\Theta=\Theta_{2} \Theta_{1}$ is regular if X_{Θ} is a unitary operator, i.e.,

$$
\left\{\Delta_{2} \Theta_{1} f \oplus \Delta_{1} f: f \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\}^{-}=\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)} \oplus \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}
$$

Now let us prove the following technical result which will be very useful in what follows.

Lemma 3.1. Let $\Theta: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ be a contractive multi-analytic operator and let $C:=\left[C_{1}, \ldots, C_{n}\right]$ be the row isometry defined on $\overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ by setting

$$
C_{i} \Delta_{\Theta} f:=\Delta_{\Theta}\left(S_{i} \otimes I_{\mathcal{E}}\right) f, \quad f \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}
$$

for each $i=1, \ldots, n$, where $\Delta_{\Theta}:=\left(I-\Theta^{*} \Theta\right)^{1 / 2}$. Then C is a Cuntz row isometry, i.e., $C_{1} C_{1}^{*}+$ $\cdots+C_{n} C_{n}^{*}=I$, if and only if

$$
\begin{equation*}
\overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}=\overline{\Delta_{\Theta}\left(\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right) \ominus \mathcal{E}\right)} \tag{3.2}
\end{equation*}
$$

Assume that Θ has the factorization

$$
\Theta=\Theta_{2} \Theta_{1}
$$

where $\Theta_{1}: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{F}$ and $\Theta_{2}: F^{2}\left(H_{n}\right) \otimes \mathcal{F} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ are contractive multi-analytic operators and let $E:=\left[E_{1}, \ldots, E_{n}\right]$ and $F:=\left[F_{1}, \ldots, F_{n}\right]$ be the corresponding row isometries defined on $\overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ and $\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)}$, respectively. Then

$$
X_{\Theta} C_{i}=\left(\begin{array}{cc}
F_{i} & 0 \tag{3.3}\\
0 & E_{i}
\end{array}\right) X_{\Theta}, \quad i=1, \ldots, n,
$$

where the operator X_{Θ} is defined by relation (3.1). Moreover, if the factorization $\Theta=\Theta_{2} \Theta_{1}$ is regular, then C is a Cuntz row isometry if and only if E and F are Cuntz row isometries.

Proof. First, notice that since Θ is a multi-analytic operator, i.e.,

$$
\Theta\left(S_{i} \otimes I_{\mathcal{E}}\right)=\left(S_{i} \otimes I_{\mathcal{E}_{*}}\right) \Theta, \quad i=1, \ldots, n
$$

we have

$$
\begin{aligned}
\left\langle C_{i} \Delta_{\Theta} f, C_{j} \Delta_{\Theta} g\right\rangle & =\left\langle\left(S_{j}^{*} \otimes I_{\mathcal{E}}\right)\left(I-\Theta^{*} \Theta\right)\left(S_{i} \otimes I_{\mathcal{E}}\right) f, g\right\rangle \\
& =\left\langle\delta_{i j}\left(I-\Theta^{*} \Theta\right) f, g\right\rangle=\delta_{i j}\left\langle\Delta_{\Theta} f, \Delta_{\Theta} g\right\rangle
\end{aligned}
$$

for any $f, g \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}$ and $i, j=1, \ldots, n$. This shows that the operators C_{1}, \ldots, C_{n} are isometries with orthogonal spaces. Due to the definition of C_{i}, it is clear that $C_{1} C_{1}^{*}+\cdots+$ $C_{n} C_{n}^{*}=I$ if and only if the range of the operator $\left[C_{1}, \ldots, C_{n}\right]$ coincides with $\overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$, which is equivalent to (3.2).

On the other hand, for each $i=1, \ldots, n$, and $f \in F^{2}\left(H_{n}\right) \otimes E$, we have

$$
\begin{aligned}
X_{\Theta} C_{i}\left(\Delta_{\Theta} f\right) & =X_{\Theta} \Delta_{\Theta}\left(S_{i} \otimes I_{\mathcal{E}}\right) f=\Delta_{2} \Theta_{1}\left(S_{i} \otimes I_{\mathcal{E}}\right) f \oplus \Delta_{1}\left(S_{i} \otimes I_{c} E\right) f \\
& =\Delta_{2}\left(S_{i} \otimes I_{\mathcal{F}}\right) \Theta_{1} f \oplus \Delta_{1}\left(S_{i} \otimes I_{\mathcal{E}}\right) f=F_{i} \Delta_{2} \Theta_{1} f \oplus E_{i} \Delta_{1} f \\
& =\left(\begin{array}{cc}
F_{i} & 0 \\
0 & E_{i}
\end{array}\right)\left(\Delta_{2} \Theta_{1} f \oplus \Delta_{1} f\right)=\left(\begin{array}{cc}
F_{i} & 0 \\
0 & E_{i}
\end{array}\right) X_{\Theta} \Delta_{\Theta} f
\end{aligned}
$$

which proves relation (3.3). If the factorization $\Theta=\Theta_{2} \Theta_{1}$ is regular, then X_{Θ} is a unitary operator. Consequently, we have

$$
X_{\Theta}\left(\sum_{i=1}^{n} C_{i} C_{i}^{*}\right) X_{\Theta}^{*}=\left(\begin{array}{cc}
\sum_{i=1}^{n} F_{i} F_{i}^{*} & 0 \\
0 & \sum_{i=1}^{n} E_{i} E_{i}^{*}
\end{array}\right)
$$

which implies that $C:=\left[C_{1}, \ldots, C_{n}\right]$ is a Cuntz row isometry if and only if $E:=\left[E_{1}, \ldots, E_{n}\right]$ and $F:=\left[F_{1}, \ldots, F_{n}\right]$ are Cuntz row isometries. This completes the proof.

The main result of this section is the following.
Theorem 3.2. Let $T:=\left[T_{1}, \ldots, T_{n}\right], T_{i} \in B(\mathcal{H})$, be a completely non-coisometric row contraction and let $\Theta: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ be a contractive multi-analytic operator which coincides with the characteristic function of T. If $\mathcal{H}_{1} \subset \mathcal{H}$ is a joint invariant subspace under the operators T_{1}, \ldots, T_{n}, then there exists a regular factorization $\Theta=\Theta_{2} \Theta_{1}$, where $\Theta_{1}: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{F}$ and $\Theta_{2}: F^{2}\left(H_{n}\right) \otimes \mathcal{F} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ are contractive multi-analytic operators such that $T:=\left[T_{1}, \ldots, T_{n}\right]$ is unitarily equivalent to a row contraction $\mathbb{T}:=\left[\mathbb{T}_{1}, \ldots, \mathbb{T}_{n}\right]$ defined on the Hilbert space

$$
\begin{aligned}
\mathbb{H}:= & {\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus \overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)} \oplus \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right] } \\
& \ominus\left\{\Theta_{2} \Theta_{1} f \oplus \Delta_{2} \Theta_{1} f \oplus \Delta_{1} f: f \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\},
\end{aligned}
$$

by setting

$$
\mathbb{T}_{i}^{*}(f \oplus \varphi \oplus \psi):=\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) f \oplus F_{i}^{*} \varphi \oplus E_{i}^{*} \psi, \quad f \oplus \varphi \oplus \psi \in \mathbb{H}
$$

for any $i=1, \ldots, n$, where the operators F_{i} and E_{i} are defined in Lemma 3.1 and S_{1}, \ldots, S_{n} are the left creation operators on $F^{2}\left(H_{n}\right)$. Moreover, the subspaces corresponding to \mathcal{H}_{1} and $\mathcal{H}_{2}:=\mathcal{H} \ominus \mathcal{H}_{1}$ are

$$
\begin{aligned}
\mathbb{H}_{1}:= & \left\{\Theta_{2} f \oplus \Delta_{2} f \oplus g: f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}, g \in \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right\} \\
& \ominus\left\{\Theta_{2} \Theta_{1} f \oplus \Delta_{2} \Theta_{1} f \oplus \Delta_{1} f: f \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{H}_{2}:= & {\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus \overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)} \oplus\{0\}\right] } \\
& \ominus\left\{\Theta_{2} f \oplus \Delta_{2} f \oplus\{0\}: f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right\},
\end{aligned}
$$

respectively. Conversely, every regular factorization $\Theta=\Theta_{2} \Theta_{1}$ generates via the above formulas the subspaces \mathbb{H}_{1} and \mathbb{H}_{2} with the following properties:
(i) \mathbb{H}_{1} is invariant under each operator $\mathbb{T}_{i}, i=1, \ldots, n$;
(ii) $\mathbb{H}_{2}=\mathbb{H} \ominus \mathbb{H}_{1}$.

Under the above identification, \mathbb{H}_{1} corresponds to a subspace $\mathcal{H}_{1} \subset \mathcal{H}$ which is invariant under each operator $T_{i}, i=1, \ldots, n$.

Proof. Part I. Let $T:=\left[T_{1}, \ldots, T_{n}\right], T_{i} \in B(\mathcal{H})$, be a row contraction and let $V:=\left[V_{1}, \ldots, V_{n}\right]$, $V_{i} \in B(\mathcal{K})$, be its minimal isometric dilation on a Hilbert space $\mathcal{K}=\bigvee_{\alpha \in \mathbb{F}_{n}^{+}} V_{\alpha} \mathcal{H}$. Since V_{1}, \ldots, V_{n} are isometries with orthogonal ranges, the noncommutative Wold decomposition [11] provides the orthogonal decomposition

$$
\begin{equation*}
\mathcal{K}=\mathcal{R} \oplus M_{V}\left(\mathcal{L}_{*}\right) \tag{3.4}
\end{equation*}
$$

where

$$
\mathcal{R}:=\bigcap_{k=0}^{\infty}\left[\bigoplus_{|\alpha|=k} V_{\alpha} \mathcal{K}\right] \quad \text { and } \quad \mathcal{L}_{*}:=\overline{\left(I_{\mathcal{K}}-\sum_{i=1}^{n} V_{i} T_{i}^{*}\right) \mathcal{H}} .
$$

Moreover, \mathcal{R} is the maximal subspace of \mathcal{K} which is reducing for the operators V_{1}, \ldots, V_{n} and the row contraction [$V_{1}\left|\mathcal{R}, \ldots, V_{n}\right|_{\mathcal{R}}$] is a Cuntz row isometry.

Let $\mathcal{H}_{1} \subset \mathcal{H}$ be an invariant subspace under the operators T_{1}, \ldots, T_{n}. Since $\left.V_{i}^{*}\right|_{\mathcal{H}}=T_{i}^{*}$, $i=1, \ldots, n$, we deduce that the subspace $\mathcal{H}_{2}:=\mathcal{H} \ominus \mathcal{H}_{1}$ is invariant under the operators $V_{1}^{*}, \ldots, V_{n}^{*}$. Therefore, the subspace $\mathcal{G}:=\mathcal{K} \ominus \mathcal{H}_{2}$ is invariant under V_{1}, \ldots, V_{n}. Applying again the noncommutative Wold decomposition to the row isometry $\left[V_{1}\left|\mathcal{G}, \ldots, V_{n}\right| \mathcal{G}\right]$, we obtain the orthogonal decomposition

$$
\begin{equation*}
\mathcal{G}=\mathcal{R}_{1} \oplus M_{V}(\mathcal{Q}) \tag{3.5}
\end{equation*}
$$

where

$$
\mathcal{R}_{1}:=\bigcap_{k=0}^{\infty}\left[\bigoplus_{|\alpha|=k} V_{\alpha} \mathcal{G}\right] \quad \text { and } \quad \mathcal{Q}:=\mathcal{G} \ominus\left(\bigoplus_{i=1}^{n} V_{i} \mathcal{G}\right)
$$

Since \mathcal{R}_{1} reduces the operators V_{1}, \ldots, V_{n} and $\left[\left.V_{1}\right|_{\mathcal{R}_{1}}, \ldots,\left.V_{n}\right|_{\mathcal{R}_{1}}\right]$ is a Cuntz row isometry, we deduce that $\mathcal{R}_{1} \subset \mathcal{R}$. Notice that $\mathcal{R}_{2}:=\mathcal{R} \ominus \mathcal{R}_{1}$ is also a reducing subspace for V_{1}, \ldots, V_{n} and $\left[\left.V_{1}\right|_{\mathcal{R}_{2}}, \ldots,\left.V_{n}\right|_{\mathcal{R}_{2}}\right]$ is a Cuntz row isometry. Using relations (3.4) and (3.5), we infer that

$$
\mathcal{H}_{2}=\mathcal{K} \ominus \mathcal{G}=\left[\mathcal{R} \oplus M_{V}\left(\mathcal{L}_{*}\right)\right] \ominus\left[\mathcal{R}_{1} \oplus M_{V}(\mathcal{Q})\right]=\left[\mathcal{R}_{2} \oplus M_{V}\left(\mathcal{L}_{*}\right)\right] \ominus M_{V}(\mathcal{Q})
$$

Hence, we deduce that

$$
\begin{equation*}
M_{V}(\mathcal{Q}) \subset \mathcal{R}_{2} \oplus M_{V}\left(\mathcal{L}_{*}\right) \tag{3.6}
\end{equation*}
$$

On the other hand, due to (2.2), we have

$$
\mathcal{K}=\mathcal{R} \oplus M_{V}\left(\mathcal{L}_{*}\right)=\mathcal{H} \oplus M_{V}(\mathcal{L})
$$

Hence, we obtain

$$
\mathcal{H}=\left[\mathcal{R} \oplus M_{V}\left(\mathcal{L}_{*}\right)\right] \ominus M_{V}(\mathcal{L}) .
$$

Since $\mathcal{H}_{2} \subset \mathcal{H}$, the above representations of \mathcal{H} and \mathcal{H}_{2} imply

$$
\left[\mathcal{R}_{2} \oplus M_{V}\left(\mathcal{L}_{*}\right)\right] \ominus M_{V}(\mathcal{Q}) \subset\left[\mathcal{R} \oplus M_{V}\left(\mathcal{L}_{*}\right)\right] \ominus M_{V}(\mathcal{L})
$$

Taking into account that $\mathcal{R}=\mathcal{R}_{1} \oplus \mathcal{R}_{2}$, we have

$$
\left[\mathcal{R}_{2} \oplus M_{V}\left(\mathcal{L}_{*}\right)\right] \ominus M_{V}(\mathcal{Q})=\left[\mathcal{R} \oplus M_{V}\left(\mathcal{L}_{*}\right)\right] \ominus\left[\mathcal{R}_{1} \oplus M_{V}(\mathcal{Q})\right]
$$

Consequently, we deduce that

$$
\begin{equation*}
M_{V}(\mathcal{L}) \subset \mathcal{R}_{1} \oplus M_{V}(\mathcal{Q}) \tag{3.7}
\end{equation*}
$$

and

$$
\mathcal{H}_{1}=\mathcal{H} \ominus \mathcal{H}_{2}=\left[\mathcal{R}_{1} \oplus M_{V}(\mathcal{Q})\right] \ominus M_{V}(\mathcal{L})=\mathcal{G} \ominus M_{V}(\mathcal{L})
$$

Let $P_{M_{V}\left(\mathcal{L}_{*}\right)}, P_{M_{V}(\mathcal{Q})}, P_{\mathcal{R}}, P_{\mathcal{R}_{1}}$, and $P_{\mathcal{R}_{2}}$ be the orthogonal projections onto the corresponding spaces. According to relations (3.6) and (3.7), for any $x \in M_{V}(\mathcal{Q})$ and $y \in M_{V}(\mathcal{L})$, we have

$$
\begin{equation*}
x=P_{\mathcal{R}_{2}} x+P_{M_{V}\left(\mathcal{L}_{*}\right)} x \quad \text { and } \quad y=P_{\mathcal{R}_{1}} y+P_{M_{V}(\mathcal{Q})} y . \tag{3.8}
\end{equation*}
$$

In particular, if $x:=P_{M_{V}(\mathcal{Q})} y$ and $y \in M_{V}(\mathcal{L})$, we deduce that

$$
\begin{equation*}
y=P_{\mathcal{R}_{1}} y+P_{\mathcal{R}_{2}} P_{M_{V}(\mathcal{Q})} y+P_{M_{V}\left(\mathcal{L}_{*}\right)} P_{M_{V}(\mathcal{Q})} y \tag{3.9}
\end{equation*}
$$

Hence and taking into account that the subspace $\mathcal{R}_{1} \oplus \mathcal{R}_{2}=\mathcal{R}$ is orthogonal to $M_{V}\left(\mathcal{L}_{*}\right)$, we deduce that

$$
\begin{equation*}
P_{M_{V}\left(\mathcal{L}_{*}\right)} y=P_{M_{V}\left(\mathcal{L}_{*}\right)} P_{M_{V}(\mathcal{Q})} y \quad \text { and } \quad P_{\mathcal{R}} y=P_{\mathcal{R}_{1}} y+P_{\mathcal{R}_{2}} P_{M_{V}(\mathcal{Q})} y \tag{3.10}
\end{equation*}
$$

for any $y \in M_{V}(\mathcal{L})$. Due to relation (3.4), we have

$$
\begin{equation*}
P_{\mathcal{R}} f=\left(I-P_{M_{V}\left(\mathcal{L}_{*}\right)}\right) f, \quad f \in \mathcal{K} \tag{3.11}
\end{equation*}
$$

On the other hand, relations (3.7) and (3.6) imply

$$
\begin{equation*}
P_{\mathcal{R}_{1}} y=\left(I-P_{M_{V}(\mathcal{Q})}\right) y, \quad y \in M_{V}(\mathcal{L}) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\mathcal{R}_{2}} x=\left(I-P_{M_{V}\left(\mathcal{L}_{*}\right)}\right) x, \quad x \in M_{V}(\mathcal{Q}) . \tag{3.13}
\end{equation*}
$$

