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The authors propose a hypothesis whose proof would provide, in particular, 
a solution of the “class-number 1” problem, recently solved by Stark and 
Baker. 

Let ,y be a non-principal character (mod k), k > 1. The unproved 
Hecke hypothesis 

where c is an absolute constant, is considered in this note. In this paper we 
formulate a hypothesis H which implies the Hecke hypothesis for k a 
square-free number = 3 (mod 4), and indeed with a computable constant c. 
Thus, in particular, H would imply a solution of the following problem. 
Find a computable constant c, such that 

4-P) > 1 for p > c1 (p : prime). 

Here h(-k) denotes the class-number of the imaginary quadratic field 
Q(l/-k). This problem was solved recently by Stark and Baker (1967). 
Now let k be a square-free number = 3 (mod 4). Let x(n) = (n/k), the 
Jacobi symbol. Let k* be the product of a subset T of the set of prime 
numbersp with&) = - 1 andp < k. Let x*(n) = ,yT*(n) be the real non- 
principal character with x*(n) = 1 if (n, k*) = 1 and x*(n) = 0 
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if (n, k*) > 1. Then X(n) = X,(n) = x(n) x*(n) is a non-primitive 
character (mod k k*). 

The hypothesis is as follows: 
There exists a subset T such that 

S(w) = f X,(n) 2 0 forall w  3 1. 
1 

To give an example of this hypothesis we take k* = 2 when k = 19 i.e., T 
consists of the single prime 2, which is a quadratic nonresidue (mod k). We 
leave the details of the verification to the reader. We can also verify the 
hypothesis when k = 19 by taking k* = 6 (i.e., T consists of the primes 2 
and 3, both quadratic non-residues (mod k)). A possible choice of Tin the 
general case when k is a prime = 3 (mod 4) is the set of primes p1 ,..., psm2 
where pm is the m-th prime and 

( 1 Pt c-1 
k 

for 1 <t<s-- 1, but k 
( 1 
ps cl, 

As is well known we have 

= R L( 1, x) where 

x(n> = (n/k) and k is a prime = 3(4). Now 

$ xi”’ - “I” ; S(2) 2 S(l) + S(3) ; S(2) + .., 

= S(l)(l - ;, + S(2$ - 3 + S(3)& - 3 + ‘** 

>;. 

Since S(1) = 1 and S(w) > 0 for w  3 1 by hypothesis H. In what follows 
we specialize T to be the set of prime numbers p between 0 and k with 
x(p) = - 1. Then 

Hence 

~(1 , xl *g (1 + ;, = T F > ; . 

x(s)=-1 

al, xl > ; rJk (1 + i)“. 
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The latter product is, as is well known, greater than c,/log k(c, , c2 , c, ,... 
etc. denote computable constants). Thus we have 

h(-k) = 22 L(1 x) > zQ!E.. 
7r ) log k 

Since c3 is a computable constant it follows that, for instance, there are 
only finitely many square-free k = 3(4) for which h(-k) = 1, and these 
square-free are computable. 

Postscript. Our hypothesis H also implies that for primes k = 3(4) we 
have 

* L(s)=f$>O for O<s<l. 
1 

It is well known that *, certainly true under the extended Riemann 
hypothesis, is still unproved. 


