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The necessary and sufficient matrix condition of Mitchell, Morris and Ylvisaker (1990) for a stationary 

Gaussian process to have a specilied process as kth derivative is investigated. The mean-square smoothing 
approach of stationary processes requires integration of covariance functions preserving stationarity. By 

providing a recursive representation of the involved reproducing kernel Hilbert spaces it is possible to 

analyse another criterion for k-fold integration of a process. This criterion only contains inequalities for 

the variances of the integrated processes. If the Hilbert space associated with the covariance function 

has a special form, which often occurs, then it can be shown that such processes can be integrated 

arbitrarily often. This is especially the case for the Omstein-Uhlenbeck process. The results are applied 

to the linear and the exponential kernel and yield explicit norms in the corresponding reproducing kernel 

Hilbert spaces for each integration. 

mean-square integration * stationary process * reproducing kernel Hilbert space * Omstein-Uhlenbeck 

process 

1. Introduction 

In the context of Bayesian prediction of computer experiments Currin, Mitchell, 

Morris and Ylvisaker (1991) raise the problem of smoothing stationary processes 

on an interval in the sense of smoothing the covariance function. 

Mitchell, Morris and Ylvisaker (1990) - for later references abbreviated MMY - 

found conditions under which there exists a stationary process whose kth derivative 

is a given stationary process, for example an Ornstein-Uhlenbeck process. The 

conditions given there deal with the reproducing kernel Hilbert space (RKHS) 

associated with the covariance function of the prespecified process, and require 

nonnegative definiteness of a certain matrix. 

In the present paper we propose an alternative approach in which the essential 

arguments of MMY can be used successfully. We repeatedly apply the procedure 

of once smoothing a given process. This leads to the problem of handling the RKHSs 

that are associated with the integrated processes emerging in each step. From a 
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characterization of reproducing kernels in terms of the inner product in Sobolev 

spaces Wb”) in de Boor and Lynch (1966) only integration of nonstationary kernels 

can be deduced. The work of Hajek (1962) cannot be used either, because the 

processes here do not satisfy the necessary conditions for stationary processes with 

rational spectral density. 

Theorem 1 in Section 2 states the theorem of MMY. Based on it Theorem 2 gives 

another necessary and sufficient condition for the existence of the smoothed process, 

that involves only inequalities, but different Hilbert spaces. The equivalence of these 

conditions is made clear in Theorem 3, where a formula for the determinant and 

the rank of the matrix involved in Theorem 1 is given. 

The difficulty with handling the various RKHSs is solved in Section 3 by the main 

result of the paper, Theorem 4. It derives a recursive relation between RKHSs that 

arise by integration of the kernel in such a way that stationarity is maintained. Also 

a nonrecursive result is stated as a remark to the theorem. As an application the 

problem of existence of a stationary process whose kth derivative is a specified 

process is solved. 

In Section 4 the results are applied to the linear and the exponential covariance 

kernels. The norms in the RKHS belonging to the covariance function of the one-fold 

integrated process are evaluated. In particular, we show that processes with exponen- 

tial covariance may be integrated to arbitrary order, a question which remained 

open in MMY. 

2. Conditions for the existence 

All our processes are defined on the interval [0, T] for T > 0 and have zero mean. 

All integrals with processes as integrands are defined to be the mean-square limit 

of their approximating Riemann sums. A derivative of a process is also understood 

in the mean-square sense. Further we deal with Gaussian processes. (It would suffice 

to have second-order stationary processes, with some obvious modifications.) 

In this section we first state the result of MMY, which gives a condition for the 

existence of a stationary process {X,, t E [0, T]}, with a given process { Y,, t E [0, T]} 

as kth derivative, and use it to derive another condition for the existence. 

Let {Y,, r E [0, T]} be a stationary Gaussian process on a probability space 

(0, 2, P) with continuous covariance function 

Cov(Y,, Y5)=E(Y; Y,)=p(lt-s\) VS,?E[O, T]. 

The goal is to define recursive processes {Xjkm”, t E [O, T]} by 

with Xc“:= Y and Gaussian random variables Xi’-“, i = 1,. . . , k on (0,x, P), in 

such a way that the processes X’“-” for i = 1, . . , k are stationary. 
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We define p0 = p and with k positive constants u:, . . . , u: , 
, u 

p,(t):= a;- 
I[ 

p,p,(u)dvdu, i=l,..., k. (2) 
0 0 

The process X’kpi’ - if it exists - will have covariance function pi and variance af. 