Assume now that $\left[T_{1}, \ldots, T_{n}\right]$ is a c.n.c. row contraction. In this case, we have (see [11])

$$
\mathcal{K}=M_{V}(\mathcal{L}) \vee M_{V}\left(\mathcal{L}_{*}\right)=\mathcal{R} \oplus M_{V}\left(\mathcal{L}_{*}\right)
$$

which implies

$$
\begin{equation*}
\overline{P_{\mathcal{R}} M_{V}(\mathcal{L})}=\overline{\left(I-P_{M_{V}\left(\mathcal{L}_{*}\right)}\right) M_{V}(\mathcal{L})}=\mathcal{R} \tag{3.14}
\end{equation*}
$$

Hence and using the second relation in (3.10), we deduce that

$$
\overline{P_{\mathcal{R}_{1}} M_{V}(\mathcal{L})}=\mathcal{R}_{1} \quad \text { and } \quad \overline{P_{\mathcal{R}_{2}} P_{M_{V}(\mathcal{Q})} M_{V}(\mathcal{L})}=\mathcal{R}_{2},
$$

and, consequently,

$$
\begin{equation*}
\overline{P_{\mathcal{R}_{1}} M_{V}(\mathcal{L})}=\mathcal{R}_{1} \quad \text { and } \quad \overline{P_{\mathcal{R}_{2}} M_{V}(\mathcal{Q})}=\mathcal{R}_{2} \tag{3.15}
\end{equation*}
$$

Part II. Consider the following contractions:

$$
\begin{gathered}
Q:=P_{\left.M_{V}\left(\mathcal{L}_{*}\right)\right|_{M_{V}(\mathcal{L})}: M_{V}(\mathcal{L}) \rightarrow M_{V}\left(\mathcal{L}_{*}\right),} \\
Q_{1}:=P_{M_{V}(\mathcal{Q})} \mid M_{V}(\mathcal{L}): M_{V}(\mathcal{L}) \rightarrow M_{V}(\mathcal{Q}), \quad \text { and } \\
Q_{2}:=\left.P_{M_{V}\left(\mathcal{L}_{*}\right)}\right|_{M_{V}(\mathcal{Q})}: M_{V}(\mathcal{Q}) \rightarrow M_{V}\left(\mathcal{L}_{*}\right)
\end{gathered}
$$

Since $M_{V}\left(\mathcal{L}_{*}\right), M_{V}(\mathcal{L})$, and $M_{V}(\mathcal{Q})$ are reducing subspaces for the operators V_{1}, \ldots, V_{n}, we deduce that, for each $i=1, \ldots, n$,

$$
\begin{gathered}
Q\left(\left.V_{i}\right|_{M_{V}(\mathcal{L})}\right)=\left(\left.V_{i}\right|_{M_{V}\left(\mathcal{L}_{*}\right)}\right) Q, \\
Q_{1}\left(\left.V_{i}\right|_{M_{V}(\mathcal{L})}\right)=\left(\left.V_{i}\right|_{M_{V}(\mathcal{Q})}\right) Q_{1}, \quad \text { and } \\
Q_{2}\left(\left.V_{i}\right|_{M_{V}(\mathcal{Q})}\right)=\left(\left.V_{i}\right|_{M_{V}\left(\mathcal{L}_{*}\right)}\right) Q_{2} .
\end{gathered}
$$

Let $\Phi^{\mathcal{L}_{*}}: M_{V}\left(\mathcal{L}_{*}\right) \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{L}_{*}$ be the Fourier representation of the subspace $M_{V}\left(\mathcal{L}_{*}\right)$, i.e.,

$$
\Phi^{\mathcal{L}_{*}}\left(\sum_{\alpha \in \mathbb{F}_{n}^{+}} V_{\alpha} \ell_{\alpha}\right):=\sum_{\alpha \in \mathbb{F}_{n}^{+}} e_{\alpha} \otimes \ell_{\alpha}
$$

where $\ell_{\alpha} \in \mathcal{L}_{*}$ and $\sum_{\alpha \in \mathbb{F}_{n}^{+}}\left\|\ell_{\alpha}\right\|^{2}<\infty$. Notice that

$$
\Phi^{\mathcal{L}_{*}}\left(\left.V_{i}\right|_{M_{V}\left(\mathcal{L}_{*}\right)}\right)=\left(S_{i} \otimes I_{\mathcal{L}_{*}}\right) \Phi^{\mathcal{L}_{*}}, \quad i=1, \ldots, n
$$

where S_{1}, \ldots, S_{n} are the left creation operators on $F^{2}\left(H_{n}\right)$. Similarly, we define the Fourier representations of the subspaces $M_{V}(\mathcal{L})$ and $M_{V}(\mathcal{Q})$, respectively. Now, due to the above intertwining relations satisfied by Q, Q_{1}, and Q_{2}, the operators

$$
\begin{gather*}
\Theta_{\mathcal{L}}: F^{2}\left(H_{n}\right) \otimes \mathcal{L} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{L}_{*}, \quad \Theta_{\mathcal{L}}:=\Phi^{\mathcal{L}_{*}} Q\left(\Phi^{\mathcal{L}}\right)^{*}, \\
\Psi_{1}: F^{2}\left(H_{n}\right) \otimes \mathcal{L} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{Q}, \quad \Psi_{1}:=\Phi^{\mathcal{Q}} Q_{1}\left(\Phi^{\mathcal{L}}\right)^{*}, \quad \text { and } \\
\Psi_{2}: F^{2}\left(H_{n}\right) \otimes \mathcal{Q} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{L}_{*}, \quad \Psi_{2}:=\Phi^{\mathcal{L}_{*}} Q_{2}\left(\Phi^{\mathcal{Q}}\right)^{*} \tag{3.16}
\end{gather*}
$$

are contractive and multi-analytic. Hence and using the first equation in (3.10), we have

$$
\begin{aligned}
\Theta_{\mathcal{L}} & =\Phi^{\mathcal{L}_{*}} Q\left(\Phi^{\mathcal{L}}\right)^{*}=\Phi^{\mathcal{L}_{*}}\left(\left.P_{M_{V}\left(\mathcal{L}_{*}\right)}\right|_{M_{V}(\mathcal{L})}\right)\left(\Phi^{\mathcal{L}}\right)^{*} \\
& =\Phi^{\mathcal{L}_{*}}\left(\left.P_{M_{V}\left(\mathcal{L}_{*}\right)} P_{M_{V}(\mathcal{Q})}\right|_{M_{V}(\mathcal{L})}\right)\left(\Phi^{\mathcal{L}}\right)^{*} \\
& =\left[\Phi^{\mathcal{L}_{*}}\left(P_{M_{V}\left(\mathcal{L}_{*}\right)}| |_{M_{V}(\mathcal{Q})}\right)\left(\Phi^{\mathcal{Q}}\right)^{*}\right]\left[\Phi^{\mathcal{Q}}\left(\left.P_{M_{V}(\mathcal{Q})}\right|_{M_{V}(\mathcal{L})}\right)\left(\Phi^{\mathcal{L}}\right)^{*}\right] \\
& =\left[\Phi^{\mathcal{L}_{*}} Q_{2}\left(\Phi^{\mathcal{Q}}\right)^{*}\right]\left[\Phi^{\mathcal{Q}} Q_{1}\left(\Phi^{\mathcal{L}}\right)^{*}\right] \\
& =\Psi_{2} \Psi_{1} .
\end{aligned}
$$

Due to (3.11) and (3.14), there exists a unique unitary operator $\Phi_{\mathcal{R}}: \mathcal{R} \rightarrow \overline{\Delta_{\mathcal{L}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{L}\right)}$ such that

$$
\begin{equation*}
\Phi_{\mathcal{R}} P_{\mathcal{R}} \psi:=\Delta_{\mathcal{L}} \Phi^{\mathcal{L}} \psi, \quad \psi \in M_{V}(\mathcal{L}) \tag{3.17}
\end{equation*}
$$

where $\Delta_{\mathcal{L}}:=\left(I-\Theta_{\mathcal{L}}^{*} \Theta_{\mathcal{L}}\right)^{1 / 2}$. Indeed, we have

$$
\begin{aligned}
\left\|\left(I-P_{M_{V}\left(\mathcal{L}_{*}\right)}\right) \psi\right\|^{2} & =\|\psi\|^{2}-\left\|P_{M_{V}\left(\mathcal{L}_{*}\right)} \psi\right\|^{2} \\
& =\left\|\Phi^{\mathcal{L}} \psi\right\|^{2}-\left\|\Phi^{\mathcal{L}_{*}} P_{M_{V}\left(\mathcal{L}_{*}\right)} \psi\right\|^{2} \\
& =\left\|\Phi^{\mathcal{L}} \psi\right\|^{2}-\left\|\Theta_{\mathcal{L}} \Phi^{\mathcal{L}} \psi\right\|^{2} \\
& =\left\|\Delta_{\mathcal{L}} \Phi^{\mathcal{L}} \psi\right\|^{2} .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\Phi:=\Phi^{\mathcal{L}_{*}} \oplus \Phi_{\mathcal{R}} \tag{3.18}
\end{equation*}
$$

is a unitary operator from the dilation space $\mathcal{K}=M_{V}\left(\mathcal{L}_{*}\right) \oplus \mathcal{R}$ onto the Hilbert space

$$
\widetilde{\mathbf{K}}:=\left(F^{2}\left(H_{n}\right) \otimes \mathcal{L}_{*}\right) \oplus \overline{\Delta_{\mathcal{L}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{L}\right)}
$$

The image of the space $\mathcal{H}=\mathcal{K} \ominus M_{V}(\mathcal{L})$ under the operator Φ is

$$
\Phi \mathcal{H}=\widetilde{\mathbf{H}}:=\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{L}_{*}\right) \oplus \overline{\Delta_{\mathcal{L}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{L}\right)}\right] \ominus\left\{\Theta_{\mathcal{L}} f \oplus \Delta_{\mathcal{L}} f: f \in F^{2}\left(H_{n}\right) \otimes \mathcal{L}\right\} .
$$

The row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$ is transformed under the unitary operator Φ into the row contraction $\widetilde{\mathbf{T}}:=\left[\widetilde{\mathbf{T}}_{1}, \ldots, \widetilde{\mathbf{T}}_{n}\right]$, where

$$
\widetilde{\mathbf{T}}_{i}^{*}\left(f \oplus \Delta_{\mathcal{L}} g\right):=\left(S_{i}^{*} \otimes I_{\mathcal{L}_{*}}\right) f \oplus \widetilde{C}_{i}^{*}\left(\Delta_{\mathcal{L}} g\right), \quad i=1, \ldots, n
$$

and each operator \widetilde{C}_{i} is defined by

$$
\widetilde{C}_{i}\left(\Delta_{\mathcal{L}} g\right)=\Delta_{\mathcal{L}}\left(S_{i} \otimes I_{\mathcal{L}}\right) g, \quad g \in F^{2}\left(H_{n}\right) \otimes \mathcal{L}
$$

Notice that, using relations (3.12), (3.13), and (3.15), one can show that there are some unitary operators

$$
\Phi_{\mathcal{R}_{1}}: \mathcal{R}_{1} \rightarrow \overline{\Delta_{\Psi_{1}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{L}\right)} \quad \text { and } \quad \Phi_{\mathcal{R}_{2}}: \mathcal{R}_{2} \rightarrow \overline{\Delta_{\Psi_{2}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{Q}\right)}
$$

uniquely defined by the relations

$$
\begin{array}{ll}
\Phi_{\mathcal{R}_{1}} P_{\mathcal{R}_{1}} x:=\Delta_{\Psi_{1}} \Phi^{\mathcal{L}} x, & x \in M_{V}(\mathcal{L}), \\
\Phi_{\mathcal{R}_{2}} P_{\mathcal{R}_{2}} y:=\Delta_{\Psi_{2}} \Phi^{\mathcal{Q}} y, & y \in M_{V}(\mathcal{Q}) \tag{3.19}
\end{array}
$$

where $\Delta_{\Psi_{j}}:=\left(I-\Psi_{j}^{*} \Psi_{j}\right)^{1 / 2}$ for $j=1$, 2. Consequently, since $\mathcal{R}=\mathcal{R}_{2} \oplus \mathcal{R}_{1}$ and due to relation (3.17), the operator

$$
X_{\mathcal{L}}: \overline{\Delta_{\mathcal{L}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{L}\right)} \rightarrow \overline{\Delta_{\Psi_{2}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{Q}\right)} \oplus \overline{\Delta_{\Psi_{1}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{L}\right)}
$$

defined by

$$
\begin{equation*}
X_{\mathcal{L}}:=\left(\Phi_{\mathcal{R}_{2}} \oplus \Phi_{\mathcal{R}_{1}}\right) \Phi_{\mathcal{R}}^{*} \tag{3.20}
\end{equation*}
$$

is unitary. Due to relations (3.17), (3.10), (3.19), and (3.16), we deduce that

$$
\begin{aligned}
X_{\mathcal{L}} \Delta_{\mathcal{L}} \Phi^{\mathcal{L}} y & =X_{\mathcal{L}} \Phi_{\mathcal{R}} P_{\mathcal{R}} y=\left(\Phi_{\mathcal{R}_{2}} \oplus \Phi_{\mathcal{R}_{1}}\right) P_{\mathcal{R}} y \\
& =\left(\Phi_{\mathcal{R}_{2}} \oplus \Phi_{\mathcal{R}_{1}}\right)\left(P_{\mathcal{R}_{2}} P_{M_{V}(\mathcal{Q})} y \oplus P_{\mathcal{R}_{1}} y\right) \\
& =\Delta_{\Psi_{2}} \Phi^{\mathcal{Q}} P_{M_{V}(\mathcal{Q})} y \oplus \Delta_{\Psi_{1}} \Phi^{\mathcal{L}_{y}} \\
& =\Delta_{\Psi_{2}} \Psi_{1} \Phi^{\mathcal{L}} y \oplus \Delta_{\Psi_{1}} \Phi^{\mathcal{L}} y
\end{aligned}
$$

for any $y \in M_{V}(\mathcal{L})$. Hence, we have

$$
\begin{equation*}
X_{\mathcal{L}} \Delta_{\mathcal{L}} f=\Delta_{\Psi_{2}} \Psi_{1} f \oplus \Delta_{\Psi_{1}} f, \quad f \in F^{2}\left(H_{n}\right) \otimes \mathcal{L} \tag{3.21}
\end{equation*}
$$

Since $X_{\mathcal{L}}$ is a unitary operator, we also deduce that

$$
\left\{\Delta_{\Psi_{2}} \Theta_{1} f \oplus \Delta_{\Psi_{1}} f, f \in F^{2}\left(H_{n}\right) \otimes \mathcal{L}\right\}^{-}=\overline{\Delta_{\Psi_{2}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{Q}\right)} \oplus \overline{\Delta_{\Psi_{1}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{L}\right)}
$$

Due to (3.18) and (3.20), we have

$$
\Phi=\Phi^{\mathcal{L}_{*}} \oplus X_{\mathcal{L}}^{*}\left(\Phi_{\mathcal{R}_{2}} \oplus \Phi_{\mathcal{R}_{1}}\right)
$$

Now, we need to find the images $\widetilde{\mathbf{H}}_{1}$ and $\widetilde{\mathbf{H}}_{2}$ of \mathcal{H}_{1} and \mathcal{H}_{2}, respectively, under the unitary operator Φ. To find $\widetilde{\mathbf{H}}_{2}$, notice first that, due to relation (3.20), we have

$$
\begin{equation*}
\Phi_{\mathcal{R}} z=X_{\mathcal{L}}^{*}\left(\Phi_{\mathcal{R}_{2}} \oplus \Phi_{\mathcal{R}_{1}}\right)(z \oplus 0)=X_{\mathcal{L}}^{*}\left(\Phi_{\mathcal{R}_{2}} z \oplus 0\right) \tag{3.22}
\end{equation*}
$$

for any $z \in \mathcal{R}_{2}$. Hence and using (3.17), we infer that

$$
\begin{aligned}
\Phi\left(M_{V}\left(\mathcal{L}_{*}\right) \oplus \mathcal{R}_{2}\right) & =\Phi^{\mathcal{L}_{*}} M_{V}\left(\mathcal{L}_{*}\right) \oplus \Phi_{\mathcal{R}} \mathcal{R}_{2} \\
& =\left(F^{2}\left(H_{n}\right) \otimes \mathcal{L}_{*}\right) \oplus X_{\mathcal{L}}^{*}\left(\overline{\Delta_{\Psi_{2}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{Q}\right)} \oplus\{0\}\right)
\end{aligned}
$$

and, due to (3.8),

Hence, and using relations (3.16), (3.19), and (3.22), we obtain

$$
\Phi M_{V}(\mathcal{Q})=\left\{\Psi_{2} u \oplus X_{\mathcal{L}}^{*}\left(\Delta_{\Psi_{2}} u \oplus 0\right): u \in F^{2}\left(H_{n}\right) \otimes \mathcal{Q}\right\} .
$$

Now, using the representation of \mathcal{H}_{2} from part I, i.e.,

$$
\mathcal{H}_{2}=\left[M_{V}\left(\mathcal{L}_{*}\right) \oplus \mathcal{R}_{2}\right] \ominus M_{V}(\mathcal{Q})
$$

we obtain

$$
\begin{aligned}
\widetilde{\mathbf{H}}_{2}= & {\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{L}_{*}\right) \oplus X_{\mathcal{L}}^{*}\left(\overline{\Delta_{\Psi_{2}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{Q}\right)}\right) \oplus\{0\}\right] } \\
& \ominus\left\{\Psi_{2} f \oplus X_{\mathcal{L}}^{*}\left(\Delta_{\Psi_{2}} f \oplus 0\right): f \in F^{2}\left(H_{n}\right) \otimes \mathcal{Q}\right\} .
\end{aligned}
$$

