
Discrete Applied Mathematics 110 (2001) 77–84

Transitive closure algorithm MEMTC and its
performance analysis

Vesa Hirvisalo ∗, Esko Nuutila, Eljas Soisalon-Soininen
Helsinki University of Technology, Laboratory of Information Processing Science, P.O. Box 1100,

FIN-02015 HUT, Finland

Abstract

In this paper, we present a new algorithm for computing the full transitive closure designed for
operation in layered memories. The algorithm is based on strongly connected component detection
and on a very compact representation of data. We analyze the average-case performance of the
algorithm experimentally in an environment where two layers of memory of di2erent speed are
used. In our analysis, we use trace-based simulation of memory operations. ? 2001 Elsevier
Science B.V. All rights reserved.

1. Introduction

This paper presents a new transitive closure algorithm and an experimental study of
its performance for large inputs, for which the memory behavior of the algorithm is
essential. We compare our new algorithm MEMTC with the algorithm BTC, which was
ranked the best algorithm for large inputs by Ioannidis et al. [8].
Transitive closure computation is a basic computational task. It is required, for in-

stance, in the reachability analysis of transition networks representing distributed and
parallel systems and in the construction of parsing automata in compiler construction.
Recently, e8cient transitive closure computation has been recognized as a signi9cant
subproblem in evaluating recursive database queries.
Processing large amounts of data is characteristic to transitive-closure algorithms. If

the memory used is not homogeneous, but consists of layers of memory of di2erent
speed, then the data transfer between the memory layers is typically the bottleneck of
the computation. Algorithm MEMTC tries to reduce memory operations by reading the
input in a single pass, using a very compact representation for the resulting closure,
and preferring local memory references. Further, it recognizes the strongly connected

∗ Correspondence address: Department of Computer Science, Helsinki University of Technology, P.O. Box
5400, 02150 Helsinki, Finland.

E-mail address: vesa.hirvisalo@cs.hut.9 (V. Hirvisalo).

0166-218X/01/$ - see front matter ? 2001 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(00)00304 -8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82491879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


78 V. Hirvisalo et al. / Discrete Applied Mathematics 110 (2001) 77–84

components of the input and handles them in a topological order to avoid redundant
computations.

MEMTC belongs to a class of practical and e8cient transitive closure algorithms,
which are based on strong component detection. Purdom [16], presented the 9rst of
these algorithms. Later better variants have been suggested by Eve and Kurki–Suonio
[6], Ebert [5], Schmitz [17], Ioannidis et al. [8], and Nuutila and Soisalon-Soininen
[12–15]. In [13], Nuutila showed that algorithm COMPTC [12] has the smallest worst-case
execution time of these algorithms.
Several performance evaluations of transitive closure algorithms have been presented

in the literature [2–4,8–10]. In most of the studies, the iterative algorithms were less
e8cient than the matrix-based algorithms, and the matrix-based algorithms were less
e8cient than the graph-based and the hybrid algorithms. Algorithm BTC seemed to be
the best competitor; thus we selected it for our comparison.
BTC [8], suggested by Ioannidis et al., is a graph-based algorithm. It works in two

phases: 9rst, it detects the strong components of the input graph by using a modi9cation
of Tarjan’s algorithm [18], and second, it computes the successor sets representing the
transitive closure. The computation of the successor sets is localized in a manner, which
makes the algorithm suitable for computations in a paging environment.
To analyze the performance of the algorithms, we ran them to produce memory ac-

cess traces. Based on the traces, we simulated the memory operations. We performed
statistically con9rmed experiments to measure the number of memory operations re-
quired to construct the full transitive closure of random graphs. We simulated situations
where up to 100 Mbytes of memory is required to hold the data. In our experiments,
MEMTC outperformed BTC.
The qualitative results show that in both algorithms, a signi9cant proportion of mem-

ory overhead, i.e., data transfer between the memory layers, is caused by reading the
input. The main reason for the superiority of MEMTC is the compact closure representa-
tion that it uses. The algorithm BTC uses its transitive closure representation in a local
manner, but the representation is often sparse and occupies a large memory space.
Further, BTC uses intensively its large auxiliary data structures.