Hence the process X := X(O), constructed by k-fold integration of Y, has covariance 

function pk and variance &. The function pL and its 2k - 2 derivatives are used to 

define the k x k matrix M, according to 

M,_ = (_t)‘-‘p(i+i~” 
1, h (0), 14 i, j< k. 

The matrix M is symmetric and has, up to the sign +l, only k + 1 different entries: 
Z 

C’,..., u: and 0, because of 

)p:i+.i-2)(0)1 = IPk-(i+j~2)/2(0)/ = &Ci+j-21/2 

{ 

for i+j even, 

IPLC~+j-l~/*(")l=o for i+j odd. 

Under the assumption that the functions pLk+‘-“, i = 1, . . . , k -depending on the 

constants a:, . . . , cT:--lie in HK,, the RKHS associated with the covariance kernel 

K (t, s) = p(lt - sl), the k x k matrix Q is defined by inner products in HK,,: 

Qij = ((-l)‘P’p:Lt’m”, (-l)i-‘p~h+im”)P, 1 s i, j< k. 

The theorem of MMY gives a necessary and sufficient condition for the existence 

of the process X, depending on the covariance function p and the variances vf of 

the processes XCkm” through the matrices M and Q. 

Theorem 1 (MMY). 77rere exists a stationary Gaussian process {X,, t E [0, T]} with 

covariance function pk and kth derivative { Y,, t E [0, T]} if and only if 

(i) pik+‘-“~ HK,), i = 1, . . . , k, 

(ii) M - Q is nonnegative de$nite. q 

We remark that the theorem of MMY holds without assuming nonsingularity of 

the finite-dimensional distributions of all processes, as do MMY. 

To see this consider the matrices M and Q which are covariance matrices of the 

random vectors 

(X0, xb”, . . . ) xb”-1’) and (T(pi”‘), Yr((-l)pi’+” ), . . ) Yq-l)“m’p:2h-“)), 

respectively, where ‘Jf is the isometry between HK,, and L2( Y,, t E [0, T]). We have 

(see Parzen, 1961, Theorem 4E) 

p((-l)‘-‘p:“+‘-“) = E[X:,‘-“1 Y,, t e [0, T]], i = 1,. . . , k. 

The nonnegative definiteness of M - Q then follows from 

Var(X~‘)~Var(E[X:‘~“(Y,,t~[O,T]]), i=l,...,k, 

by considering linear combinations of the random variables Xg’. 

We now use Theorem 1 repeatedly for a single smoothing, that is for k = 1, 

in order to obtain equivalent conditions which avoid the matrix condition of 

Theorem 1. 
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Theorem 2. There exists a stationary Gaussian process {X,, t E [0, T]} with covariance 

function pk and kth derivative { Y,, t E [0, T]} if and only if 

(9’ P: E HK,,-, , 

(ii)’ o:z IIP:ll;,_,, 

i=l,...,k, 

where (I * llpiml is the norm in the RKHS HK,_, for the kernel Ki_,(t, S) = pi_l(lt-sI). 

Proof. Owing to Theorem 1 with k = 1 the necessary and sufficient conditions for 

once smoothing a given process Y with covariance function p are 

P;E HK, and a:-I[~;ll~>O, 

where p, is the covariance function and V: the variance of X with X’= Y. With 

XCk’:= Y we apply this to XC”-” instead of X and (XCkP”)‘= XCktit’) instead of 

Y,forall i=l,..., k. This yields conditions (i)’ and (ii)‘. 0 

Remark. The crucial condition for the existence is (i)‘, which is in general stronger 

than (i) of Theorem 1. But we will see in the next section that by strengthening 

condition (ii)’ we can weaken (i)’ to (i). 

The difference between the equivalent conditions (i) and (ii) of Theorem 1, and 

(i)’ and (ii)’ of Theorem 2 lies in the Hilbert spaces used. In (i) and (ii) we have 

only the RKHS HK,, with respect to the covariance function of the given process. 

However there is a matrix criterion for the constants a:, . . . , a: to verify. This is 

what makes statements about k-fold integration difficult, or even impossible (see 

MMY, p. 115). In contrast conditions (i)’ and (ii)’ involve k Hilbert spaces 

HK,,...,H& ,> and their norms. But the matrix has vanished and we are left 

with only k inequalities for the constants uf, . . , FE. Before we turn to the problem 

with the different Hilbert spaces in the next section we state a result which gives 

more insight in the equivalence of the conditions of Theorem 1 and of Theorem 2. 

For proving this result we have to describe the construction of the process 

{X,, t E [0, T]} contained in the proofs of sufficiency in Theorem 1 and Theorem 2. 

The important point for the construction of X consists in finding appropriate 

Gaussian random variables Xi:.“’ for i = 1,. . . , k in (1). 