Since $\widetilde{\mathbf{H}}_{1}=\widetilde{\mathbf{H}} \ominus \widetilde{\mathbf{H}}_{2}$, we deduce that

$$
\begin{aligned}
\widetilde{\mathbf{H}}_{1}= & \left\{\Psi_{2} f \oplus X_{\mathcal{L}}^{*}\left(\Delta_{\Psi_{2}} f \oplus g\right): f \in F^{2}\left(H_{n}\right) \otimes \mathcal{Q}, g \in \overline{\Delta_{\Psi_{1}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{L}\right)}\right\} \\
& \ominus\left\{\Theta_{\mathcal{L}} w \oplus \Delta_{\Theta} w: w \in F^{2}\left(H_{n}\right) \otimes \mathcal{L}\right\} .
\end{aligned}
$$

According to Section 2, the characteristic function Θ_{T} of the row contraction T coincides with $\Theta_{\mathcal{L}}$, and therefore with Θ. Via this identification, the regular factorization $\Theta_{\mathcal{L}}=\Psi_{2} \Psi_{1}$ corresponds to a regular factorization $\Theta=\Theta_{2} \Theta_{1}$, where $\Theta_{1}: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{F}$ and $\Theta_{2}: F^{2}\left(H_{n}\right) \otimes \mathcal{F} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ are contractive multi-analytic operators. Now, it is easy to see that, under the above identification, the subspaces $\widetilde{\mathbf{H}}_{1}$ and $\widetilde{\mathbf{H}}_{2}$ correspond to the subspaces

$$
\begin{align*}
\mathbf{H}_{2}= & {\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus X_{\Theta}^{*}\left(\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)}\right) \oplus\{0\}\right] } \\
& \ominus\left\{\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus 0\right): f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right\} \tag{3.23}
\end{align*}
$$

and

$$
\begin{align*}
\mathbf{H}_{1}= & \left\{\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right): f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}, g \in \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right\} \\
& \ominus\left\{\Theta \varphi \oplus \Delta_{\Theta} \varphi: \varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\} \tag{3.24}
\end{align*}
$$

respectively, where $\Delta_{j}:=\left(I-\Theta_{j}^{*} \Theta_{j}\right)^{1 / 2}, j=1,2$. Moreover, under the same identification, the row contraction $\widetilde{\mathbf{T}}$ is unitarily equivalent to the row contraction $\mathbf{T}:=\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$ defined on the Hilbert space

$$
\mathbf{H}:=\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus \overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right] \ominus\left\{\Theta g \oplus \Delta_{\Theta} g: g \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\}
$$

by

$$
\mathbf{T}_{i}^{*}\left(f \oplus \Delta_{\Theta} g\right):=\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) f \oplus C_{i}^{*}\left(\Delta_{\Theta} g\right), \quad i=1, \ldots, n
$$

where each operator C_{i} is defined by

$$
C_{i}\left(\Delta_{\Theta} g\right):=\Delta_{\Theta}\left(S_{i} \otimes I_{\mathcal{E}}\right) g, \quad g \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}
$$

and S_{1}, \ldots, S_{n} are the left creation operators on $F^{2}\left(H_{n}\right)$.
Since the factorization $\Theta=\Theta_{2} \Theta_{1}$ is regular, X_{Θ} is a unitary operator which identifies the subspace $\overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ with $\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)} \oplus \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ and the operator C_{i} with $\left(\begin{array}{cc}F_{i} & 0 \\ 0 & E_{i}\end{array}\right)$, for each $i=1, \ldots, n$. Under this identification the Hilbert spaces $\mathbf{H}, \mathbf{H}_{\mathbf{1}}$, and $\mathbf{H}_{\mathbf{2}}$ are identified with $\mathbb{H}, \mathbb{H}_{1}$, and \mathbb{H}_{2}, respectively, and the row contraction \mathbf{T} is unitarily equivalent to the row contraction \mathbb{T}.

Part III. We prove the converse of the theorem. Due to the above identification, it is enough to assume that the factorization $\Theta=\Theta_{2} \Theta_{1}$ is regular and the subspaces \mathbf{H}_{1} and \mathbf{H}_{2} are defined as above by relations (3.24) and (3.23), respectively. Since X_{Θ} is a unitary operator and using definition (3.1), we have

$$
\begin{aligned}
\mathbf{G}_{2}:= & \left\{\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right): f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}, g \in \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right\} \\
& \supset\left\{\Theta_{2} \Theta_{1} \varphi \oplus X_{\Theta}^{*}\left(\Delta_{2} \Theta_{1} \varphi \oplus \Delta_{1} \varphi\right): \varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\} \\
= & \left\{\Theta \varphi+\Delta_{\Theta} \varphi: \varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\} .
\end{aligned}
$$

Hence, we obtain

$$
\mathbf{H}_{1}=\mathbf{G}_{2} \ominus\left\{\Theta \varphi+\Delta_{\Theta} \varphi: \varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\}
$$

On the other hand, we have

$$
\begin{aligned}
{[} & \left.\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus \overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right] \ominus \mathbf{G}_{2} \\
\quad= & {\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus X_{\Theta}^{*}\left(\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)} \oplus \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right)\right] \ominus \mathbf{G}_{2} } \\
\quad= & {\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus X_{\Theta}^{*}\left(\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)} \oplus\{0\}\right)\right] } \\
& \ominus\left\{\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus\{0\}\right): f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right\} .
\end{aligned}
$$

Consequently,

$$
\mathbf{H}_{2}=\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus \overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right] \ominus \mathbf{G}_{2}
$$

Hence, and taking into account the definition of \mathbf{H}_{1}, we deduce that $\mathbf{H}=\mathbf{H}_{1} \oplus \mathbf{H}_{2}$.
It remains to prove that the subspace \mathbf{H}_{2} is invariant under the operators $\mathbf{T}_{1}^{*}, \ldots, \mathbf{T}_{n}^{*}$. If $f \in$ $F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ and $g \in \overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)}$, then the vector $x:=f \oplus X_{\Theta}^{*}(g \oplus 0)$ is in \mathbf{H}_{2} if and only if

$$
\begin{equation*}
\Theta_{2}^{*} f+\Delta_{2} g=0 \tag{3.25}
\end{equation*}
$$

Indeed, using relation (3.23), one can prove that the condition

$$
\left\langle f \oplus X_{\Theta}^{*}(g \oplus 0), \Theta_{2} \varphi \oplus X_{\Theta}^{*}\left(\Delta_{2} \varphi \oplus 0\right)\right\rangle=0 \quad \text { for any } \varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}
$$

is equivalent to (3.25). Since

$$
\mathbf{T}_{i}^{*} x=\mathbf{T}_{i}^{*}\left(f \oplus X_{\Theta}^{*}(g \oplus 0)\right)=\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) f \oplus C_{i}^{*} X_{\Theta}^{*}(g \oplus 0)
$$

for each $i=1, \ldots, n$, to prove that $\mathbf{T}_{i}^{*} x \in \mathbf{H}_{2}$, it is enough to show that

$$
\left\langle\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) f \oplus C_{i}^{*}\left(X_{\Theta}^{*}(g \oplus 0)\right), \Theta_{2} \varphi \oplus X_{\Theta}^{*}\left(\Delta_{2} \varphi \oplus 0\right)\right\rangle=0
$$

for any $\varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}$. Since Θ is a multi-analytic operator, the latter condition is equivalent to

$$
\begin{equation*}
\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) \Theta_{2}^{*} f+\Delta_{2} P_{1} X_{\Theta} C_{i}^{*} X_{\Theta}^{*}(g \oplus 0)=0 \tag{3.26}
\end{equation*}
$$

where P_{1} is the orthogonal projection of the direct sum $\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)} \oplus \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ onto $\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)}$. Using Lemma 3.1 and the definition of the operators C_{i}, E_{i}, and F_{i}, we deduce that

$$
\begin{aligned}
\Delta_{2} P_{1} X_{\Theta} C_{i}^{*} X_{\Theta}^{*}(g \oplus 0) & =\Delta_{2} P_{1} X_{\Theta} X_{\Theta}^{*}\left(\begin{array}{cc}
F_{i}^{*} & 0 \\
0 & E_{i}^{*}
\end{array}\right)(g \oplus 0) \\
& =\Delta_{2} F_{i}^{*} g=\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) \Delta_{2} g .
\end{aligned}
$$

Hence, and using relation (3.25), we have

$$
\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) \Theta_{2}^{*} f+\Delta_{2} P_{1} X_{\Theta} C_{i}^{*} X_{\Theta}^{*}(g \oplus 0)=\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right)\left(\Theta_{2}^{*} f+\Delta_{2} g\right)=0
$$

which proves relation (3.26). This shows that $\mathbf{T}_{i}^{*} \mathbf{H}_{2} \subset \mathbf{H}_{2}$ for any $i=1, \ldots, n$. Consequently, the subspace $\mathbf{H}_{1}=\mathbf{H} \ominus \mathbf{H}_{2}$ is invariant under the operators $\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}$. This completes the proof of the theorem.

Now we can reformulate Theorem 3.2 in terms of the functional model of a c.n.c. row contraction provided by Theorem 2.2. This version will be useful later on.

Theorem 3.3. Let $\Theta: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ be a purely contractive multi-analytic operator such that

$$
\overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}=\overline{\Delta_{\Theta}\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right) \ominus \mathcal{E}\right]}
$$

and let $\mathbf{T}:=\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$ be defined on the Hilbert space

$$
\mathbf{H}:=\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus \overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right] \ominus\left\{\Theta g \oplus \Delta_{\Theta} g: g \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\}
$$

by

$$
\mathbf{T}_{i}^{*}\left(f \oplus \Delta_{\Theta} g\right):=\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) f \oplus C_{i}^{*}\left(\Delta_{\Theta} g\right), \quad i=1, \ldots, n
$$

where each operator C_{i} is defined by

$$
C_{i}\left(\Delta_{\Theta} g\right):=\Delta_{\Theta}\left(S_{i} \otimes I_{\mathcal{E}}\right) g, \quad g \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}
$$

and S_{1}, \ldots, S_{n} are the left creation operators on $F^{2}\left(H_{n}\right)$.
If $\mathbf{H}_{1} \subseteq \mathbf{H}$ is an invariant subspace under each operator $\mathbf{T}_{i}, i=1, \ldots, n$, then there is a regular factorization

$$
\Theta=\Theta_{2} \Theta_{1},
$$

where $\Theta_{1}: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{F}$ and $\Theta_{2}: F^{2}\left(H_{n}\right) \otimes \mathcal{F} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ are contractive multi-analytic operators such that, if X_{Θ} is the operator defined by (3.1), then the subspaces \mathbf{H}_{1} and $\mathbf{H}_{2}:=\mathbf{H} \ominus \mathbf{H}_{1}$ have the representations:

$$
\begin{aligned}
\mathbf{H}_{1}= & \left\{\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right): f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}, g \in \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right\} \\
& \ominus\left\{\Theta \varphi \oplus \Delta_{\Theta} \varphi: \varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{H}_{2}= & {\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus X_{\Theta}^{*}\left(\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)}\right) \oplus\{0\}\right] } \\
& \ominus\left\{\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus 0\right): f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right\} .
\end{aligned}
$$

Conversely, every regular factorization $\Theta=\Theta_{2} \Theta_{1}$ generates via the above formulas the subspaces \mathbf{H}_{1} and \mathbf{H}_{2} with the following properties:
(i) \mathbf{H}_{1} is an invariant subspace under each operator $\mathbf{T}_{i}, i=1, \ldots, n$;
(ii) $\mathbf{H}_{2}=\mathbf{H} \ominus \mathbf{H}_{1}$.

In what follows we need the following factorization result for contractive multi-analytic operators [22].

Lemma 3.4. Let $\Theta \in R_{n}^{\infty} \bar{\otimes} B(\mathcal{E}, \mathcal{G})$ be a contractive multi-analytic operator. Then Θ admits a unique decomposition $\Theta=\Psi \oplus \Lambda$ with the following properties:
(i) $\Psi \in R_{n}^{\infty} \bar{\otimes} B\left(\mathcal{E}_{0}, \mathcal{G}_{0}\right)$ is purely contractive, i.e., $\left\|P_{\mathcal{G}_{0}} \Psi h\right\|<\|h\|$ for any $h \in \mathcal{E}_{0}, h \neq 0$;
(ii) $\Lambda=I \otimes U \in R_{n}^{\infty} \bar{\otimes} B\left(\mathcal{E}_{u}, \mathcal{G}_{u}\right)$, where $U \in B\left(\mathcal{E}_{u}, \mathcal{G}_{u}\right)$ is a unitary operator;
(iii) $\mathcal{E}=\mathcal{E}_{0} \oplus \mathcal{E}_{u}$ and $\mathcal{G}=\mathcal{G}_{0} \oplus \mathcal{G}_{u}$.

Moreover, the purely contractive part of an outer or inner multi-analytic operator is also outer or inner, respectively.

The next result is an addition to Theorem 2.2.
Proposition 3.5. Let $\Theta: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ be a contractive multi-analytic operator such that

$$
\overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}=\overline{\Delta_{\Theta}\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right) \ominus \mathcal{E}\right]},
$$

and let $\mathbf{T}:=\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$ be the functional model associated with Θ, as in Theorem 2.2.
(i) The characteristic function of $\mathbf{T}:=\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$ coincides with the purely contractive part of Θ.
(ii) The space \mathbf{H} defined in Theorem 2.2 is different from $\{0\}$ if and only if there is no unitary operator $U \in B\left(\mathcal{E}, \mathcal{E}_{*}\right)$ such that $\Theta=I \otimes U$.

Proof. According to Lemma 3.4, the multi-analytic operator Θ admits the decomposition $\Theta=$ $\Phi \oplus \Lambda$ with $\Psi \in R_{n}^{\infty} \bar{\otimes} B\left(\mathcal{E}_{0}, \mathcal{E}_{* 0}\right)$ purely contractive and $\Lambda=I \otimes U \in R_{n}^{\infty} \bar{\otimes} B\left(\mathcal{E}_{u}, \mathcal{E}_{* u}\right)$, where $U \in B\left(\mathcal{E}_{u}, \mathcal{E}_{* u}\right)$ is a unitary operator, $\mathcal{E}=\mathcal{E}_{0} \oplus \mathcal{E}_{u}$, and $\mathcal{E}_{*}=\mathcal{E}_{* 0} \oplus \mathcal{E}_{* u}$. Notice that

$$
\begin{gathered}
F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}=\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{* u}\right) \oplus\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{* 0}\right) \quad \text { and } \\
F^{2}\left(H_{n}\right) \otimes \mathcal{E}=\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{u}\right) \oplus\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{0}\right)
\end{gathered}
$$

On the other hand, we have

$$
\left\{\Theta g \oplus \Delta_{\Theta} g: g \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\}=\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{* u}\right) \oplus\left\{\Phi \varphi \oplus \Delta_{\Phi} \varphi: \varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{0}\right\}
$$

Now, using the definition of the Hilbert space \mathbf{H}, one can identify \mathbf{H} with

$$
\mathbf{H}_{0}:=\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{* 0}\right) \oplus \overline{\Delta_{\Phi}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{0}\right)}\right] \ominus\left\{\Phi \varphi \oplus \Delta_{\Phi} \varphi: \varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{0}\right\}
$$

Due to this identification, the row contraction $\mathbf{T}:=\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$ is unitarily equivalent to $\mathbf{T}^{0}:=$ [$\mathbf{T}_{1}^{0}, \ldots, \mathbf{T}_{n}^{0}$], which is defined on \mathbf{H}_{0} in the same manner as \mathbf{T} is defined on \mathbf{H}. Since $\Delta_{\Theta}=$ $\Delta_{\Phi} \oplus 0$, it is easy to see that

$$
\overline{\Delta_{\Phi}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}=\overline{\Delta_{\Phi}\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right) \ominus \mathcal{E}\right]} .
$$

According to the second part of Theorem 2.2 the characteristic function of \mathbf{T}^{0} coincides with the multi-analytic operator Φ which coincides with the characteristic function of \mathbf{T}.

We prove now part (ii). If $\Theta=I \otimes U$ for some unitary operator $U \in B\left(\mathcal{E}, \mathcal{E}_{*}\right)$, then $\Delta_{\Theta}=0$ and

$$
\mathbf{H}=\left[F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right] \ominus \Theta\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)=\{0\}
$$

If Θ is not a unitary multi-analytic operator, then, according to Lemma 3.4, it has a non-trivial purely contractive part. By part (i), Theorems 2.1 and 2.2 , we deduce that

$$
\operatorname{dim} \mathcal{D}_{*}=\operatorname{dim} \mathcal{E}_{* 0}, \quad \operatorname{dim} \mathcal{D}=\operatorname{dim} \mathcal{E}_{0}
$$

where \mathcal{E} and $\mathcal{E}_{* 0}$ are not both equal to $\{0\}$. Since $\mathcal{D}_{*} \subset \mathcal{H}$ and $\mathcal{D} \subset \mathcal{H}^{(n)}$, we deduce that $\mathcal{H} \neq\{0\}$. This completes the proof.

The following result is an important addition to Theorem 3.3 (and hence also to Theorem 3.2).