2. Algorithm MEMTC

We consider a directed graph G=(V; A), where V is the set of vertices and A⊆V×V
is the set of arcs. The transitive closure of G is a graph G+ = (V; A+) such that for
all v; w ∈ V there is an arc (v; w) ∈ A+ if and only if there is a non-null path from v
to w in G. The successor set of a vertex v is the set Succ(v) = {w | (v; w) ∈ A+}. A
strong component of G is a maximal subset C ⊆V such that for each v; w ∈ C there
is a path from v to w (and vice versa). A topological order of the vertex set V of a
graph G = (V; A) is any total order 6 of V such that v6w if arc (v; w) ∈ A.
The algorithm MEMTC is derived from the algorithm COMPTC [12], which was designed

for operation in a homogeneous memory. The closure representation and the principle



V. Hirvisalo et al. / Discrete Applied Mathematics 110 (2001) 77–84 79

Fig. 1. Algorithm MEMTC.

of computing the closure are the same in both algorithms. MEMTC di2ers from COMPTC

in two ways, which make MEMTC more suitable for a heterogeneous memory.
The 9rst di2erence is that MEMTC stores partially handled vertices into the control

stack and uses a single work stack for adjacent components and vertices. COMPTC has
separate sets for storing partially handled vertices and uses separate stacks for adja-
cent components and vertices. This di2erence does not a2ect the complexity of the
algorithm, but it reduces and localizes the memory references.
The second di2erence is that MEMTC has a memory management. COMPTC has no

memory management; it assumes that all memory references have an equal cost. In
MEMTC, slow memory is used to store those parts of the input graph, the transitive
closure, and the auxiliary data structures, that do not 9t in the fast memory. MEMTC
uses the least recently used (LRU) algorithm when caching memory except the memory
for the input graph. The following block management algorithm is used for the input
graph: the blocks with vertices that appear near the top of the control stack are preferred
to be kept in the fast memory.
The algorithm MEMTC is given is Fig. 1. In the following description, we refer to the

line numbering given in the 9gure.



80 V. Hirvisalo et al. / Discrete Applied Mathematics 110 (2001) 77–84

The memory overhead is reduced by storing arcs into the control stack, i.e., the
stack, where the depth-9rst-search path is stored. When we enter a vertex v, we fetch
all arcs leaving v from the slow memory and store them on top of the control stack
(line 4). If such bu2ering were not used, then the recursion inside the for loop (lines
5–12) could cause several fetches of the same arcs.

MEMTC uses Tarjan’s algorithm [18] to detect the strong components of a graph.
To construct the successor set of a component C, MEMTC uses the components adjacent
from C. These components are collected during the depth-9rst traversal and stored onto
the work stack (lines 10–11). Thus, the work stack contains both vertices and strong
components. This localizes further the memory references and reduces overhead.
When a new strong component C is detected, and the vertices of C are removed

from the work stack, the components adjacent from C are on top of the work stack.
MEMTC sorts them into a topological order and removes duplicates (lines 18–19). Then
MEMTC scans the topologically ordered components, and for a component X checks
whether X already is in Succ(C). If it is not, then X and Succ(X ) are added into
Succ(C). Thus, the use of the topological order further reduces the overhead.

MEMTC uses an interval representation for the successor sets [13]. The representation
was developed from a method by Agrawal et al. [1] for compressing the transitive
closure of an acyclic graph. The interval representation consists of two parts: a method
for storing sets of integers compactly and a method for mapping the strong components
into integers.
The method for storing sets of integers is the following. Consider a set S ⊆{1; 2; : : : ; n}.

If S contains sequences of consecutive integers i; i+1; : : : ; j, we represent S by storing
only the pair of endpoints [i; j] of each sequence. We call such a pair an interval. When
new intervals are added to a set, overlapping intervals are merged together. Also, two
intervals [i; j] and [j + 1; k] are combined into an interval [i; k].
The integers that we store are the reverse topological numbers of the strong compo-

nents. This numbering is easy to compute, since MEMTC detects the strong components
in this order. In [13], we showed that the interval representation of the transitive closure
is very compact.

3. Experiments

In our experiments we compared MEMTC and BTC. The BTC implementation that we
used was based on [8]. Because BTC was designed for environments having main mem-
ory (fast RAM) and disk memory, we compared the algorithms in that environment. The
BTC implementation included the LRU-based memory management suggested in [8]. We
performed simulations to measure the number of memory operations required to con-
struct the full transitive closure. In some selected input points, we saved the simulated
memory access traces in a 9le and analyzed them qualitatively.
To measure the performance of the algorithms, we used trace-based analysis tool

DBE [7]. DBE executes algorithms using a large and fast random access memory.