We first consider the construction of the vector (X,, X:“, . . , Xb’-“) as described 

in MMY, that is under conditions (i) and (ii). Because of (i) there exist elements 

6, := q((-1)“-‘pF’-“) E L2( Y,, t E [0, T]), i = 1,. . , k. 

The vector 5 = (4, . . . , 5,) has covariance matrix Q. M - Q is nonnegative definite 

by assumption (ii). Hence there is a vector q = (nL,. . , 7,) of random variables 

q?I E L’(R), orthogonal to L2( Y,, t E [0, T]), with covariance matrix M - Q. We define 

X i,l‘-“:=ql+[,, i=l,,..., k. 
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Now we turn to the construction of X:“-” for i = 1, . . . , k in the proof of Theorem 

2. With (i)’ there exists for every i = 1, . . . , k a random variable 

‘$ := v;_,(p:) E L2(X:LPi+‘), t E [O, T]), 

where !P_, is the isometry between HK,,~, and LZ(Xjhm’+‘), t E [0, T]). We note that 

Var(5;) = Il~rll:,_, and $, = 5,. Using (ii)’ there is an element +ji in L’(R) orthogonal 

to LZ(X!k-i+‘), t E [0, T]) with Var( 75,) = af- l]p:]/~, , for all i = 1,. . . , k. The random 

vector 7j=(7jk,..., 77,) has covariance matrix 

diag(gf-lIPill& ,,...,&lbIIfJ. 
This follows from the orthogonality of fl, and &(Xj’-‘+‘), t E [0, T)], which contains 

all random variables *,,j < i by construction (1) in combination with the definition 

Xbk-“:=&+ij,, i=l,..., k. (3) 

Theorem 3. Assume any one of the equivalent conditions from Theorem 1 or from 

Theorem 2. Then we have for all dimensions k, 

det(M-Q)= I? Cd-Ilplll~,_,), i=, 

rank(M-Q) = k-#{i= 1,. . . , k: af= IIp:II$,_,}. 

Proof. The important observation is that the set (77,) . . . , ijk} of random variables 

in L’(R) is the set of orthogonalized random variables {n,, . . . , vk}. This can be 

seen as follows. 

The elements 5; = ?P((-l)k-ip:2’-‘) ) of L2(Y,, tE[O, T]) for i=l,..., k are the 

conditional expectations E[ X, ‘km” Y,, t E [0, TJ]. In the same way we get 1 

6 = ‘y,_,(p;) = E[X;‘-“IX\“-‘+“, t E [0, T]], i = 1,. . . , k. 

Using 

L2( Y,, t E [O, T], 71) . . . ) vi+,) = L>( Y,, t E [O, T], Xh“p”, . . . , Xr-‘+‘I) 

= L2(Xjkm’+‘), t E [0, T]) 

and the orthogonality of 7, and L2( Y,, t E [0, T]) for all i = 1,. . . , k, we get the 

following equivalence in L*(Q) for i = 2, . . . , k: 

77; = X;k-i) _ 5; 

zz Xb”-” - E[X;“-” 1 Y,, t E [0, T], X;“-‘1, . . . , Xbk-‘+‘)] 

= ~;+E[X~k-i)) Y,, tE[O, T]]-E[Xbkpi’j Y,, tE[O, T],Xbk-‘), . . . , Xbk--i+‘)] 

= 77, _ E[Xhk+‘_ jgXbk_” 1 Y,, t E [0, T]]) Y,, t E [0, T], Xrp”, . . . , Xbk-‘+‘)] 

= 7, - E[vi I Y,, t c CO, Tl, 71,. . . , vi-,1 

=77i-EC7)il77,,...,77,-,1. 
For i = 1 we have +, = n,. 
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From this representation we conclude +j = S’q. Here S is a lower-triangular matrix 

with full rank. The thereoem now follows from 

diag(a?- IIP;II:,_,, . . . , a:-~~~;~~~)=COV(~)=COV(S’~)=S’COV(~)S 

=S’(M-Q)S. 0 

Remark. Because of the recursive structure of M - Q the consecutive products 

for j c k are the leading principal minors of M - Q in reversed order. 

Theorem 3 studies the relation between the matrix M-Q and the elements 

(a:-- IIp;ll:,_,). But for the full understanding of Theorem 2 the problem with the 

Hilbert spaces HK,,, HK,, , . . . , HK,,_, rests to solve. This is done in the next section. 

3. A recursive relation between the Hilbert spaces 

In this section we will establish the connection between the RKHSs HK,,_, and 

HK,,. The result then can be used to find weaker sufficient conditions for the 

existence problem of the process X raised in Section 2. 