Theorem 3.6. Under the conditions of Theorem 3.3, let $\mathbf{H}=\mathbf{H}_{1} \oplus \mathbf{H}_{2}$ be the decomposition corresponding to the regular factorization $\Theta=\Theta_{2} \Theta_{1}$, and let

$$
\mathbf{T}_{i}=\left(\begin{array}{cc}
\mathbf{A}_{i} & * \\
0 & \mathbf{B}_{i}
\end{array}\right), \quad i=1, \ldots, n
$$

be the corresponding triangulation of $\mathbf{T}:=\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$. Then the characteristic functions of the row contractions $\mathbf{A}:=\left[\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right]$ and $\mathbf{B}:=\left[\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}\right]$ coincide with the purely contractive parts of the multi-analytic operators Θ_{1} and Θ_{2}, respectively.

Moreover, the invariant subspace \mathbf{H}_{1} under the operators $\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}$ is non-trivial if and only if the regular factorization $\Theta=\Theta_{2} \Theta_{1}$ is non-trivial, i.e., each factor is not a unitary constant.

Proof. Define the operator U from the Hilbert space

$$
\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus X_{\Theta}^{*}\left(\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)} \oplus\{0\}\right)
$$

to

$$
\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus \overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)}
$$

by setting

$$
U\left(f \oplus X^{*}(g \oplus 0)\right):=f \oplus g
$$

for any $f \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ and $g \in \overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)}$. Since X_{Θ} is unitary, so is U. Using the definition of \mathbf{H}_{2} (see relation (3.23)), we deduce that $U \mathbf{H}_{2}=\widehat{\mathcal{H}}_{2}$, where

$$
\begin{align*}
\widehat{\mathcal{H}}_{2}:= & {\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}\right) \oplus \overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)}\right] } \\
& \ominus\left\{\Theta_{2} \varphi \oplus \Delta_{2} \varphi: \varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right\} . \tag{3.27}
\end{align*}
$$

Set $\Gamma_{i}^{*}:=U \mathbf{B}_{i}^{*} U^{*}, i=1, \ldots, n$, and denote by P_{1} the orthogonal projection of the direct sum $\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)} \oplus \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ onto $\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)}$. Using Lemma 3.1, we deduce that

$$
P_{1} X_{\Theta} C_{i}^{*} X_{\Theta}^{*}(g \oplus 0)=P_{1}\left(\begin{array}{cc}
F_{i}^{*} & 0 \\
0 & E_{i}^{*}
\end{array}\right)\binom{g}{0}=F_{i}^{*} g
$$

for any $g \in \overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)}$ and $i=1, \ldots, n$. Hence and using the definitions for the row contraction $\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$ and the unitary operator U, we have

$$
\begin{aligned}
\Gamma_{i}^{*}(f \oplus g) & =U \mathbf{T}_{i}^{*}\left(f \oplus X_{\Theta}^{*}(g \oplus 0)\right) \\
& =U\left[\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) f \oplus C_{i}^{*} X_{\Theta}^{*}(g \oplus 0)\right] \\
& =\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) f \oplus P_{1} X_{\Theta} C_{i}^{*} X_{\Theta}^{*}(g \oplus 0) \\
& =\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) f \oplus F_{i}^{*} g
\end{aligned}
$$

for any $f \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ and $g \in \overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)}$ such that $f \oplus g \in \mathcal{H}_{2}$, and $i=1, \ldots, n$.

Since

$$
\overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}=\overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right) \ominus \mathcal{E}}
$$

one can use again Lemma 3.1 to deduce that

$$
\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)}=\overline{\Delta_{2}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right) \ominus \mathcal{F}}
$$

Now, due to Proposition 3.5, we infer that the characteristic function of the row contraction $\left[\Gamma_{1}, \ldots, \Gamma_{n}\right], \Gamma_{i} \in B\left(\widehat{\mathcal{H}}_{2}\right)$ (and hence also $\left[\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}\right]$), coincides with the purely contractive part of the multi-analytic operator Θ_{2}.

Taking into account the definition of the subspace \mathbf{H}_{1} (see relation (3.24)) and the fact that $\Theta=\Theta_{2} \Theta_{1}$, one can see that, for each $f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}$ and $g \in \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$, the vector $\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right)$ is in \mathbf{H}_{1} if and only if

$$
\left\langle\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right), \Theta_{2} \Theta_{1} \varphi \oplus X_{\Theta}^{*}\left(\Delta_{2} \Theta_{1} \varphi \oplus \Delta_{1} \varphi\right)\right\rangle=0
$$

for any $\varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}$. The latter equation is equivalent to

$$
\Theta_{1}^{*} \Theta_{2}^{*} \Theta_{2} f+\Theta_{1}^{*} \Delta_{2}^{2} f+\Delta_{1} g=0
$$

Since $\Delta_{2}^{2}=I-\Theta_{2}^{*} \Theta_{2}$, the above equation is equivalent to

$$
\begin{equation*}
\Theta_{1}^{*} f+\Delta_{1} g=0 \tag{3.28}
\end{equation*}
$$

If $x:=\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right) \in \mathbf{H}_{1}$, then we have

$$
\mathbf{T}_{i}^{*} x=\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) \Theta_{2} f \oplus C_{i}^{*} X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right)
$$

for each $i=1, \ldots, n$. Since Θ_{2} is a multi-analytic operator and

$$
f=\sum_{j=1}^{n}\left(S_{j} S_{j}^{*} \otimes I_{\mathcal{F}}\right) f+f(0)
$$

where $f(0):=P_{1 \otimes \mathcal{F}} f$, we deduce that

$$
\begin{aligned}
\mathbf{T}_{i}^{*} x & =\left[\Theta_{2}\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f+\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) \Theta_{2} f(0)\right] \oplus C_{i}^{*} X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right) \\
& =u+v
\end{aligned}
$$

where

$$
u:=\Theta_{2}\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f \oplus\left[X_{\Theta}^{*}\left(\Delta_{2}\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f \oplus E_{i}^{*} g\right)\right]
$$

and

$$
v:=\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) \Theta_{2} f(0) \oplus\left[C_{i}^{*} X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right)-X_{\Theta}^{*}\left(\Delta_{2}\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f \oplus E_{i}^{*} g\right)\right]
$$

Now notice that $u \in \mathbf{H}_{1}$. Indeed, using the above characterization of the elements of \mathbf{H}_{1}, it is enough to show that

$$
\begin{equation*}
\Theta_{1}^{*}\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f+\Delta_{1} E_{i}^{*} g=0, \quad i=1, \ldots, n . \tag{3.29}
\end{equation*}
$$

Using relation (3.28) and the definition of E_{i}, we have

$$
\Theta_{1}^{*}\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f+\Delta_{1} E_{i}^{*} g=\left(S_{i}^{*} \otimes I_{\mathcal{E}}\right)\left(\Theta_{1}^{*} f+\Delta_{1} g\right)=0
$$

which proves (3.29) and therefore $u \in \mathbf{H}_{1}$.
Now we prove that $v \in \mathbf{H}_{2}$. First, notice that due to Lemma 3.1, we have

$$
C_{i}^{*} X_{\Theta}^{*}(0 \oplus g)=X_{\Theta}^{*}\left(0 \oplus E_{i}^{*} g\right), \quad g \in \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}
$$

and therefore

$$
\begin{equation*}
v=\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) \Theta_{2} f(0) \oplus\left[C_{i}^{*} X_{\Theta}^{*}\left(\Delta_{2} f \oplus 0\right)-X_{\Theta}^{*}\left(\Delta_{2}\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f \oplus 0\right)\right] \tag{3.30}
\end{equation*}
$$

Using again Lemma 3.1 and the definition of F_{i}, we infer that

$$
\begin{aligned}
C_{i}^{*} X_{\Theta}^{*}\left(\Delta_{2} f \oplus 0\right) & =C_{i}^{*} X_{\Theta}^{*}\left(\Delta_{2}\left(\sum_{j=1}^{n} S_{j} S_{j}^{*} \otimes I_{\mathcal{F}}\right) f(0) \oplus 0\right)+C_{i}^{*} X_{\Theta}^{*}\left(\Delta_{2} f(0) \oplus 0\right) \\
& =X_{\Theta}^{*}\left(F_{i}^{*} \Delta_{2}\left(\sum_{j=1}^{n} S_{j} S_{j}^{*} \otimes I_{\mathcal{F}}\right) f \oplus 0\right)+C_{i}^{*} X_{\Theta}^{*}\left(\Delta_{2} f(0) \oplus 0\right) \\
& =X_{\Theta}^{*}\left(\Delta_{2}\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f \oplus 0\right)+C_{i}^{*} X_{\Theta}^{*}\left(\Delta_{2} f(0) \oplus 0\right) \\
& =X_{\Theta}^{*}\left(\Delta_{2}\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f \oplus 0\right)+X_{\Theta}^{*}\left(F_{i}^{*} \Delta_{2} f(0) \oplus 0\right)
\end{aligned}
$$

Consequently, relation (3.30) implies

$$
v=\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) \Theta_{2} f(0) \oplus X_{\Theta}^{*}\left(F_{i}^{*} \Delta_{2} f(0) \oplus 0\right)
$$

Due to the definition of the subspace \mathbf{H}_{2}, to prove that $v \in \mathbf{H}_{2}$, it is enough to show that

$$
\Theta_{2}^{*}\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) \Theta_{2} f(0)+\Delta_{2} F_{i}^{*} \Delta_{2} f(0)=0
$$

for each $i=1, \ldots, n$. Since

$$
\Delta_{2} F_{i}^{*}=\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) \Delta_{2}, \quad i=1, \ldots, n,
$$

and Θ_{2} is multi-analytic, we have

$$
\begin{aligned}
\Theta_{2}^{*}\left(S_{i}^{*} \otimes I_{\mathcal{E}_{*}}\right) \Theta_{2} f(0)+\Delta_{2} F_{i}^{*} \Delta_{2} f(0) & =\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right)\left(\Theta_{2}^{*} \Theta_{2}+\Delta_{2}^{2}\right) f(0) \\
& =\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f(0)=0
\end{aligned}
$$

Hence, $v \in \mathbf{H}_{2}$. Now, using the fact that $\mathbf{T}_{i}^{*} x=u+v$ and the definitions for u and v, we deduce that the operator $\mathbf{A}_{i}^{*}:=\left.P_{\mathbf{H}_{1}} \mathbf{T}_{i}^{*}\right|_{\mathbf{H}_{1}}$ satisfies the equation

$$
\begin{equation*}
\mathbf{A}_{i}^{*}\left(\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right)\right)=\Theta_{2}\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f \oplus\left[X_{\Theta}^{*}\left(\Delta_{2}\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f \oplus E_{i}^{*} g\right)\right] \tag{3.31}
\end{equation*}
$$

for any $\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right) \in \mathbf{H}_{1}$ and $i=1, \ldots, n$.
Now, define the operator Ω from

$$
\left\{\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right): f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}, g \in \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right\}
$$

to the direct $\operatorname{sum}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right) \oplus \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ by setting

$$
\begin{equation*}
\Omega\left(\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right)\right):=f \oplus g \tag{3.32}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right)\right\|^{2} & =\left\|\Theta_{2} f\right\|^{2}+\left\|X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right)\right\|^{2} \\
& =\left\langle\Theta_{2}^{*} \Theta_{2} f, f\right\rangle+\left\|\Delta_{2} f\right\|^{2}+\|g\|^{2} \\
& =\|f \oplus g\|^{2}
\end{aligned}
$$

it is clear that Ω is a unitary operator. Notice also that

$$
\begin{aligned}
\Omega\left(\Theta \varphi \oplus \Delta_{\Theta} \varphi\right) & =\Omega\left(\Theta_{2} \Theta_{1} \varphi \oplus X_{\Theta}^{*}\left(\Delta_{2} \Theta_{1} \varphi \oplus \Delta_{1} \varphi\right)\right) \\
& =\Theta_{1} \varphi \oplus \Delta_{1} \varphi
\end{aligned}
$$

for any $\varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}$. Consequently, $\Omega \mathbf{H}_{1}=\widehat{\mathcal{H}}_{1}$, where

$$
\begin{align*}
\widehat{\mathcal{H}}_{1}:= & {\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right) \oplus \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right] } \\
& \ominus\left\{\Theta_{1} \varphi \oplus \Delta_{1} \varphi: \varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right\} . \tag{3.33}
\end{align*}
$$

Setting $\Lambda_{i}:=\Omega \mathbf{A}_{i} \Omega^{*}$, relation (3.31) implies

$$
\Lambda_{i}^{*}(f \oplus g)=\left(S_{i}^{*} \otimes I_{\mathcal{F}}\right) f \oplus E_{i}^{*} g, \quad f \oplus g \in \mathcal{H}_{1}
$$

for any $i=1, \ldots, n$. Once again, Lemma 3.1 implies

$$
\overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}=\overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right) \ominus \mathcal{E}}
$$

Now, using Proposition 3.5, we infer that the characteristic function of the row contraction $\left[\Lambda_{1}, \ldots, \Lambda_{n}\right], \Lambda_{i} \in B\left(\widehat{\mathcal{H}}_{1}\right)$ (and hence also $\left[\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right]$), coincides with the purely contractive part of the multi-analytic operator Θ_{1}. Due to the relations (3.27), (3.33), and Proposition 3.5, the subspaces $\widehat{\mathcal{H}}_{1}$ and $\widehat{\mathcal{H}}_{2}$ (and hence also \mathbf{H}_{1} and \mathbf{H}_{2}) are different from $\{0\}$ if and only if both multi-analytic operators Θ_{1} and Θ_{2} are not unitary constant, i.e., the factorization $\Theta=\Theta_{1} \Theta_{2}$ is non-trivial. This completes the proof.

Now, combining Theorems 3.2 and 3.6, we can deduce the following result.

Theorem 3.7. Let $T:=\left[T_{1}, \ldots, T_{n}\right]$ be a completely non-coisometric row contraction on a separable Hilbert space \mathcal{H}. Then, there is a non-trivial invariant subspace under each operator T_{1}, \ldots, T_{n} if and only if the characteristic function Θ_{T} has a non-trivial regular factorization.

Concerning the uniqueness in Theorem 3.3 (and also Theorem 3.2), we can prove the following result, which shows the extent to which a joint invariant subspace determines the corresponding regular factorization of the characteristic function.

Theorem 3.8. Under the conditions of Theorem 3.3, let

$$
\Theta=\Theta_{2} \Theta_{1} \text { and } \Theta=\Theta_{2}^{\prime} \Theta_{1}^{\prime}
$$

be two regular factorizations of the purely contractive multi-analytic operator Θ, and let \mathcal{E}, \mathcal{F}, \mathcal{E}_{*}, and $\mathcal{E}, \mathcal{F}^{\prime}, \mathcal{E}_{*}$ be the corresponding Hilbert spaces. Let $\mathbf{H}_{1} \subset \mathbf{H}$ and $\mathbf{H}_{1}^{\prime} \subset \mathbf{H}$ be the invariant subspaces under each operator $\mathbf{T}_{i}, i=1, \ldots, n$, corresponding to the above factorizations. If $\mathbf{H}_{1} \subset \mathbf{H}_{1}^{\prime}$, then there is a multi-analytic operator $\Psi: F^{2}\left(H_{n}\right) \otimes \mathcal{F} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{F}^{\prime}$ such that

$$
\Theta_{1}^{\prime}=\Psi \Theta_{1}
$$

Moreover, if $\mathbf{H}_{1}=\mathbf{H}_{1}^{\prime}$, then

$$
\Theta_{1}^{\prime}=\left(I \otimes \Psi_{0}\right) \Theta_{1}
$$

for some unitary operator $\Psi_{0} \in B\left(\mathcal{F}, \mathcal{F}^{\prime}\right)$ and, consequently, the multi-analytic operators Θ_{1} and Θ_{1}^{\prime} coincide.