V. Hirvisalo et al. / Discrete Applied Mathematics 110 (2001) 77–84 81

During the execution of an algorithm, DBE produces a trace of the memory accesses
done by the algorithm. The trace is given to a memory simulator, which records the
memory transfer operations caused by the memory accesses, e.g. page faults. The size
of memory traces is typically the major problem in such performance studies. DBE
uses a trace compaction method to reduce the size of the traces.
Inputs were random graphs drawn from G(n; p; l) with several values of n, p, and

l. Graphs in G(n; p; l) have n vertices. An arc between any two vertices v and w is
possible only if (ordv − ordw)mod n6l, where ordi is a unique integer in the range
{0; : : : ; n−1} randomly selected for each vertex i. Each of the possible arcs exists with
probability p. Thus, the expected number of arcs is (2l+ 1)np.
We used the G(n; p; l) model, because it generates graphs, which have strongly

connected components of various sizes. The more commonly used G(n; p) model tends
to generate graphs consisting of one giant component and a number of very small
components [11].
We represented the input graph as a relation table R containing the arcs of the

input graph (8 bytes of memory per arc). The relation table was clustered, i.e., all
arcs departing from a vertex were successive. In addition, there was an index table T
consisting of pointers (4 bytes of memory per pointer). Each pointer T [i] pointed to
the 9rst arc (i; j) of the cluster of arcs adjacent from i.
In the simulation, both the fast and the slow memory consisted of blocks of 512

bytes. The fast memory acted as a bu2er to hold the blocks of the input graph, the
resulting successor sets, and all the auxiliary data structures needed by the algorithms.
Initially, the input graph resided in the slow memory. The code of the algorithms was
not modeled, because the code of both MEMTC and BTC are only a few blocks of memory
(i.e., can be assumed to reside in the fast memory).

3.1. Quantitative results

We performed several experiments using inputs drawn from G(n; p; l) with several
values of n, p, l, and several bu2er sizes. The count of vertices n was in the range
1000–32 000, locality l in the range 5–30, the expected outdegree (2l + 1)p in the
range 1–10, and bu2er size in the range 50–2000 blocks.
In all experiments the number of memory operations caused by MEMTC was less than

the number of operations caused by BTC.
We present here the simulation results for n632 000, p= 0:14 and l= 10 (Fig. 2).

The size of the fast memory bu2er was 500 blocks for BTC and 300 (LRU)+200 (stack
based management) blocks for MEMTC. We computed a 90% con9dence interval of the
number of operations for each value of n. The relative error was at most 10% or the
absolute error at most 100 memory operations. The combined condition was used, since
the sizes varied much in di2erent parts of the input space.
The results obtained with other outdegrees, localities, and bu2er sizes were similar.

MEMTC caused much less memory overhead than BTC.



82 V. Hirvisalo et al. / Discrete Applied Mathematics 110 (2001) 77–84

Fig. 2. Number of memory operations caused by MEMTC (solid line) and BTC (dashed line).

3.2. Qualitative results

We studied the memory behavior of the algorithms using memory access maps.
Fig. 3 represents a typical behavior of BTC. The input was a graph with 10 000 vertices
and 30132 arcs. The relation table and the index are in memory area 0–281 kbytes. At
memory addresses 287–607 kbytes are the auxiliary structures of BTC. The topological
order of vertices and the stacks are at addresses 607–728 kbytes. The rest of the
memory is used for representing the transitive closure (addresses 769–4337 kbytes).
The two phases of BTC can be clearly seen in Fig. 3. In the 9rst phase, immediate suc-

cessors of the vertices are moved into the closure representation. The input is scanned
heavily and it causes many memory operations. The transitive closure representation is
used in a local manner, but it is sparse and occupies a large amount of memory.
In the second phase, the input is no longer used. The closure representation becomes

more dense and accesses are more scattered. This causes overhead. The auxiliary data
structures are heavily used in both phases. They cause a signi9cant number of memory
operations.
In Fig. 4, MEMTC is given the same input as BTC in Fig. 3. Note that the pictures are

presented on the same scale. BTC uses much memory and does many memory accesses
compared to MEMTC. For larger inputs, this becomes even more apparent.
The input table and index occupy the same memory area as for BTC. The auxiliary

data structures are in memory area 462–542 kbytes. At 543–703 kbytes is the work



V. Hirvisalo et al. / Discrete Applied Mathematics 110 (2001) 77–84 83

Fig. 3. Memory access map for BTC, input = G(10 000; 0:14; 10). A pixel at position (x; y) shows that yth
memory access has referred to the memory location x.

