JOURNAL OF NUMBER THEORY 6, 261-263 (1974)

A Note on the Hecke Hypothesis and the Determination of Imaginary Quadratic Fields with Class-Number 1

S. CHOWLA

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

AND

M. J. DELEON

Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33432 Communicated July 19, 1971

The authors propose a hypothesis whose proof would provide, in particular, a solution of the "class-number 1" problem, recently solved by Stark and Baker.

Let χ be a non-principal character (mod k), k > 1. The unproved Hecke hypothesis

$$L(1,\chi) = \sum_{1}^{\infty} \frac{\chi(n)}{n} > \frac{c}{\log k},$$

where c is an absolute constant, is considered in this note. In this paper we formulate a hypothesis H which implies the Hecke hypothesis for k a square-free number $\equiv 3 \pmod{4}$, and indeed with a computable constant c. Thus, in particular, H would imply a solution of the following problem. Find a computable constant c, such that

$$h(-p) > 1$$
 for $p > c_1(p : prime)$.

Here h(-k) denotes the class-number of the imaginary quadratic field $Q(\sqrt{-k})$. This problem was solved recently by Stark and Baker (1967). Now let k be a square-free number $\equiv 3 \pmod{4}$. Let $\chi(n) = (n/k)$, the Jacobi symbol. Let k^* be the product of a subset T of the set of prime numbers p with $\chi(p) = -1$ and p < k. Let $\chi^*(n) = \chi_T^*(n)$ be the real non-principal character with $\chi^*(n) = 1$ if $(n, k^*) = 1$ and $\chi^*(n) = 0$

Copyright () 1974 by Academic Press, Inc. All rights of reproduction in any form reserved. if $(n, k^*) > 1$. Then $X(n) = X_T(n) = \chi(n) \chi^*(n)$ is a non-primitive character (mod $k k^*$).

The hypothesis is as follows:

There exists a subset T such that

$$S(w) = \sum_{1}^{w} X_{T}(n) \ge 0$$
 for all $w \ge 1$.

To give an example of this hypothesis we take $k^* = 2$ when k = 19 i.e., T consists of the single prime 2, which is a quadratic nonresidue (mod k). We leave the details of the verification to the reader. We can also verify the hypothesis when k = 19 by taking $k^* = 6$ (i.e., T consists of the primes 2 and 3, both quadratic non-residues (mod k). A possible choice of T in the general case when k is a prime $\equiv 3 \pmod{4}$ is the set of primes $p_1, ..., p_{s-2}$ where p_m is the *m*-th prime and

$$\left(\frac{p_t}{k}\right) = -1$$
 for $1 \le t \le s-1$, but $\left(\frac{p_s}{k}\right) = 1$.

As is well known we have

$$h(-k) = \frac{\sqrt{k}}{\pi} \sum_{1}^{\infty} \frac{\chi(n)}{n} = \frac{\sqrt{k}}{\pi} L(1, \chi) \text{ where }$$

 $\chi(n) = (n/k)$ and k is a prime $\equiv 3(4)$. Now

$$\sum_{1}^{\infty} \frac{X(n)}{n} = \frac{S(1)}{1} + \frac{S(2) - S(1)}{2} + \frac{S(3) - S(2)}{3} + \cdots$$
$$= S(1)\left(1 - \frac{1}{2}\right) + S(2)\left(\frac{1}{2} - \frac{1}{3}\right) + S(3)\left(\frac{1}{3} - \frac{1}{4}\right) + \cdots$$
$$> \frac{1}{2}.$$

Since S(1) = 1 and $S(w) \ge 0$ for $w \ge 1$ by hypothesis *H*. In what follows we specialize *T* to be the set of prime numbers *p* between 0 and *k* with $\chi(p) = -1$. Then

$$L(1, \chi) \prod_{\substack{p < k \\ \chi(p) = -1}} \left(1 + \frac{1}{p} \right) = \sum_{1}^{\infty} \frac{X(n)}{n} > \frac{1}{2}.$$

Hence

$$L(1,\chi) > \frac{1}{2} \prod_{p < k} \left(1 + \frac{1}{p}\right)^{-1}.$$

262

The latter product is, as is well known, greater than $c_2/\log k(c_1, c_2, c_3, ...$ etc. denote computable constants). Thus we have

$$h(-k) = \frac{\sqrt{k}}{\pi} L(1,\chi) > \frac{c_3\sqrt{k}}{\log k}$$

Since c_3 is a computable constant it follows that, for instance, there are only finitely many square-free $k \equiv 3(4)$ for which h(-k) = 1, and these square-free are computable.

Postscript. Our hypothesis H also implies that for primes $k \equiv 3(4)$ we have

*
$$L(s) = \sum_{1}^{\infty} \frac{x(n)}{n^s} > 0$$
 for $0 < s < 1$.

It is well known that *, certainly true under the extended Riemann hypothesis, is still unproved.