Proof. We associate with the factorization $\Theta=\Theta_{2} \Theta_{1}$ the subspace

$$
\mathcal{M}:=\left\{\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right): f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}, g \in \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right\}
$$

Similarly, we define the subspace \mathcal{M}^{\prime} associated with the factorization $\Theta=\Theta_{2}^{\prime} \Theta_{1}^{\prime}$. Since $\mathbf{H}_{1} \subseteq \mathbf{H}_{1}^{\prime}$, relation (3.24) and its analogue for \mathbf{H}_{1}^{\prime} imply $\mathcal{M} \subseteq \mathcal{M}^{\prime}$. Consequently, for each $f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}$, there exist $f^{\prime} \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}^{\prime}$ and $g^{\prime} \in \overline{\Delta_{1}^{\prime}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ such that

$$
\begin{equation*}
\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus 0\right)=\Theta_{2}^{\prime} f^{\prime} \oplus X_{\Theta}^{\prime *}\left(\Delta_{2} f^{\prime} \oplus g^{\prime}\right) \tag{3.34}
\end{equation*}
$$

Hence and using the definition of the unitary operators X_{Θ} and X_{Θ}^{\prime}, we have

$$
\|f\|^{2}=\left\|\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus g\right)\right\|^{2}=\left\|\Theta_{2}^{\prime} f^{\prime} \oplus X_{\Theta}^{* *}\left(\Delta_{2} f^{\prime} \oplus g^{\prime}\right)\right\|^{2}=\left\|f^{\prime}\right\|^{2}+\left\|g^{\prime}\right\|^{2} .
$$

Therefore, it makes sense to define the contractions $Q: F^{2}\left(H_{n}\right) \otimes \mathcal{F} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{F}^{\prime}$ and $R: F^{2}\left(H_{n}\right) \otimes \mathcal{F} \rightarrow \overline{\Delta_{1}^{\prime}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ by setting $Q f:=f^{\prime}$ and $R f:=g^{\prime}$, respectively. Now, we show that Q is a multi-analytic operator, i.e.,

$$
Q\left(S_{i} \otimes I_{\mathcal{F}}\right)=\left(S_{i} \otimes I_{\mathcal{F}^{\prime}}\right) Q, \quad i=1, \ldots, n
$$

Let f_{1}, \ldots, f_{n} be arbitrary elements in $F^{2}\left(H_{n}\right) \otimes \mathcal{E}$. Taking into account the definitions for C_{i} and X_{Θ}, and the fact that

$$
\left(S_{j}^{*} \otimes I_{\mathcal{F}}\right) \Delta_{2}^{2}\left(S_{i} \otimes I_{\mathcal{F}}\right)=\delta_{i j} \Delta_{2}^{2}, \quad i, j=1, \ldots, n
$$

we deduce that

$$
\begin{aligned}
& \left\langle C_{i} X_{\Theta}^{*}\left(\Delta_{2} f \oplus 0\right), \Delta_{\Theta}\left(\sum_{j=1}^{n}\left(S_{j} \otimes I_{\mathcal{E}}\right) f_{j}\right)\right\rangle \\
& \quad=\left\langle\left(\Delta_{2} f \oplus 0\right), X_{\Theta} \Delta_{\Theta} f_{i}\right\rangle=\left\langle\left(\Delta_{2} f \oplus 0\right), \Delta_{2} \Theta_{1} f_{i} \oplus \Delta_{1} f_{i}\right\rangle=\left\langle\Delta_{2}^{2} f, \Theta_{1} f_{i}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\langle X_{\Theta}^{*}\left(\Delta_{2}\left(S_{i} \otimes I_{\mathcal{F}}\right) f \oplus 0\right), \Delta_{\Theta}\left(\sum_{j=1}^{n}\left(S_{j} \otimes I_{\mathcal{E}}\right) f_{j}\right)\right\rangle \\
& \quad=\left\langle\Delta_{2}\left(S_{i} \otimes I_{\mathcal{F}}\right) f \oplus 0, \Delta_{2} \Theta_{1}\left(\sum_{j=1}^{n}\left(S_{j} \otimes I_{\mathcal{E}}\right) f_{j}\right) \oplus \Delta_{1}\left(\sum_{j=1}^{n}\left(S_{j} \otimes I_{\mathcal{E}}\right) f_{j}\right)\right\rangle \\
& \quad=\left\langle\Delta_{2}\left(S_{i} \otimes I_{\mathcal{F}}\right) f, \Delta_{2} \Theta_{1}\left(\sum_{j=1}^{n}\left(S_{j} \otimes I_{\mathcal{E}}\right) f_{j}\right)\right\rangle \\
& \quad=\sum_{j=1}^{n}\left(\left(S_{j}^{*} \otimes I_{\mathcal{F}}\right) \Delta_{2}^{2}\left(S_{i} \otimes I_{\mathcal{F}}\right) f, \Theta_{1} f_{j}\right\rangle \\
& \quad=\left\langle\Delta_{2}^{2} f, \Theta_{1} f_{i}\right\rangle .
\end{aligned}
$$

Hence, and taking into account that

$$
\overline{\Delta_{\Theta}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}=\overline{\Delta_{\Theta}\left[\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right) \ominus \mathcal{E}\right]}
$$

we deduce that

$$
\begin{equation*}
C_{i} X_{\Theta}^{*}\left(\Delta_{2} f \oplus 0\right)=X_{\Theta}^{*}\left(\Delta_{2}\left(S_{i} \otimes I_{\mathcal{F}}\right) f \oplus 0\right) \quad \text { for any } f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F} \tag{3.35}
\end{equation*}
$$

Similar calculations show that

$$
\begin{equation*}
C_{i} X_{\Theta}^{*}\left(0 \oplus \Delta_{1} \varphi\right)=X_{\Theta}^{*}\left(0 \oplus \Delta_{1}\left(S_{i} \otimes I_{\mathcal{E}}\right) \varphi\right) \tag{3.36}
\end{equation*}
$$

for any $\varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}$ and $i=1, \ldots, n$. Moreover, similar relations to (3.35) and (3.36) hold with $X_{\Theta}^{\prime}, \Delta_{1}^{\prime}$, and Δ_{2}^{\prime} instead of X_{Θ}, Δ_{1}, and Δ_{2}, respectively. Since

$$
\begin{equation*}
C_{i} X_{\Theta}^{* *}\left(0 \oplus \Delta_{1}^{\prime} \varphi\right)=X_{\Theta}^{* *}\left(0 \oplus \Delta_{1}^{\prime}\left(S_{i} \otimes I_{\mathcal{E}}\right) \varphi\right) \tag{3.37}
\end{equation*}
$$

for any $\varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}$ and $i=1, \ldots, n$, by taking appropriate limits, we deduce that

$$
C_{i} X_{\Theta}^{\prime *}\left(\{0\} \oplus \overline{\Delta_{1}^{\prime}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right) \subseteq X_{\Theta}^{\prime *}\left(\{0\} \oplus \overline{\Delta_{1}^{\prime}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right)
$$

Consequently, for each $g^{\prime} \in \overline{\Delta_{1}^{\prime}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ there exists $g^{\prime \prime} \in \overline{\Delta_{1}^{\prime}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ such that

$$
\begin{equation*}
C_{i} X_{\Theta}^{*}\left(0 \oplus g^{\prime}\right)=X_{\Theta}^{*}\left(0 \oplus g^{\prime \prime}\right) . \tag{3.38}
\end{equation*}
$$

Now, notice that using relations (3.35), (3.34), (3.37), and (3.38), we obtain

$$
\begin{aligned}
\Theta_{2}\left(S_{i} \otimes I_{\mathcal{F}}\right) f \oplus X_{\Theta}^{*}\left(\Delta_{2}\left(S_{i} \otimes I_{\mathcal{F}}\right) f \oplus 0\right) & =\left(S_{i} \otimes I_{\mathcal{E}_{*}} \oplus C_{i}\right)\left(\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus 0\right)\right) \\
& =\left(S_{i} \otimes I_{\mathcal{E}_{*}} \oplus C_{i}\right)\left(\Theta_{2}^{\prime} f^{\prime} \oplus X_{\Theta}^{* *}\left(\Delta_{2}^{\prime} f^{\prime} \oplus g^{\prime}\right)\right) \\
& =\Theta_{2}^{\prime}\left(S_{i} \otimes I_{\mathcal{F}^{\prime}}\right) f^{\prime} \oplus X_{\Theta}^{\prime *}\left(\Delta_{2}^{\prime}\left(S_{i} \otimes I_{\mathcal{F}^{\prime}}\right) f^{\prime} \oplus g^{\prime \prime}\right)
\end{aligned}
$$

for any $f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}$. Hence and using the definition of Q, we deduce that

$$
Q\left(S_{i} \otimes I_{\mathcal{F}}\right) f=\left(S_{i} \otimes I_{\mathcal{F}^{\prime}}\right) f^{\prime}=\left(S_{i} \otimes I_{\mathcal{F}^{\prime}}\right) Q f, \quad f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}
$$

which proves that Q is a multi-analytic operator.
Since $\mathcal{M} \subset \mathcal{M}^{\prime}$, we have

$$
\begin{equation*}
\bigcap_{k=0}^{\infty} \bigoplus_{|\alpha|=k}\left[\left(S_{\alpha} \otimes I_{\mathcal{E}_{*}}\right) \oplus C_{\alpha}\right] \mathcal{M} \subseteq \bigcap_{k=0}^{\infty} \bigoplus_{|\alpha|=k}\left[\left(S_{\alpha} \otimes I_{\mathcal{E}_{*}}\right) \oplus C_{\alpha}\right] \mathcal{M}^{\prime} \tag{3.39}
\end{equation*}
$$

Using Lemma 3.1, definition (3.32) of the unitary operator Ω, and relations (3.35), (3.36), one can prove that

$$
\left[\left(S_{i} \otimes I_{\mathcal{E}_{*}}\right) \oplus C_{i}\right] \Omega^{*}=\Omega^{*}\left[\left(S_{i} \otimes I_{\mathcal{F}}\right) \oplus E_{i}\right]
$$

Indeed, we have

$$
\begin{aligned}
& {\left[\left(S_{i} \otimes I_{\mathcal{E}_{*}}\right) \oplus C_{i}\right] \Omega^{*}\left(f \oplus \Delta_{1} \varphi\right)} \\
& \quad=\Theta_{2}\left(S_{i} \otimes I_{\mathcal{F}}\right) f \oplus C_{i} X_{\Theta}^{*}\left(\Delta_{2} f \oplus \Delta_{1} \varphi\right) \\
& \quad=\Theta_{2}\left(S_{i} \otimes I_{\mathcal{F}}\right) f \oplus X_{\Theta}^{*}\left(\Delta_{2}\left(S_{i} \otimes I_{\mathcal{F}}\right) f \oplus \Delta_{1}\left(S_{i} \otimes I_{\mathcal{E}}\right) \varphi\right) \\
& \quad=\Omega^{*}\left[\left(S_{i} \otimes I_{\mathcal{F}}\right) f \oplus \Delta_{1}\left(S_{i} \otimes I_{\mathcal{E}}\right) \varphi\right] \\
& \quad=\Omega^{*}\left[\left(S_{i} \otimes I_{\mathcal{F}}\right) \oplus E_{i}\right]\left(f \oplus \Delta_{1} \varphi\right)
\end{aligned}
$$

for any $f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}$ and $\varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}$.
Now, due to the fact that $\left[S_{1} \otimes I_{\mathcal{F}}, \ldots, S_{n} \otimes I_{\mathcal{F}}\right]$ is a multi-shift and $\left[E_{1}, \ldots, E_{n}\right]$ is a Cuntz row isometry, the noncommutative Wold decomposition implies

$$
\begin{aligned}
\bigcap_{k=0}^{\infty} & \bigoplus_{|\alpha|=k}\left[\left(S_{\alpha} \otimes I_{\mathcal{E}_{*}}\right) \oplus C_{\alpha}\right] \mathcal{M} \\
& =\Omega^{*}\left\{\bigcap_{k=0}^{\infty}\left[\bigoplus_{|\alpha|=k}\left(S_{\alpha} \otimes I_{\mathcal{F}}\right)\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)\right] \oplus \bigcap_{k=0}^{\infty}\left[\bigoplus_{|\alpha|=k} E_{\alpha} \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right]\right\} \\
& =\Omega^{*}\left(\{0\} \oplus \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right) \\
& =\left\{0 \oplus X_{\Theta}^{*}(0 \oplus g): g \in \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right\}
\end{aligned}
$$

A similar relation can be obtain for the set on the right-hand side of the inclusion (3.39). Hence and using relation (3.39), we obtain

$$
\left\{0 \oplus X_{\Theta}^{*}(0 \oplus g): g \in \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right\} \subseteq\left\{0 \oplus X_{\Theta}^{*}\left(0 \oplus g^{\prime}\right): g^{\prime} \in \overline{\Delta_{1}^{\prime}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}\right\}
$$

Consequently, for each $g \in \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ there exists $g^{\prime} \in \overline{\Delta_{1}^{\prime}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$ such that

$$
\begin{equation*}
X_{\Theta}^{*}(0 \oplus g)=X_{\Theta}^{\prime *}\left(0 \oplus g^{\prime}\right) \tag{3.40}
\end{equation*}
$$

Since X_{Θ} and X_{Θ}^{\prime} are unitary operators, we can define the isometry

$$
V: \overline{\Delta_{1}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)} \rightarrow \overline{\Delta_{1}^{\prime}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}
$$

by setting $V g:=g^{\prime}$. For each $\varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E}$, we have

$$
\begin{equation*}
\Theta \varphi \oplus \Delta_{\Theta} \varphi=\Theta_{2}^{\prime} \Theta_{1}^{\prime} \varphi \oplus X_{\Theta}^{\prime *}\left(\Delta_{2}^{\prime} \Theta_{1}^{\prime} \varphi \oplus \Delta_{1}^{\prime} \varphi\right) . \tag{3.41}
\end{equation*}
$$

On the other hand, using the operators Q, R, V and relation (3.34), we deduce that

$$
\begin{aligned}
\Theta \varphi \oplus \Delta_{\Theta} \varphi & =\Theta_{2} \Theta_{1} \varphi \oplus X_{\Theta}^{*}\left(\Delta_{2} \Theta_{1} \varphi \oplus \Delta_{1} \varphi\right) \\
& =\left[\Theta_{2} \Theta_{1} \varphi \oplus X_{\Theta}^{*}\left(\Delta_{2} \Theta_{1} \varphi \oplus 0\right)\right]+\left[0 \oplus X_{\Theta}^{*}\left(0 \oplus \Delta_{1} \varphi\right)\right] \\
& =\left[\Theta_{2}^{\prime} Q \Theta_{1} \varphi \oplus X_{\Theta}^{\prime *}\left(\Delta_{2}^{\prime} Q \Theta_{1} \varphi \oplus R \Theta_{1} \varphi\right)\right]+\left[0 \oplus X_{\Theta}^{\prime *}\left(0 \oplus V \Delta_{1} \varphi\right)\right] \\
& =\Theta_{2}^{\prime} Q \Theta_{1} \varphi \oplus X_{\Theta}^{\prime *}\left(\Delta_{2}^{\prime} Q \Theta_{1} \varphi \oplus y\right),
\end{aligned}
$$

where $y:=R \Theta_{1} \varphi+V \Delta_{1} \varphi$ is in $\overline{\Delta_{1}^{\prime}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{E}\right)}$. Using the latter relation and (3.41), we obtain

$$
\Theta_{2}^{\prime} \Theta_{1}^{\prime} \varphi=\Theta_{2}^{\prime} Q \Theta_{1} \varphi \quad \text { and } \quad \Delta_{2}^{\prime} \Theta_{1}^{\prime} \varphi=\Delta_{2}^{\prime} Q \Theta_{1} \varphi
$$

Since the mapping $\Theta_{2}^{\prime} f^{\prime} \oplus \Delta_{2}^{\prime} f^{\prime} \mapsto f^{\prime}$ is isometric, we deduce that

$$
\begin{equation*}
\Theta_{1}^{\prime} \varphi=Q \Theta_{1} \varphi, \quad \varphi \in F^{2}\left(H_{n}\right) \otimes \mathcal{E} \tag{3.42}
\end{equation*}
$$

which proves the first part of the theorem.
Now assume that $\mathbf{H}_{1}=\mathbf{H}_{1}^{\prime}$. A closer look at the above proof reveals that $Q\left(F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right)=$ $F^{2}\left(H_{n}\right) \otimes \mathcal{F}^{\prime}$ and V is a unitary operator. Taking into account relations (3.40) and (3.34), we obtain

$$
\begin{aligned}
\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus 0\right) & =\left[\Theta_{2}^{\prime} f^{\prime} \oplus X_{\Theta}^{\prime *}\left(\Delta_{2}^{\prime} f^{\prime} \oplus 0\right)\right]+\left[0 \oplus X_{\Theta}^{\prime *}\left(0 \oplus g^{\prime}\right)\right] \\
& =\left[\Theta_{2}^{\prime} f^{\prime} \oplus X_{\Theta}^{*}\left(\Delta_{2}^{\prime} f^{\prime} \oplus 0\right)\right]+\left[0 \oplus X_{\Theta}^{*}\left(0 \oplus V^{*} g^{\prime}\right)\right] .
\end{aligned}
$$

Hence, we get

$$
\Theta_{2} f \oplus X_{\Theta}^{*}\left(\Delta_{2} f \oplus\left(-V^{*} g^{\prime}\right)\right)=\Theta_{2}^{\prime} f^{\prime} \oplus X_{\Theta}^{* *}\left(\Delta_{2}^{\prime} f^{\prime} \oplus 0\right)
$$

Taking the norms, we have

$$
\|f\|^{2}+\left\|g^{\prime}\right\|^{2}=\left\|f^{\prime}\right\|^{2}
$$

Combining this with $\|f\|^{2}=\left\|f^{\prime}\right\|^{2}+\left\|g^{\prime}\right\|^{2}$, we obtain $\|f\|=\left\|f^{\prime}\right\|$, which shows that Q is a unitary multi-analytic operator. Due to [17], this implies $Q=I \otimes \Psi_{0}$, for some unitary operator $\Psi_{0} \in B\left(\mathcal{F}, \mathcal{F}^{\prime}\right)$. Using relation (3.42), we complete the proof.

4. Triangulations for row contractions and joint invariant subspaces

In this section, we prove the existence of a unique triangulation of type

$$
\left(\begin{array}{cc}
C .0 & 0 \tag{4.1}\\
* & C \cdot 1
\end{array}\right)
$$

for any row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$, and prove the existence of joint invariant subspaces for certain classes of row contractions.

We need a few definitions. A row contraction $T:=\left[T_{1}, \ldots, T_{n}\right], T_{i} \in B(\mathcal{H})$, is of class $C_{\cdot 1}$ if

$$
\lim _{k \rightarrow \infty} \sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2} \neq 0 \quad \text { for any } h \in \mathcal{H}, h \neq 0
$$

We say that a row contraction $T:=\left[T_{1}, \ldots, T_{n}\right], T_{i} \in B(\mathcal{H})$, has a triangulation of type (4.1) if there is an orthogonal decomposition $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}$ with respect to which

$$
T_{i}=\left(\begin{array}{cc}
A_{i} & 0 \\
* & B_{i}
\end{array}\right), \quad i=1, \ldots, n,
$$

and the entries have the following properties:
(i) $T_{i}^{*} \mathcal{H}_{0} \subset \mathcal{H}_{0}$ for any $i=1, \ldots, n$;
(ii) $A:=\left[A_{1}, \ldots, A_{n}\right]$ is of class $C .0$;
(iii) $B:=\left[B_{1}, \ldots, B_{n}\right]$ is of class $C \cdot 1$.