Fig. 4. Memory access map for MEMTC, input =G(10 000; 0:14; 10). A pixel at position (x; y) shows that yth
memory access has referred to the location x.

stack and at 704–944 kbytes is the control stack. The rest of the memory is used for
transitive closure representation (addresses 944–1127 kbytes), i.e., the representation of
strong components and the interval representation of successor sets. The almost vertical
lines are accesses to these structures.
Most of the memory operations are caused by reading the input. Some operations

are caused by accessing the auxiliary data structures. The transitive closure represen-
tation is very small and used in a very local manner. Accessing the transitive closure
representation causes only a few operations.

4. Conclusions

We presented a new transitive closure algorithm, called MEMTC and an experimental
study of its performance in an environment having main memory (fast RAM) and disk



84 V. Hirvisalo et al. / Discrete Applied Mathematics 110 (2001) 77–84

memory. We compared its performance with BTC, which was reported to be the best
algorithm in such an environment [8]. We analyzed and compared the performance
of the algorithms for large inputs and used statistically sound methods to state the
accuracy of our results.
In our analysis, MEMTC was found superior to BTC. Besides the quantitative analysis,

we conducted a qualitative analysis. The qualitative analysis revealed why BTC is slower
than MEMTC. The main reason is the representation of the data. The closure represent-
ation of BTC is large and it has large auxiliary data structures that it uses very inten-
sively. MEMTC uses a very compact representation for the closure and has only a few
auxiliary data structures.

References

[1] R. Agrawal, A. Borgida, H.V. Jagadish, E8cient management of transitive relationships in large data
and knowledge bases, Proceedings of the ACM-SIGMOD 1989 Conference on Management of Data,
Portland, Oregon, May–June 1989, pp. 253–262.

[2] R. Agrawal, S. Dar, H.V. Jagadish, Direct transitive closure algorithms: design and performance
evaluation, ACM Trans. Database Systems 15 (3) (1990) 427–458.

[3] R. Agrawal, H.V. Jagadish, Hybrid transitive closure algorithms, Proceedings of the 16th International
VLDB Conference, Brisbane, Australia, 1990, pp. 326–334.

[4] S. Dar, R. Ramakrishnan, A performance study of transitive closure algorithms, Proceedings of the
ACM-SIGMOD 1994 Conference on Management of Data, 1994.

[5] J. Ebert, A sensitive transitive closure algorithm, Inform. Process. Lett. 12 (1981) 255–258.
[6] J. Eve, R. Kurki-Suonio, On computing the transitive closure of a relation, Acta Inform. 8 (1977)

303–314.
[7] V. Hirvisalo, DBE — a tool for trace driven memory simulation, Tool Descriptions of Ninth

International Conference on Modelling Techniques and Tools for Computer Performance Evaluation
(TOOLS’97), St. Malo, France, June 1997.

[8] Y.E. Ioannidis, R. Ramakrishnan, L. Winger, Transitive closure algorithms based on graph traversal,
ACM Trans. Database Systems 18 (3) (1993) 512–576.

[9] B. Jiang, A suitable algorithm for computing partial transitive closures in databases, Proceedings of
the IEEE Sixth International Conference on Data Engineering, Los Angeles, CA, February 1990,
pp. 264–271.

[10] R. Kabler, Y.E. Ioannidis, M. Carey, Performance evaluation of algorithms for transitive closure, Inform.
Systems 17 (5) (1992) 415–441.

[11] R.M. Karp, The transitive closure of a random digraph, Random Structures and Algorithms 1 (1) (1990)
73–93.

[12] E. Nuutila, An e8cient transitive closure algorithm for cyclic digraphs, Inform. Process. Lett. 52 (1994)
207–213.

[13] E. Nuutila, E8cient transitive closure computation in large digraphs, Ph.D. Thesis, Helsinki University
of Technology, Acta Polytechnica Scandinavica, Mathematics and Computing in Engineering Series,
No. 74, 1995.

[14] E. Nuutila, E. Soisalon-Soininen, E8cient transitive closure computation, Technical Report TKO-B113,
Helsinki University of Technology, Laboratory of Information Processing Science, 1993.

[15] E. Nuutila E. Soisalon-Soininen, On 9nding the strongly connected components in a directed graph,
Inform. Process. Lett. 49 (1994) 9–14.

[16] P. Purdom, A transitive closure algorithm, BIT 10 (1970) 76–94.
[17] L. Schmitz, An improved transitive closure algorithm, Computing 30 (1983) 359–371.
[18] R.E. Tarjan, Depth 9rst search and linear graph algorithms, SIAM J. Comput. 1 (2) (1972) 146–160.