Let HK,,_, be given with inner product (. , .),,_ , associated to the covariance 

function pi_, of XC’-‘+‘), the (i - 1)-fold integrated process. In (2) a new covariance 

function p, is defined under the assumptions pi E HK,,l_, and uf 3 IIp~ll$,_, . 

Theorem 4. For i E N the function space HK,, and the corresponding inner product 

are recursively given by (with p. = p): 

(a) Ford> ll~ilI:,_,, 

HK,,, = U-E C’W, Tl:f’~ H&-J-, 

(f;8),,~=(f’,g’),,,~,+(~f-llP:ll$, ,)~‘(f(o)-(f’,P:),,~,)(g(O)-(g’,P:),,,~,). 

(b) Ford= ll~~ll~,~,, 

HK,,, = {f~ C’W, 7’1: f’~ H&m,, f(o) = (f’, P:>,,_,}, 

(f, s),, = (.I-‘, d/J_, . 

Proof. Let f be a given function in HK,,_,. Hence there is a random variable 

Vi_,(f) E LZ(X:kmit’), t E [0, T]) with E( qi_,(f) .X I”-i+‘)) =f( t) for all f E [0, T]. 

In the first part we verify: 

g(t) = c + 
I 

’ f(s) ds E HK,,, for ;yi;;; 
in case (a), 

0 7 , ,,_, , in case (b). 

This will be shown by finding the corresponding elements in L,(Xlkm”, t E [0, T]). 
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By the construction of XCk-” as in (1) we have 

L>(x;“-“, f E [O, T]) = Lz(Xjkm’+‘), t E [O, T], XbkP”) 

= LJxy+“, 1 E [O, 7-1, 77,). 

Now for each a E R we define a random variable Z, E L,(X5h-i’, t E [0, T]) by the 

orthogonal sum Z, := F,_,(f) + a. ii,, and every element in LZ(XlkWi), t E [0, T]) has 

this form. Using (3) we get 

I 
E(Z,.Xlk~‘))=E(Z,.X:k~“)+E z; 

( I 
X:“-‘+I’ ds 

0 > 

= E(1Vi~,(.~).~j’i,(p:))+a.Var(77i) 

=UP:),,, ,+4d-ll~:Il;,+,)+ ‘f(s) ds. 
J 0 

Hence in case (a) the function g(f) = c +ll, f(s) ds is an element of HK,,, for any 

CER, because it corresponds to 

z, E L,(xy’, IE [O, T]), a = 
C-UP:),, , 
d- llfJII”,,-, . 

In case (b) only the function g(t)=(f;pj),,~,+f:f(s) ds lies in HK,,, because we 

have now fi = 0 and any Z E L,(X:‘-“, t E [0, T]) = L2(Xj”-‘+“, t E [0, T]) has the 

form Pi-,(f) for some fE HK,,_, . 

The second part is to investigate the inner product in HK,. This will be done by 

evaluating the covariance of the corresponding random variables in L,(X:kP”, t E 

[O, T]). In case (a) for J; gE HK,,, the elements P,(f), P,(g) are given by the 

orthogonal sum 

(4) 

and analogue for g. The inner product off and g now is given by 

(J; g),, = E(T,(f). P;(g)) 

= E(F;-,(I’)’ *,:,(s’)) 

+(gf- IIPIll:,~,)-‘(f(O)-(f’, PI),,~,)(g(O)-(g’, PO,_,)*Var(%) 

= (f ‘9 g’),,+, +(u? - llP:ll:,~,)~‘w) -(f ‘2 d)p,_,MO) -k’, d),,_,). 

In case (b) the second parts in (4) vanish and therefore the inner product is simply 

given by the first part of the sum of case (a). 0 
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Remarks. (1) If M - Q has full rank, which is equivalent to of> ]]pi]l:,_, for all 

i=l,..., k as we saw in Theorem 3, we can also prove the following nonrecursive 

form of the inner product in HI&,, 

(J; g),, = (f’? gCk))p +f’(M - Q)Y’tZ 

Here the k-vector h” of a function h E HK,, consists of components 

Li := h-‘(O) -((-l))‘pi’, II(~)),>, i = 1,. . . , k. 

In case of singularity, the second part of the sum must be changed to the bilinear 

form in the preimages under (M - Q)S off and f induced by the diagonal matrix 

S’( M - Q)S. This can be proved as in Hajek (1962), where other RKHSs are given. 

(2) By use of the orthogonal decomposition (4) of q,(f) and q;(g), the inner 

product relation in case (a) is seen to be the well-known formula: 

+Var(%F’ Cov(~,(f), 77,) Cov(~i(s), 6). 

