Let G be a group and $\langle x \rangle$ be the free group with generator x. Let $w(x)$ be an element of $G \ast \langle x \rangle$ (the free product of G and $\langle x \rangle$) such that the total degree of w with respect to x is positive. An extension of G is constructed in which for some n the equation $w^n(x) = 1$ has a solution.

Let G be a group and $w(x) = x^{i_1}g_1 x^{i_2}g_2 \cdots x^{i_k}g_k$ be an element of $G \ast \langle x \rangle$ (the free product of G and the cyclic group with one generator x). Let us assume that $\sum_i i_j = d \neq 0$. Then, changing x to x^{-1} if necessary, we can assume that d is bigger than zero. In what follows d denotes this positive cumulative degree of w with respect to x. Under this assumption we will construct an extension of the group G in which the equation $w^n(x) = 1$ has a solution for some n.

Let A be the set of all two-sided infinite sequences of elements of G. If $a \in A$ we denote by a_j the jth term in the sequence $a_j(a_j \in G)$. G can be represented as a group of permutations of A in many different ways. We are going to use the following representation: $g(a) = b$ if $b_j = a_j$ for $j \neq 0$, $b_0 = ga_0$ and identify G with the corresponding group of permutations.

Lemma 1. There exists a permutation p of A such that the action of the permutation $w(p) = p^{i_1}g_1 \cdots p^{i_k}g_k$ is $w(p)(a) = b$, where $b_j = a_{j - d}$. (We call such a permutation a shift.) Here d is the total degree as above.

Proof. Let p be a permutation such that $c = p(a)$ is given by $c_{j + 1} = p_j a_j$, where the p_j are elements of G which we will find. Then $w(p)(a) = b$ is given by

Supported by NSF Grant MCS-8201115.
where the g_j are elements of the group G which do not depend on p_j. So the condition that $w(p)$ is a shift corresponds to the equality of all coefficients of the a_i in (1) to 1. If we fix arbitrarily the elements $p_0, p_1, \ldots, p_{d-2}$ then from this system of equations we can uniquely determine all other p. (We will use (1) to denote this system of equations also.)

We are ready now to construct an extension of G in the case $d = 1$. In this case all p_j are determined by the system (1) and it follows that all p_j with sufficiently large $|j|$ (e.g., $|j| > m = \sum_s |t_s|$) are equal to 1. Indeed, all g_j with $|j| > m$ are equal to 1.

We consider now the set A_{4m} of all periodic sequences with period $4m$. Each of these sequences corresponds to the finite sequence of length $4m$ obtained by identifying g_j with $g_j(\mod 4m)$. We define a permutation p' of A_{4m} by $c = p'(a)$ if $c_{j+1} = p_ja_j$ with p_j determined from system (1), $0 \leq j < 4m$, where $c_{4m} = c_0$. Then $w(p')$ is a shift and $w^{4m}(p')$ is the identity permutation.

In the case $d > 1$ groups of permutations of certain sets of finite sequences also give us the extensions we are looking for. But here, generally, speaking, the terms g_j of these sequences should be taken from some extension of G: we can not choose $p_0, p_1, \ldots, p_{d-2}$ from G in such a way that the restriction of p on the corresponding set of finite sequences turns w into a shift.

Lemma 2. *The solution of system (1) can be given by:*

\[p_{sd+t} = p_t p_{t-1} \cdots p_0 h_{s,t} p_0^{-1} p_1^{-1} \cdots p_{t-1}^{-1} \]

Proof. Formula (2) is obviously correct if $s = 0$ and $h_{0,t} = 1$. To prove this relation for other values of s one can apply induction separately for $s > 0$, $s = -1$ and $s < -1$ and use the equality $p_{d-1} p_{d-2} \cdots p_0 = g_0^{-1}$ (see (1)).

Now for j with large absolute value (1) has the form

\[p_{j+d-1} p_{j+d-2} \cdots p_j = 1 \]

which shows that $p_{j+d} = p_j$.