The type of the entry denoted by $*$ is not specified.
Theorem 4.1. Every row contraction $T:=\left[T_{1}, \ldots, T_{n}\right], T_{i} \in B(\mathcal{H})$, has a triangulation of type

$$
\left(\begin{array}{cc}
C \cdot 0 & 0 \\
* & C \cdot 1
\end{array}\right)
$$

Moreover, this triangulation is uniquely determined.

Proof. First, notice that the subspace

$$
\mathcal{H}_{0}:=\left\{h \in \mathcal{H}: \lim _{k \rightarrow \infty} \sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2}=0\right\}
$$

is invariant under each operator $T_{i}^{*}, i=1, \ldots, n$. The decomposition $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}$, where $\mathcal{H}_{1}:=\mathcal{H} \ominus \mathcal{H}_{0}$, yields the triangulation

$$
T_{i}^{*}=\left(\begin{array}{cc}
A_{i}^{*} & * \\
0 & B_{i}^{*}
\end{array}\right), \quad i=1, \ldots, n,
$$

where $A_{i}^{*}:=\left.T_{i}^{*}\right|_{\mathcal{H}_{0}}$ and $B_{i}^{*}:=\left.P_{\mathcal{H}_{1}} T_{i}^{*}\right|_{\mathcal{H}_{1}}$ for each $i=1, \ldots, n$. Since

$$
\lim _{k \rightarrow \infty} \sum_{|\alpha|=k}\left\|A_{\alpha}^{*} h\right\|^{2}=\lim _{k \rightarrow \infty} \sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2}=0, \quad h \in \mathcal{H}_{0}
$$

the row contraction $A:=\left[A_{1}, \ldots, A_{n}\right]$ is of class $C .0$. Now, we need to show that

$$
\lim _{k \rightarrow \infty} \sum_{|\alpha|=k}\left\|B_{\alpha}^{*} h\right\|^{2} \neq 0 \quad \text { for all } h \in \mathcal{H}_{1}, h \neq 0
$$

Let $V:=\left[V_{1}, \ldots, V_{n}\right], V_{i} \in B(\mathcal{K})$, be the minimal isometric dilation of the row contraction $T:=$ $\left[T_{1}, \ldots, T_{n}\right]$ (see Section 2). For every $m=1, \ldots$, the isometries $V_{\alpha},|\alpha|=m$, have orthogonal ranges. Therefore, we have

$$
\begin{aligned}
\left\|\sum_{|\alpha|=m} V_{\alpha}\left(\sum_{|\beta|=k} V_{\beta} T_{\beta}^{*}\right) P_{\mathcal{H}_{0}} T_{\alpha}^{*} h\right\|^{2} & =\sum_{|\alpha|=m}\left\|\left(\sum_{|\beta|=k} V_{\beta} T_{\beta}^{*}\right) P_{\mathcal{H}_{0}} T_{\alpha}^{*} h\right\|^{2} \\
& =\sum_{|\alpha|=m} \sum_{|\beta|=k}\left\|T_{\beta}^{*} P_{\mathcal{H}_{0}} T_{\alpha}^{*} h\right\|^{2}
\end{aligned}
$$

for any $h \in \mathcal{H}$. Since $P_{\mathcal{H}_{0}} T_{\alpha}^{*} h \in \mathcal{H}_{0}$, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sum_{|\beta|=k}\left\|T_{\beta}^{*} P_{\mathcal{H}_{0}} T_{\alpha}^{*} h\right\|^{2}=0 . \tag{4.2}
\end{equation*}
$$

According to [11], we have

$$
\begin{equation*}
P_{\mathcal{R}} h=\lim _{k \rightarrow \infty} \sum_{|\alpha|=k} V_{\alpha} T_{\alpha}^{*} h \quad \text { for any } h \in \mathcal{H} \tag{4.3}
\end{equation*}
$$

where $P_{\mathcal{R}}$ is the orthogonal projection of the minimal isometric dilation space \mathcal{K} on the subspace \mathcal{R} in the Wold decomposition $\mathcal{K}=\mathcal{R} \oplus M_{V}\left(\mathcal{L}_{*}\right)$. Now, using relations (4.2) and (4.3), we obtain

$$
\begin{aligned}
P_{\mathcal{R}} h & =\lim _{k \rightarrow \infty} \sum_{|\alpha|=m} \sum_{|\beta|=k} V_{\alpha} V_{\beta} T_{\beta}^{*} T_{\alpha}^{*} h \\
& =\lim _{k \rightarrow \infty} \sum_{|\alpha|=m} V_{\alpha}\left(\sum_{|\beta|=k} V_{\beta} T_{\beta}^{*}\right) P_{\mathcal{H}_{0}} T_{\alpha}^{*} h+\lim _{k \rightarrow \infty} \sum_{|\alpha|=m} V_{\alpha}\left(\sum_{|\beta|=k} V_{\beta} T_{\beta}^{*}\right) P_{\mathcal{H}_{1}} T_{\alpha}^{*} h \\
& =\sum_{|\alpha|=m} V_{\alpha} P_{\mathcal{R}} P_{\mathcal{H}_{1}} T_{\alpha}^{*} h .
\end{aligned}
$$

Hence, we deduce that

$$
\begin{aligned}
\left\|P_{\mathcal{R}} h\right\|^{2} & =\left\|\sum_{|\alpha|=m} V_{\alpha} P_{\mathcal{R}} P_{\mathcal{H}_{1}} T_{\alpha}^{*} h\right\|^{2}=\sum_{|\alpha|=m}\left\|P_{\mathcal{R}} P_{\mathcal{H}_{1}} T_{\alpha}^{*} h\right\|^{2} \\
& \leqslant \sum_{|\alpha|=m}\left\|P_{\mathcal{H}_{1}} T_{\alpha}^{*} h\right\|^{2}=\sum_{|\alpha|=m}\left\|B_{\alpha}^{*} h\right\|^{2}
\end{aligned}
$$

for any $h \in \mathcal{H}$. Let $h \in \mathcal{H}_{1}, h \neq 0$, and assume that $\lim _{m \rightarrow \infty} \sum_{|\alpha|=m}\left\|B_{\alpha}^{*} h\right\|^{2}=0$. The above relation shows that $P_{\mathcal{R}} h=0$ and, due to (4.3), we deduce that $h \in \mathcal{H}_{0}$, which is a contradiction.

Now, we prove the uniqueness. Assume that there is another decomposition $\mathcal{H}=\mathcal{M}_{0} \oplus \mathcal{M}_{1}$ which yields the triangulation

$$
T_{i}=\left(\begin{array}{cc}
C_{i} & 0 \\
* & D_{i}
\end{array}\right), \quad i=1, \ldots, n,
$$

of type $\left(\begin{array}{cc}C_{0} & 0 \\ * & C_{\cdot 1}\end{array}\right)$, where $C_{i}^{*}:=\left.T_{i}^{*}\right|_{\mathcal{M}_{0}}$ and $D_{i}^{*}:=\left.P_{\mathcal{M}_{1}} T_{i}^{*}\right|_{\mathcal{M}_{1}}$ for each $i=1, \ldots, n$. To prove uniqueness, it is enough to show that $\mathcal{H}_{0}=\mathcal{M}_{0}$. Notice that if $h \in \mathcal{M}_{0}$, then, due to the fact that the row contraction $\left[C_{1}, \ldots, C_{n}\right]$ is of class $C .0$, we have

$$
\lim _{m \rightarrow \infty} \sum_{|\alpha|=m}\left\|T_{\alpha}^{*} h\right\|^{2}=\lim _{m \rightarrow \infty} \sum_{|\alpha|=m}\left\|C_{\alpha}^{*} h\right\|^{2}=0 .
$$

Hence, $h \in \mathcal{H}_{0}$, which proves that $\mathcal{M}_{0} \subseteq \mathcal{H}_{0}$. Assume now that $h \in \mathcal{H}_{0} \ominus \mathcal{M}_{0}$. Since $h \in \mathcal{M}_{1}$, we have

$$
\lim _{m \rightarrow \infty} \sum_{|\alpha|=m}\left\|D_{\alpha}^{*} h\right\|^{2}=\lim _{m \rightarrow \infty} \sum_{|\alpha|=m}\left\|P_{\mathcal{M}_{1}} T_{\alpha}^{*} h\right\|^{2} \leqslant \lim _{m \rightarrow \infty} \sum_{|\alpha|=m}\left\|T_{\alpha}^{*} h\right\|^{2}=0
$$

Consequently, since the row contraction $\left[D_{1}, \ldots, D_{n}\right]$ is of class C_{\cdot}, we must have $h=0$. Hence, we deduce that $\mathcal{H}_{0} \ominus \mathcal{M}_{0}=\{0\}$, which shows that $\mathcal{M}_{0}=\mathcal{H}_{0}$. This completes the proof.

Corollary 4.2. If $T:=\left[T_{1}, \ldots, T_{n}\right]$ is a row contraction such $T \notin C .0$ and $T \notin C .1$, then there is a non-trivial joint invariant subspace under T_{1}, \ldots, T_{n}.

According to Section 2, any row contraction admits a triangulation of type

$$
\left(\begin{array}{cc}
C_{c} & 0 \\
* & C_{c n c}
\end{array}\right)
$$

where C_{c} (respectively $C_{c n c}$) denotes the class of coisometric (respectively c.n.c.) row contractions. Notice that $C_{c} \subset C_{.1}$. Combining this result with the triangulation of Theorem 4.1, we obtain another triangulation for row contractions, that is,

$$
\left(\begin{array}{ccc}
C \cdot 0 & 0 & 0 \\
* & C_{c} & 0 \\
* & * & C_{c n c} \cap C \cdot 1
\end{array}\right)
$$

Corollary 4.3. If $T:=\left[T_{1}, \ldots, T_{n}\right], T_{i} \in B(\mathcal{H})$, is a row contraction such

$$
T_{1} T_{1}^{*}+\cdots+T_{n} T_{n}^{*} \neq I
$$

and there is a non-zero vector $h \in \mathcal{H}$ such that $\sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2}=\|h\|^{2}$ for any $k=1,2, \ldots$, then there is a non-trivial invariant subspace under the operators T_{1}, \ldots, T_{n}.

We recall from [21] that if

$$
T_{1} T_{1}^{*}+\cdots+T_{n} T_{n}^{*}=I
$$

then a subspace \mathcal{M} is invariant under T_{1}, \ldots, T_{n} if and only if

$$
T_{1} P_{\mathcal{M}} T_{1}^{*}+\cdots+T_{n} P_{\mathcal{M}} T_{n}^{*} \leqslant P_{\mathcal{M}}
$$

where $P_{\mathcal{M}}$ is the orthogonal projection on \mathcal{M}. We also mention that the case when $T \in C_{\cdot 0}$ is treated in the next corollary, and the case $T \in C_{.1}$ is considered in the next section (see Theorem 5.5).

The proof of the following result on regular factorizations of multi-analytic operators is straightforward from the definition, so we leave it to the reader.

Lemma 4.4. Let $\Theta: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ be a contractive multi-analytic operator and assume that it has the factorization

$$
\Theta=\Theta_{2} \Theta_{1}
$$

where $\Theta_{1}: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{F}$ and $\Theta_{2}: F^{2}\left(H_{n}\right) \otimes \mathcal{F} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ are contractive multi-analytic operators.
(i) If Θ_{2} is inner, then the factorization $\Theta=\Theta_{2} \Theta_{1}$ is regular.
(ii) If Θ is inner, then the factorization $\Theta=\Theta_{2} \Theta_{1}$ is regular if and only if Θ_{1} and Θ_{2} are inner multi-analytic operators.
(iii) If rank $\Delta_{\Theta}<\infty$, then

$$
\operatorname{rank} \Delta_{\Theta}=\operatorname{rank} \Delta_{\Theta_{2}}+\operatorname{rank} \Delta_{\Theta_{1}}
$$

if and only if the factorization $\Theta=\Theta_{2} \Theta_{1}$ is regular.
Now we consider the case when T is a pure row contraction.

Corollary 4.5. If $T:=\left[T_{1}, \ldots, T_{n}\right]$ is a row contraction of class $C .0$, then the non-trivial joint invariant subspaces under T_{1}, \ldots, T_{n} are parametrized by the non-trivial inner factorizations of the characteristic function Θ_{T} of T (i.e., $\Theta_{T}=\Theta_{2} \Theta_{1}$ with Θ_{1} and Θ_{2} inner multi-analytic operators). Moreover, the subspaces \mathbb{H}_{1} and \mathbb{H}_{2} in Theorem 3.2 become

$$
\begin{gathered}
\mathbb{H}_{1}=\left\{\Theta_{2} f: f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right\} \ominus\left\{\Theta_{T} f: f \in F^{2}\left(H_{n}\right) \otimes \mathcal{D}\right\} \quad \text { and } \\
\mathbb{H}_{2}=\left\{F^{2}\left(H_{n}\right) \otimes \mathcal{D}_{*}\right\} \ominus\left\{\Theta_{2} f: f \in F^{2}\left(H_{n}\right) \otimes \mathcal{F}\right\},
\end{gathered}
$$

where \mathcal{D} and \mathcal{D}_{*} are the defect spaces of T.
Proof. According to Theorem 2.1, the characteristic function Θ_{T} is an inner multi-analytic operator. By Lemma 4.4, any factorization $\Theta_{T}=\Theta_{2} \Theta_{1}$ is regular if and only if Θ_{1} and Θ_{2} are inner operators. Applying now Theorem 3.2, in our particular case, the result follows.

We should remark that Corollary 4.5 can also be proved directly using Theorem 2.1 and the Beurling type characterization (see [12]) of the joint invariant subspaces under the operators $S_{1} \otimes I_{\mathcal{G}}, \ldots, S_{n} \otimes I_{\mathcal{G}}$.

Now, we consider some examples that explicitly illustrate the correspondence between joint invariant subspaces and factorizations of the characteristic function.

Example 4.6. Let $\Theta:=\frac{1}{\sqrt{2}}\left(R_{1}^{2} R_{2}+R_{1} R_{2}^{2}\right)$, where R_{1}, R_{2} are the right creation operators on $F^{2}\left(H_{2}\right)$, the full Fock space with 2 generators. Since $R_{i}^{*} R_{j}=\delta_{i j} I, i, j=1,2$, we have $\Theta^{*} \Theta=I$. On the other hand, $P_{\mathbb{C}} \Theta 1=0$. Consequently, $\Theta \in B\left(F^{2}\left(H_{2}\right)\right)$ is a purely contractive inner multi-analytic operator. Define the Hilbert space

$$
\mathcal{H}:=F^{2}\left(H_{2}\right) \ominus\left[F^{2}\left(H_{2}\right) \otimes\left(e_{2} \otimes e_{1}^{2}+e_{2}^{2} \otimes e_{1}\right)\right]
$$

and the row contraction $T:=\left[T_{1}, T_{2}\right]$, where $T_{i}:=\left.P_{\mathcal{H}} S_{i}\right|_{\mathcal{H}}$ and S_{1}, S_{2} are the left creation operators on $F^{2}\left(\mathrm{H}_{2}\right)$. According to Theorem 2.2, the characteristic function of T coincides with the multi-analytic operator Θ.

We consider now some regular factorizations of Θ_{T} and write down the corresponding joint invariant subspaces for T_{1}, T_{2}. First, notice that

$$
\Theta_{T}=R_{1}\left(\frac{1}{\sqrt{2}} R_{1} R_{2}+\frac{1}{\sqrt{2}} R_{2}^{2}\right)
$$

and the multi-analytic operators $\Theta_{1}:=\frac{1}{\sqrt{2}} R_{1} R_{2}+\frac{1}{\sqrt{2}} R_{2}^{2}$ and $\Theta_{2}:=R_{1}$ are isometries on $F^{2}\left(H_{2}\right)$. Therefore, due to Lemma 4.4, the factorization $\Theta_{T}=\Theta_{2} \Theta_{1}$ is regular. Taking into account Corollary 4.5, we deduce that the joint invariant subspace under T_{1}, T_{2} corresponding to the above factorization is

$$
\mathcal{M}:=\left[F^{2}\left(H_{2}\right) \otimes e_{1}\right] \ominus\left[F^{2}\left(H_{2}\right) \otimes\left(e_{2} \otimes e_{1}^{2}+e_{2}^{2} \otimes e_{1}\right)\right] .
$$

Another regular factorization of Θ_{T} is

$$
\Theta_{T}=\left(\frac{1}{\sqrt{2}} R_{1}^{2}+\frac{1}{\sqrt{2}} R_{1} R_{2}\right) R_{2}
$$

As above, one can see that this is a regular factorization and the corresponding joint invariant subspace for T_{1}, T_{2} is

$$
\mathcal{N}:=\left[F^{2}\left(H_{2}\right) \otimes\left(e_{1}^{2}+e_{2} \otimes e_{1}\right)\right] \ominus\left[F^{2}\left(H_{2}\right) \otimes\left(e_{2} \otimes e_{1}^{2}+e_{2}^{2} \otimes e_{1}\right)\right]
$$

Let us consider a class of examples when the regular factorizations have factors which are not multi-analytic operators with scalar coefficients.