Thus conditioning on ijl, the random variable that represents the gap between 

LAX I”-‘+“, r E [0, T]) and L,(X(,‘-“I, t E [0, T]), leads to an expression for the inner 

product in HK,,< with the inner product in HK,,,_,. 

From Theorem 4 we deduce that condition (i)’ of Theorem 2 is in general stronger 

than (i) of Theorem 1. This is seen by noting that f~ HK,,, implies f(‘)~ HK, and 
pii)= (-l)k-‘p’,2km” for j = 1,. . , k. 

Bydefiningm=k-#{i=l,...,k:~~=I\plJl~,_~} we can formulate condition (ii)’ 

more exactly. The next corollary states that, if we have m = k, the strongest form 

of (ii)‘, then (i) implies (i)‘. 

Corollary 1. We have equivalence of 

((9 PI E HK,,_, , (ii)’ with m = k: uf> IIpiJ($,_,, i = 1,. . . , k) 

and 

I(i) ph (kt’P’)~ HK,, (ii)’ with m = k: uf> I\piII:,_,, i = 1,. . . , k}. 

Proof. We only have to prove the converse direction. So assume ~f+~-‘) E HK, for 

i=l,..., k. This implies pi E HK,,. The assumption m = k entails a:> llp;IIz, and 

Theorem 4 yields HK,, = {f: f ‘E HK,}. So p: E HK,, is equivalent with p, E HK,,, 

which is the assumption (i) with i = k - 1. Now we have oz > llp$jl z, (again from 

m = k) and we continue with Theorem 4 as above. The condition: (i)’ pj E HK,,_, , 

takes the form p)“= (-l)k-‘pyk-i’ E HK, for all j = 1,. . . , k. This is condition (i) 

with i=k-j+l. 0 
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Remark. We also see in the proof of Corollary 1 that, if already one a: equals its 

lower bound I]pill:,_, then condition (i)’ is stronger than (i). We can say that for 

m < k condition (i)’ contains a part of (ii), the nonnegative definiteness of M - Q. 

So the relations between (i)‘, (ii)’ and (i), (ii) are rather delicate. In the extreme 

case (m = 0) (i)’ includes knowledge about all nondiagonal elements of M - Q (they 

are zero), whereas only the diagonal elements are covered by (ii)’ (they are also zero). 

This corollary is important for the application of Theorem 2. We only have to 

fulfil condition (i) and (ii)’ in its strongest form (i.e., m = k), that is a combination 

of the weaker conditions in Theorem 1 and 2, to guarantee existence of the smoothed 

stationary process. 

Corollary 2. There exists a stationary Gaussian process X with covariance function 

pk and kth derivative equal to Y, if we have 

6) P y+i-‘)~ HK,, and (ii)’ with m = k: af> IIpillt,_,, i= I,. . . , k. 0 

Remark. With the Sobolev space W:” as RKHS HKp, as it is often the case, 

condition (i) is fulfilled, and as long as the constants are chosen big enough 

integration of the process is possible (see Corollary 3 in Section 4). 

4. Examples 

We consider the linear covariance on [0, I], 

p(t)=l-At, O<h<2, 

and the exponential covariance 

p(t) =& exp(--at), Ly > 0. 

Because the RKHS for both covariance functions is (see Hajek, 1962) 

W$” = {f: f absolutely continuous, f ‘E L’[O, T]}, 

all integrals of p of arbitrary order are elements of W:“. This leads to: 

Corollary 3. Ifin each integration step af> llp:ll:,_, is chosen, then the linear and the 

exponential covariance can be integrated arbitrarily often. 0 

Finally we use Theorem 4 to evaluate the norms arising from one integration first 

of the linear and then of the exponential covariance. For the p-norms stated below 

see Hajek (1962). 

(I) The squared norm for the linear covariance is 

llfll;=& I,’ f’(s)‘ds+&(f(0)+f(1,)2. 
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Choose 

The squared norm in HK,, = WY’ is then 

llfll:, =& I,: S”(s)* ds+&j (f’(0)+f’(l))2 

(II) The squared norm for the exponential covariance is 

llfll;= j-“’ (f’(s)+ocf(~))~ ds+2olf(O)*. 

With 

a:> ll~;ll~=$ for pi(l)=~:-~exp(--Luf)-~f+~ 

we get the squared norm in W’” 2 7 

llfll:, = lo’ W’(s) + cf’(s))* ds + W-‘(O)* 

+cd- IIP:ll:)-’ 1 ~(f’(l)-r’(o))+t(.f(r)+f(o)) I 
2 
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