Lemma 3. There exists an extension \(L \) of \(G \) such that it is possible to find \(p_0, p_1, \ldots, p_{d-2} \) from \(L \) which make \(p_{sd+t} = p_{rd+t-1} \) when \(s > 0, r < 0, \) and \(sd + t \) and \(rd + t - 1 \) are sufficiently large.

Proof. It follows from Lemma 2 that we have to solve the following system of equations:

\[
\begin{align*}
p_0 h_{s,0} &= p_{d-1} \cdots p_0 h_{r,d-1} p_0^{-1} \cdots p_{d-2} \\
p_1 p_0 h_{s,1} p_0^{-1} &= p_0 h_{r,0} \\
\vdots \\
p_i \cdots p_0 h_{r,i} p_0^{-1} \cdots p_{i-1}^{-1} &= p_{i-1} \cdots p_0 h_{r,i-1} p_0^{-1} \cdots p_{i-2}^{-1} \\
\vdots \\
p_{d-2} \cdots p_0 h_{s,d-2} p_0^{-1} \cdots p_{d-3}^{-1} &= p_{d-3} \cdots p_0 h_{r,d-3} p_0^{-1} \cdots p_{d-4}^{-1}.
\end{align*}
\]

If \(d = 2 \) we have only one equation \(p_0 h_{s,0} = p_1 p_0 h_{r,1} p_0^{-1} \) which gives \(p_0 h_{s,0} p_0 = p_1 p_0 h_{r,1} = g_0^{-1} h_{r,1}. \) If \(d > 2 \) then it is not difficult to show (starting with the second equation) that \(p_i \cdots p_0 = (p_{i-1} \cdots p_0) f_{i,1} p_0 f_{i,2} \) for \(i < d - 1. \) So \(p_{d-2} \cdots p_0 = p_0 f_0 p_0 f_1 \cdots p_0 f_{d-2} \) and then the first equation gives

\[
p_0 h_{s,0} p_0 f_0 p_0 f_1 \cdots p_0 f_{d-2} = g_0^{-1} h_{r,d-1}. \tag{4}
\]

A construction of an extension of \(G \) where Eq. (4) can be solved is given by F. Levin in [1]. (This construction also is based on permutations of the set of finite sequences using the "diagonal" representation of \(G \).) As soon as we choose \(p_0 \) from this extension all \(p_i \) with \(i < d - 1 \) are uniquely determined by (3) and for all other \(i \) by (2).

Theorem. The equation \(w^n(x) = 1 \) is solvable over group \(G \) for some \(n \leq 4 \sum_i |i_s| + \sum_s i_s. \)

Proof. As a first step we extend group \(G \) to the group \(L \) where Eq. (4) has a solution. Let \(m = \sum_i |i_s| \) and \(u \equiv -4m + 1 \pmod{d}, \) \(0 \leq u < d. \) Now let us consider the set of sequences \((a_{-2m-u+1}, a_{-2m-u+2}, \ldots, a_0, \ldots, a_{2m}) \) and represent the group \(G \) as a group of permutations on this set as was done above: \(g \) multiplies the 0th coordinate of \(a \) by \(g \) and fixes all others.

We consider now the permutation \(p' \) such that \(c = p'(a) \) is given by \(c_{j+1} = p_j a_j \) for \(-2m-u+1 \leq j < 2m \) and \(c_{-2m-u+1} = p_{2m} a_{2m}, \) where \(p_j \in L, p_0 \) satisfies Eq. (4), and all other \(p_j \) are determined by the systems (3) and (2). Then \(w(p') \) is a shift and \(w^{4m+u}(p') \) is the identity permutation. So equation \(w^n(x) = 1 \) has a solution over group \(G \) for \(n = 4m + u. \)

Remark. We were not concerned with searching for the best possible estimation of \(n \) in this setting. We were looking rather for further confirmation of the following conjecture:
The equation \(w(x) = 1 \) is solvable over any group \(G \) provided \(\sum_i i \neq 0 \).

Results of [1] and [2] make us believe that this conjecture is true even though it may not be provable by purely algebraic methods.

REFERENCES