Example 4.7. Let $\Theta \in B\left(F^{2}\left(H_{n}\right)\right)$ be an inner multi-analytic operator with $\Theta(0)=0$. Due to the structure of multi-analytic operators, we have $\Theta=R_{1} \varphi_{1}+\cdots+R_{n} \varphi_{n}$ for some multi-analytic operators $\varphi_{1}, \ldots, \varphi_{n} \in B\left(F^{2}\left(H_{n}\right)\right)$. Since $R_{i}^{*} R_{j}=\delta_{i j} I, i, j=1, \ldots, n$, it is clear that Θ is inner if and only if

$$
\begin{equation*}
\varphi_{1}^{*} \varphi_{1}+\cdots+\varphi_{n}^{*} \varphi_{n}=I \tag{4.4}
\end{equation*}
$$

In this case, Θ is purely contractive and we have the factorization $\Theta=\Theta_{2} \Theta_{1}$, where

$$
\Theta_{1}:=\left[\begin{array}{c}
\varphi_{1} \\
\vdots \\
\varphi_{n}
\end{array}\right] \quad \text { and } \quad \Theta_{2}:=\left[R_{1}, \ldots, R_{n}\right]
$$

are inner multi-analytic operators. Clearly, the factorization $\Theta=\Theta_{2} \Theta_{1}$ is regular. Define the Hilbert space $\mathcal{H}:=F^{2}\left(H_{n}\right) \ominus \Theta F^{2}\left(H_{n}\right)$ and the row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$, where $T_{i}:=$ $\left.P_{\mathcal{H}} S_{i}\right|_{\mathcal{H}}$ and S_{1}, \ldots, S_{n} are the left creation operators on the full Fock space $F^{2}\left(H_{n}\right)$. According to Theorem 2.2, the characteristic function of T coincides with the multi-analytic operator Θ. The joint invariant subspace under T_{1}, \ldots, T_{n} corresponding to the regular factorization $\Theta_{T}=$ $\Theta_{2} \Theta_{1}$ is

$$
\mathcal{M}=\left[F^{2}\left(H_{n}\right) \otimes e_{1}+\cdots+F^{2}\left(H_{n}\right) \otimes e_{n}\right] \ominus \Theta F^{2}\left(H_{n}\right) .
$$

As examples of $\varphi_{1}, \ldots, \varphi_{n}$ satisfying relation (4.4), one can take $\varphi_{i}=\frac{1}{\sqrt{n}} V_{i}, i=1, \ldots, n$, where V_{i} is any isometry in R_{n}^{∞} (e.g., any product $R_{\alpha}, \alpha \in \mathbb{F}_{n}^{+}$).

We remark that if $\Psi \in B\left(F^{2}\left(H_{n}\right)\right)$ is an inner multi-analytic operator with Fourier representation $\Psi=\sum_{|\alpha| \geqslant m} a_{\alpha} R_{\alpha}, m=1,2, \ldots$, then it admits the regular factorization

$$
\Psi=\left[R_{\beta}:|\beta|=m\right]\left[\begin{array}{c}
\Phi_{(\beta)} \\
\vdots \\
|\beta|=m
\end{array}\right]
$$

where $\Phi_{(\beta)} \in B\left(F^{2}\left(H_{n}\right)\right)$ are multi-analytic operators such that $\sum_{|\beta|=m} \Phi_{(\beta)}^{*} \Phi_{(\beta)}=I$. Now, one can write Example 4.7 in this more general setting. For examples of inner multi-analytic operators we refer to $[1,8]$.

We recall [13] that any multi-analytic operator admits an essentially unique inner-outer factorization.

Theorem 4.8. Let $T:=\left[T_{1}, \ldots, T_{n}\right]$ be a completely non-coisometric row contraction. The inner-outer factorization of the characteristic function Θ_{T} induces (cf. Theorem 3.6) the triangulation of type

$$
\left(\begin{array}{cc}
C_{.0} & 0 \\
* & C_{\cdot 1}
\end{array}\right)
$$

for the row contraction T.
In particular, if the inner-outer factorization of the characteristic function is non-trivial, then there is a non-trivial joint invariant subspace under the operators T_{1}, \ldots, T_{n}.

Proof. Suppose that the multi-analytic operator $\Theta: F^{2}\left(H_{n}\right) \otimes \mathcal{E} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathcal{E}_{*}$ coincides with the characteristic function of the c.n.c. row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$. Let $\Theta=\Theta_{i} \Theta_{o}$ be the canonical inner-outer factorization of Θ. Since Θ_{i} is inner, Lemma 4.4 implies that the factorization is regular. Therefore, according to Theorem 3.2 (see also Theorem 3.3) and Theorem 3.6, the above factorization yields a triangulation

$$
\mathbf{T}_{i}=\left(\begin{array}{cc}
\mathbf{B}_{i} & 0 \\
* & \mathbf{A}_{i}
\end{array}\right), \quad i=1, \ldots, n
$$

of $\mathbf{T}:=\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right]$, the functional model of T, such that the characteristic functions of $\mathbf{B}:=$ $\left[\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}\right]$ and $\mathbf{A}:=\left[\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right]$ coincide with the purely contractive parts of Θ_{i} and Θ_{o}, respectively. Due to Lemma 3.4, the purely contractive part of an outer or inner multi-analytic operator is also outer or inner, respectively. We recall from [12] that a c.n.c. row contraction is of class $C_{.0}$ (respectively $C_{.1}$) if and only if the corresponding characteristic function is inner (respectively outer) multi-analytic operator. Finally, using the last part of Theorem 3.6, we can complete the proof.

5. Characteristic functions and joint similarity to Cuntz row isometries

In this section, we obtain criteria for joint similarity of n-tuples of operators to Cuntz row isometries. In particular, we prove that a completely non-coisometric row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$ is jointly similar to a Cuntz row isometry if and only if the characteristic function of T is an invertible multi-analytic operator. This is a multivariable version of a result of Sz.-Nagy and Foiaş [28], concerning the similarity to unitary operators.

Extending some results obtained by Sz.-Nagy [25], Sz.-Nagy, Foiaş [29], and the author [10, 21], we provide necessary and sufficient conditions for a power bounded n-tuple of operators on a Hilbert space to be jointly similar to a Cuntz row isometry.

We need the following well-known result (see, e.g., [29]).
Lemma 5.1. Let $\mathcal{M}, \mathcal{N}, \mathcal{X}$ and \mathcal{Y} be subspaces of a Hilbert space \mathcal{H} such that

$$
\mathcal{H}=\mathcal{M} \oplus \mathcal{N}=\mathcal{X} \oplus \mathcal{Y}
$$

If

$$
P_{\mathcal{M}} \mathcal{X}=\mathcal{M} \quad \text { and } \quad\left\|P_{\mathcal{M}} x\right\| \geqslant c\|x\|, \quad x \in \mathcal{X}
$$

for some constant $c>0$, then

$$
P_{\mathcal{N}} \mathcal{Y}=\mathcal{N} \quad \text { and } \quad\left\|P_{\mathcal{N}} y\right\| \geqslant c\|y\|, \quad y \in \mathcal{Y} .
$$

We recall a few facts concerning the geometric structure of the minimal isometric dilation of a row contraction. Let $T:=\left[T_{1}, \ldots, T_{n}\right], T_{i} \in B(\mathcal{H})$, be a row contraction and let $V:=\left[V_{1}, \ldots, V_{n}\right]$ be its minimal isometric dilation on a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$. In [11], we proved that $\mathcal{K}=\mathcal{R} \oplus M_{V}\left(\mathcal{L}_{*}\right)$ and

$$
\begin{equation*}
P_{\mathcal{R}} h=\lim _{k \rightarrow \infty} \sum_{|\alpha|=k} V_{\alpha} T_{\alpha}^{*} h, \quad h \in \mathcal{H}, \tag{5.1}
\end{equation*}
$$

where $P_{\mathcal{R}}$ is the orthogonal projection of \mathcal{K} onto \mathcal{R}. Moreover, if T is a one-to-one row contraction, then

$$
\begin{equation*}
\overline{P_{\mathcal{R}} \mathcal{H}}=\mathcal{R} . \tag{5.2}
\end{equation*}
$$

The next result provides necessary and sufficient conditions for a c.n.c. row contraction to be jointly similar to a Cuntz row isometry, in terms of the corresponding characteristic function.

Theorem 5.2. Let $T:=\left[T_{1}, \ldots, T_{n}\right], T_{i} \in B(\mathcal{H})$, be a completely non-coisometric row contraction. Then T is jointly similar to a Cuntz row isometry $W:=\left[W_{1}, \ldots, W_{n}\right], W_{i} \in B(\mathcal{W})$, i.e.,
(i) $W_{1} W_{1}^{*}+\cdots+W_{n} W_{n}^{*}=I_{\mathcal{W}}$;
(ii) $S T_{i}=W_{i} S, i=1, \ldots, n$, for some invertible operator $S: \mathcal{H} \rightarrow \mathcal{W}$,
if and only if the characteristic function Θ_{T} is an invertible multi-analytic operator.
In this case,

$$
\left\|\Theta_{T}^{-1}\right\|=\min \left\{\|X\|\left\|X^{-1}\right\|:\left[X^{-1} T_{1} X, \ldots, X^{-1} T_{n} X\right] \text { is a Cuntz row isometry }\right\}
$$

Proof. Suppose that the row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$ is jointly similar to a Cuntz row isometry $W:=\left[W_{1}, \ldots, W_{n}\right], W_{i} \in B(\mathcal{W})$, i.e.,

$$
W_{1} W_{1}^{*}+\cdots+W_{n} W_{n}^{*}=I_{\mathcal{W}}
$$

and $T_{i}=S^{-1} W_{i} S, i=1, \ldots, n$, for some invertible operator $S: \mathcal{H} \rightarrow \mathcal{W}$. Since $S T_{\alpha}=W_{\alpha} S$ and $T_{\alpha}^{*} S^{*}=S^{*} W_{\alpha}^{*}$ for any $\alpha \in \mathbb{F}_{n}^{+}$, we have

$$
S\left(\sum_{|\alpha|=k} T_{\alpha} T_{\alpha}^{*}\right) S^{*}=\sum_{|\alpha|=k} W_{\alpha} S S^{*} W_{\alpha}^{*} \geqslant \frac{1}{\left\|S^{*-1} S^{-1}\right\|} \sum_{|\alpha|=k} W_{\alpha} W_{\alpha}^{*}=\frac{1}{\left\|S^{-1}\right\|^{2}} I
$$

for any $k=1,2, \ldots$ Therefore,

$$
\sum_{|\alpha|=k}\left\langle T_{\alpha} T_{\alpha}^{*} h, h\right\rangle \geqslant\left\|S^{*-1} h\right\|^{2} \frac{1}{\left\|S^{-1}\right\|^{2}} \geqslant \frac{1}{\left\|S^{*}\right\|^{2}\left\|S^{-1}\right\|^{2}}\|h\|^{2},
$$

which, due to relation (5.1), implies

$$
\begin{equation*}
\left\|P_{\mathcal{R}} h\right\| \geqslant \frac{1}{\|S\|\left\|S^{-1}\right\|}\|h\|, \quad h \in \mathcal{H} \tag{5.3}
\end{equation*}
$$

Notice that the operator $\left[T_{1}, \ldots, T_{n}\right]$ is one-to-one. Indeed, the relation

$$
S^{-1} W_{1} S h_{1}+\cdots+S^{-1} W_{n} S h_{n}=0, \quad h_{i} \in \mathcal{H}, i=1, \ldots, n
$$

implies

$$
W_{1} S h_{1}+\cdots+W_{n} S h_{n}=0 .
$$

Since W_{i} are isometries with orthogonal ranges, we have

$$
W_{i} S h_{i}=0, \quad i=1, \ldots, n,
$$

whence $h_{i}=0, i=1, \ldots, n$. Therefore $\left[T_{1}, \ldots, T_{n}\right]$ is one-to-one. According to (5.2), we have $\overline{P_{\mathcal{R}} \mathcal{H}}=\mathcal{R}$. Due to relation (5.3), the subspace $P_{\mathcal{R}} \mathcal{H}$ is closed. Therefore, $P_{\mathcal{R}} \mathcal{H}=\mathcal{R}$ and the operator

$$
X:=\left.P_{\mathcal{R}}\right|_{\mathcal{H}}: \mathcal{H} \rightarrow \mathcal{R}
$$

is invertible. According to (5.1), we have

$$
V_{i}^{*} P_{\mathcal{R}} h=\lim _{k \rightarrow \infty} \sum_{|\alpha|=k} V_{i}^{*} V_{\alpha} T_{\alpha}^{*} h=\lim _{k \rightarrow \infty} \sum_{|\alpha|=k-1} V_{\beta} T_{\beta}^{*} T_{i}^{*} h=P_{\mathcal{R}} T_{i}^{*} h
$$

for any $h \in \mathcal{H}$ and $i=1, \ldots, n$. Consequently, we have

$$
T_{i} X^{*}=X^{*} W_{i}, \quad i=1, \ldots, n,
$$

where $W_{i}:=\left.V_{i}\right|_{\mathcal{R}}, i=1, \ldots, n$. Due to the noncommutative Wold decomposition applied to the row isometry $\left[V_{1}, \ldots, V_{n}\right]$, the subspace \mathcal{R} is reducing under each isometry $V_{i}, i=1, \ldots$, and [W_{1}, \ldots, W_{n}] is a Cuntz row isometry.

Now, due to the geometric structure of the minimal isometric dilation of T, we have (see relation (2.2))

$$
\mathcal{K}=\mathcal{R} \oplus M_{V}\left(\mathcal{L}_{*}\right)=\mathcal{H} \oplus M_{V}(\mathcal{L})
$$

Since $P_{\mathcal{R}} \mathcal{H}=\mathcal{R}$, we can use relation (5.3) and Lemma 5.1 to deduce that

$$
P_{M_{V}\left(\mathcal{L}_{*}\right)} M_{V}(\mathcal{L})=M_{V}\left(\mathcal{L}_{*}\right) \quad \text { and } \quad\left\|P_{M_{V}\left(\mathcal{L}_{*}\right)} x\right\| \geqslant \frac{1}{\|S\|\left\|S^{-1}\right\|}\|x\|, \quad x \in M_{V}(\mathcal{L})
$$

Therefore, the operator

$$
Q:=\left.P_{M_{V}\left(\mathcal{L}_{*}\right)}\right|_{M_{V}(\mathcal{L})}: M_{V}(\mathcal{L}) \rightarrow M_{V}\left(\mathcal{L}_{*}\right)
$$

is an invertible contraction with $\left\|Q^{-1}\right\| \leqslant\|S\|\left\|S^{-1}\right\|$. Since Q is unitarily equivalent to the characteristic function Θ_{T} of T (see Section 2), we deduce that Θ_{T} is an invertible multi-analytic operator and $\left\|\Theta_{T}^{-1}\right\| \leqslant\|S\|\left\|S^{-1}\right\|$.

Conversely, assume that the characteristic function Θ_{T} (and hence Q) is an invertible contraction and $\left\|\Theta_{T}^{-1}\right\| \leqslant 1 / c$ for some constant $c>0$. Applying again Lemma 5.1, we deduce that

$$
P_{\mathcal{R}} \mathcal{H}=\mathcal{R} \quad \text { and } \quad\left\|P_{\mathcal{R}} h\right\| \geqslant c\|h\|, \quad h \in \mathcal{H} .
$$

This shows that the operator $X:=\left.P_{\mathcal{R}}\right|_{\mathcal{H}}: \mathcal{H} \rightarrow \mathcal{R}$ is invertible and $\left\|X^{-1}\right\| \leqslant 1 / c$. As in the first part of the proof, we have $X^{*}\left(\left.V_{i}\right|_{\mathcal{R}}\right)=T_{i} X^{*}$ for any $i=1, \ldots, n$. This proves the similarity to a Cuntz row isometry. Notice also that, since $\|X\| \leqslant 1$, we have

$$
\left\|X^{*-1}\right\|\left\|X^{*}\right\|=\left\|X^{-1}\right\|\|X\| \leqslant \frac{1}{c}
$$

To prove the last part of the theorem, let $c>0$ be such that $\left\|\Theta_{T}^{-1}\right\|=1 / c$. The converse of this theorem implies the existence of on invertible operator X such that $\left[X^{-1} T_{1} X, \ldots, X^{-1} T_{n} X\right]$ is a Cuntz row isometry and

$$
\|X\|\left\|X^{-1}\right\| \leqslant \frac{1}{c}=\left\|\Theta_{T}^{-1}\right\| .
$$

On the other hand, using the first part of the proof, we have

$$
\left\|\Theta_{T}^{-1}\right\| \leqslant\|X\|\left\|X^{-1}\right\| .
$$

Therefore, $\left\|\Theta_{T}^{-1}\right\|=\|X\|\left\|X^{-1}\right\|$ and the proof is complete.
Corollary 5.3. If $T:=\left[T_{1}, \ldots, T_{n}\right], T_{i} \in B(\mathcal{H})$, is a completely non-coisometric row contraction jointly similar to a Cuntz row isometry, then T is jointly similar to the Cuntz part in the Wold decomposition of the minimal isometric dilation of T. Moreover, in this case, T is similar to the model row contraction $C:=\left[C_{1}, \ldots, C_{n}\right]$, where for each $i=1, \ldots, n$,

$$
C_{i}: \overline{\Delta_{\Theta_{T}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{D}\right)} \rightarrow \overline{\Delta_{\Theta_{T}}\left(F^{2}\left(H_{n}\right) \otimes \mathcal{D}\right)}
$$

is defined by

$$
C_{i}\left(\Delta_{\Theta_{T}} f\right):=\Delta_{\Theta_{T}}\left(S_{i} \otimes I_{\mathcal{D}}\right) f, \quad f \in F^{2}\left(H_{n}\right) \otimes \mathcal{D}
$$

and $\Delta_{\Theta_{T}}:=\left(I-\Theta_{T}^{*} \Theta_{T}\right)^{1 / 2}$, where Θ_{T} is the characteristic function of T.
Proof. The first part of the theorem follows from the proof of Theorem 5.2. Now, using the model theory for c.n.c. row contractions (see Theorems 2.1 and 2.2), one can complete the proof.

Now we consider the case when $T:=\left[T_{1}, \ldots, T_{n}\right]$ is an arbitrary row contraction.

Theorem 5.4. Let $T:=\left[T_{1}, \ldots, T_{n}\right], T_{i} \in B(\mathcal{H})$, be a row contraction. Then T is jointly similar to a Cuntz row isometry $W:=\left[W_{1}, \ldots, W_{n}\right], W_{i} \in \mathcal{W}$, if and only if T is one-to-one and the operator

$$
\begin{equation*}
P:=\left(\text { SOT }-\lim _{k \rightarrow \infty} \sum_{|\alpha|=k} T_{\alpha} T_{\alpha}^{*}\right)^{1 / 2} \tag{5.4}
\end{equation*}
$$

is invertible.
Moreover, if this is the case, then the row contraction $T:=\left[T_{1}, \ldots, T_{n}\right]$ is jointly similar to the Cuntz part $R:=\left[R_{1}, \ldots, R_{n}\right]$ in the Wold decomposition of the minimal isometric dilation of T.

Proof. Assume T is a similar to W, i.e., there exists an invertible operator $S: \mathcal{H} \rightarrow \mathcal{W}$ such that $T_{i}=S^{-1} W_{i} S, i=1, \ldots, n$. As in the proof of Theorem 5.2, one can show that the operator $\left[T_{1}, \ldots, T_{n}\right]$ is one-to-one. According to (5.2), we have $\overline{P_{\mathcal{R}} \mathcal{H}}=\mathcal{R}$. On the other hand, due to relation (5.1), we deduce that

$$
\begin{equation*}
\left\|P_{\mathcal{R}} h\right\|^{2}=\lim _{k \rightarrow \infty} \sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2}=\|P h\|^{2}, \quad h \in \mathcal{H} \tag{5.5}
\end{equation*}
$$

where operator P is well defined by (5.4), due to the fact that $\left\{\sum_{|\alpha|=k} T_{\alpha} T_{\alpha}^{*}\right\}_{k=1}^{\infty}$ is a decreasing sequence of positive operators. Notice that, since $\left\{W_{\alpha}\right\}_{|\alpha|=k}$ are isometries with orthogonal ranges, we have

$$
\begin{aligned}
\sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2} & \geqslant\left\|S^{-1}\right\|^{-2} \sum_{|\alpha|=k}\left\|W_{\alpha}^{*} S^{*-1} h\right\|^{2}=\left\|S^{-1}\right\|^{-2}\left\|S^{*-1} h\right\|^{2} \\
& \geqslant\left(\left\|S^{-1}\right\|^{2}\|S\|^{2}\right)^{-1}\|h\|^{2}
\end{aligned}
$$

for any $h \in \mathcal{H}$. Therefore

$$
\left\|P_{\mathcal{R}} h\right\|^{2}=\|P h\|^{2} \geqslant\left(\left\|S^{-1}\right\|^{2}\|S\|^{2}\right)^{-1}\|h\|^{2}
$$

for any $h \in \mathcal{H}$. Hence, it follows that the operators P and $\left.P_{\mathcal{R}}\right|_{\mathcal{H}}$ are one-to-one and have closed ranges. Since $\overline{P_{\mathcal{R}} \mathcal{H}}=\mathcal{R}$, it is clear that the operator $X: \mathcal{H} \rightarrow \mathcal{R}$ is invertible.

According to relation (5.1), we have

$$
V_{i}^{*} P_{\mathcal{R}} h=\lim _{k \rightarrow \infty} \sum_{|\alpha|=k-1} V_{\beta} T_{\beta}^{*} T_{i}^{*} h=P_{\mathcal{R}} T_{i}^{*} h
$$

for any $h \in \mathcal{H}$ and $i=1, \ldots, n$. Consequently, we deduce that

$$
\begin{equation*}
X T_{i}^{*}=R_{i}^{*} X, \quad i=1, \ldots, n \tag{5.6}
\end{equation*}
$$

where $X:=\left.P_{\mathcal{R}}\right|_{\mathcal{H}}$ and $R_{i}:=\left.V_{i}\right|_{\mathcal{R}}, i=1, \ldots, n$. Therefore, $T:=\left[T_{1}, \ldots, T_{n}\right]$ is jointly similar to $R:=\left[R_{1}, \ldots, R_{n}\right]$.

Conversely, assume that the row contraction $\left[T_{1}, \ldots, T_{n}\right]$ is one-to-one and the operator P is invertible. Then relation (5.5) implies $\left.P_{\mathcal{R}}\right|_{\mathcal{H}}$ is one-to-one and has closed range. On the other hand, by (5.2), we have $\overline{P_{\mathcal{R}} \mathcal{H}}=\mathcal{R}$. Therefore, the operator $X:=P_{\mathcal{R}} \mid \mathcal{H}: \mathcal{H} \rightarrow \mathcal{R}$ is invertible and, due to relation (5.6), the row contraction $\left[T_{1}, \ldots, T_{n}\right]$ is jointly similar to the Cuntz row isometry $\left[\left.V_{1}\right|_{\mathcal{R}}, \ldots,\left.V_{n}\right|_{\mathcal{R}}\right]$. The proof is complete.

We recall [21] that an n-tuple $\left[T_{1}, \ldots, T_{n}\right]$, of operators $T_{i} \in B(\mathcal{H})$, is power bounded if there is a constant $M>0$ such that

$$
\sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2} \leqslant M^{2}\|h\|^{2}, \quad h \in \mathcal{H}
$$

for any $k=1,2, \ldots$.
Theorem 5.5. Let $\left[T_{1}, \ldots, T_{n}\right]$ be a one-to-one power bounded n-tuple of operators on a Hilbert space \mathcal{H} such that, for any non-zero element $h \in \mathcal{H}, \sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2}$ does not converge to 0 as $k \rightarrow \infty$. Then there exists a Cuntz row isometry $\left[W_{1}, \ldots, W_{n}\right], W_{i} \in B(\mathcal{H})$, such that

$$
T_{i} X=X W_{i}, \quad i=1, \ldots, n,
$$

for some one-to-one operator $X \in B(\mathcal{H})$ with range dense in \mathcal{H}.
Proof. For each $h \in \mathcal{H}, h \neq 0$, denote

$$
c(h):=\inf _{k=1,2, \ldots}\left(\sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2}\right)^{1 / 2}
$$

Since $\left[T_{1}, \ldots, T_{n}\right]$ is a power bounded n-tuple of operators, there is a constant $M>0$ such that

$$
\begin{equation*}
\sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2} \leqslant M^{2}\|h\|^{2}, \quad h \in \mathcal{H} \tag{5.7}
\end{equation*}
$$

for any $k=1,2, \ldots$ If $c(h)=0$ and $\epsilon>0$, then there is k_{0} such that

$$
\left(\sum_{|\alpha|=k_{0}}\left\|T_{\alpha}^{*} h\right\|^{2}\right)^{1 / 2} \leqslant \frac{\epsilon}{M}
$$

Hence and using (5.7), we deduce that

$$
\begin{aligned}
\sum_{|\alpha|=m+k_{0}}\left\|T_{\alpha}^{*} h\right\|^{2} & =\sum_{|\beta|=k_{0}}\left\langle T_{\beta}\left(\sum_{|\gamma|=m} T_{\gamma} T_{\gamma}^{*}\right) T_{\beta}^{*} h, h\right\rangle \\
& \leqslant M^{2} \sum_{|\beta|=k_{0}}\left\langle T_{\beta} T_{\beta}^{*} h, h\right\rangle \leqslant \epsilon^{2}
\end{aligned}
$$

for any $m \geqslant 0$. Consequently, $\lim _{k \rightarrow \infty} \sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2}=0$, which contradicts the hypothesis. Therefore, we must have $c(h) \neq 0$ for any $h \in \mathcal{H}, h \neq 0$.

Now, for each $h, h^{\prime} \in \mathcal{H}$, we define

$$
\left[h, h^{\prime}\right]:=\operatorname{LIM}_{k \rightarrow \infty} \sum_{|\alpha|=k}\left\langle T_{\alpha}^{*} h, T_{\alpha}^{*} h^{\prime}\right\rangle,
$$

where LIM is a Banach limit. Due to the properties of the Banach limit, $[\cdot, \cdot]$ is a bilinear form on \mathcal{H} and we deduce that

$$
[h, h]:=\underset{k \rightarrow \infty}{\operatorname{LIM}} \sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2} \geqslant c(h)^{2}>0 \quad \text { if } h \in \mathcal{H}, h \neq 0
$$

and $[h, h] \leqslant M^{2}\|h\|^{2}$. Moreover, we have

$$
[h, h]=\sum_{i=1}^{n}\left[T_{i}^{*} h, T_{i}^{*} h\right], \quad h \in \mathcal{H}
$$

Due to a well-known theorem on bounded Hermitian forms, there exists a self-adjoint operator $P \in B(\mathcal{H})$ such that

$$
\left[h, h^{\prime}\right]=\left\langle P h, h^{\prime}\right\rangle \quad \text { for any } h, h^{\prime} \in \mathcal{H}
$$

and, due to the above considerations, we have

$$
\begin{equation*}
0<\langle P h, h\rangle<M^{2}\|h\|^{2}, \quad h \in \mathcal{H}, h \neq 0 \tag{5.8}
\end{equation*}
$$

Now, we show that $P=\sum_{i=1}^{n} T_{i} P T_{i}^{*}$. Indeed, we have

$$
\begin{aligned}
\langle P h, h\rangle & =\operatorname{LIM}_{k \rightarrow \infty} \sum_{|\alpha|=k+1}\left\|T_{\alpha}^{*} h\right\|^{2}=\underset{k \rightarrow \infty}{\operatorname{LIM}} \sum_{i=1}^{n} \sum_{|\alpha|=k}\left\|T_{\alpha}^{*} T_{i}^{*} h\right\|^{2} \\
& =\sum_{i=1}^{n}\left[T_{i}^{*} h, T_{i}^{*} h\right]=\sum_{i=1}^{n}\left\langle P T_{i}^{*} h, T_{i}^{*} h\right\rangle \\
& =\sum_{i=1}^{n}\left\langle\sum_{i=1}^{n} T_{i} P T_{i}^{*} h, h\right\rangle
\end{aligned}
$$

for any $h \in \mathcal{H}$, which proves our assertion. Notice that relation (5.8) shows that the operator $X:=P^{1 / 2}$ is one-to-one and has range dense in \mathcal{H}. Since $\sum_{i=1}^{n}\left\|X T_{i}^{*} h\right\|^{2}=\|X h\|^{2}$ for any $h \in \mathcal{H}$, it is clear that

$$
\sum_{i=1}^{n}\left\|X T_{i}^{*} X^{-1} x\right\|^{2}=\|x\|^{2}
$$

for any x in the domain on X^{-1}. Hence and due to the fact that the domain on X^{-1} is dense in \mathcal{H}, the operators $V_{i}^{*}:=X T_{i}^{*} X^{-1}, i=1, \ldots, n$, can be extended by continuity on \mathcal{H}. Using the same
notation for the corresponding extensions, we have

$$
\sum_{i=1}^{n}\left\|V_{i}^{*} h\right\|^{2}=\|h\|^{2}, \quad h \in \mathcal{H}
$$

and $V_{i}^{*} X=X T_{i}^{*}, i=1, \ldots, n$. This shows that $\left[V_{1}, \ldots, V_{n}\right]$ is a co-isometry from $\mathcal{H}^{(n)}$ to \mathcal{H} such that

$$
T_{i} X=X V_{i}, \quad i=1, \ldots, n
$$

Assume now that $h_{i} \in \mathcal{H}$ and $\sum_{i=1}^{n} V_{i} h_{i}=0$. Then $\sum_{i=1}^{n} T_{i} X h_{i}=0$. Since $\left[T_{1}, \ldots, T_{n}\right]$ and X are one-to-one operators, we must have $h_{i}=0$ for each $i=1, \ldots, n$. Consequently, $\left[V_{1}, \ldots, V_{n}\right]$ is a one-to-one co-isometry, and therefore a unitary operator from $\mathcal{H}^{(n)}$ to \mathcal{H}. This implies that V_{1}, \ldots, V_{n} are isometries on \mathcal{H} with $V_{1} V_{1}^{*}+\cdots+V_{n} V_{n}^{*}=I_{\mathcal{H}}$. The proof is complete.

As a consequence of Theorem 5.5, we deduce the following criterion for joint similarity of a power bounded n-tuple of operators to a Cuntz row isometry.

Corollary 5.6. Let $\left[T_{1}, \ldots, T_{n}\right]$ be a one-to-one power bounded n-tuple of operators on a Hilbert space \mathcal{H}. Then $\left[T_{1}, \ldots, T_{n}\right]$ is jointly similar to a Cuntz row isometry if and only if there exists a constant $c>0$ such that

$$
\begin{equation*}
\sum_{|\alpha|=k}\left\|T_{\alpha}^{*} h\right\|^{2} \geqslant c\|h\|^{2}, \quad h \in \mathcal{H} \tag{5.9}
\end{equation*}
$$

for any $k=1,2, \ldots$.

Proof. The direct implication can be extracted from the proof of Theorem 5.2. Conversely, if condition (5.9) holds, then, using the proof of Theorem 5.5, we have

$$
c(h) \geqslant \sqrt{c}\|h\|, \quad h \in \mathcal{H}, h \neq 0
$$

Moreover, the positive operator $P \in B(\mathcal{H})$ has the properties

$$
T_{i} P^{1 / 2}=P^{1 / 2} V_{i}, \quad i=1, \ldots, n,
$$

where $\left[V_{1}, \ldots, V_{n}\right]$ is a Cuntz isometry, and

$$
\langle P h, h\rangle \geqslant c\|h\|^{2}, \quad h \in \mathcal{H}, h \neq 0
$$

Since the latter inequality shows that $P^{1 / 2}$ is an invertible operator, the result follows.

References

[1] A. Arias, G. Popescu, Factorization and reflexivity on Fock spaces, Integral Equations Operator Theory 23 (1995) 268-286.
[2] W.B. Arveson, The curvature invariant of a Hilbert module over $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, J. Reine Angew. Math. 522 (2000) 173-236.
[3] J.A. Ball, V. Vinnikov, Lax-Phillips scattering and conservative linear systems: A Cuntz-algebra multidimensional setting, Mem. Amer. Math. Soc. 837 (2005).
[4] J.W. Bunce, Models for n-tuples of noncommuting operators, J. Funct. Anal. 57 (1984) 21-30.
[5] A.E. Frazho, Models for noncommuting operators, J. Funct. Anal. 48 (1982) 1-11.
[6] D. Kribs, The curvature invariant of a non-commuting N-tuple, Integral Equations Operator Theory 41 (2001) 426-454.
[7] P.S. Muhly, B. Solel, Canonical models for representations of Hardy algebras, preprint.
[8] V.I. Paulsen, G. Popescu, D. Singh, On Bohr's inequality, Proc. London Math. Soc. 85 (2002) 493-512.
[9] G. Pisier, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math., vol. 1618, Springer-Verlag, New York, 1995.
[10] G. Popescu, Models for infinite sequences of noncommuting operators, Acta Sci. Math. (Szeged) 53 (1989) 355368.
[11] G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc. 316 (1989) 523-536.
[12] G. Popescu, Characteristic functions for infinite sequences of noncommuting operators, J. Operator Theory 22 (1989) 51-71.
[13] G. Popescu, Multi-analytic operators and some factorization theorems, Indiana Univ. Math. J. 38 (1989) 693-710.
[14] G. Popescu, Von Neumann inequality for $\left(B(H)^{n}\right)_{1}$, Math. Scand. 68 (1991) 292-304.
[15] G. Popescu, On intertwining dilations for sequences of noncommuting operators, J. Math. Anal. Appl. 167 (1992) 382-402.
[16] G. Popescu, Functional calculus for noncommuting operators, Michigan Math. J. 42 (1995) 345-356.
[17] G. Popescu, Multi-analytic operators on Fock spaces, Math. Ann. 303 (1995) 31-46.
[18] G. Popescu, Poisson transforms on some C^{*}-algebras generated by isometries, J. Funct. Anal. 161 (1999) 27-61.
[19] G. Popescu, Curvature invariant for Hilbert modules over free semigroup algebras, Adv. Math. 158 (2001) 264-309.
[20] G. Popescu, Central intertwining lifting, suboptimization, and interpolation in several variables, J. Funct. Anal. 189 (2002) 132-154.
[21] G. Popescu, Similarity and ergodic theory of positive linear maps, J. Reine Angew. Math. 561 (2003) 87-129.
[22] G. Popescu, Entropy and multivariable interpolation, Mem. Amer. Math. Soc. 184 (868) (2006).
[23] G. Popescu, Operator theory on noncommutative varieties, Indiana Univ. Math. J. 56 (2) (2006) 389-442.
[24] G. Popescu, Operator theory on noncommutative varieties II, preprint.
[25] B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged) 11 (1947) 152-157.
[26] B. Sz.-Nagy, C. Foiaş, Une caractérisation de sous-espaces invariants pour une contraction de l'espace de Hilbert, C. R. Math. Acad. Sci. Paris 258 (1964) 3426-3429.
[27] B. Sz.-Nagy, C. Foiaş, Sur les contractions de l'espace de Hilbert. IX. Factorisations de la fonction caractéristique. Sous-espaces invariants, Acta Sci. Math. (Szeged) 25 (1964) 283-316.
[28] B. Sz.-Nagy, C. Foiaş, Sur les contractions de l'espace de Hilbert. X. Contractions similaires à des transformations unitaires, Acta Sci. Math. (Szeged) 26 (1965) 79-91.
[29] B. Sz.-Nagy, C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, New York, 1970.
[30] J. von Neumann, Eine Spectraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951) 258-281.

[^0]: E-mail addresses: gelu.popescu@utsa.edu, gpopescu@math.utsa.edu.
 ${ }^{1}$ Research supported in part by an NSF grant.

