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SUMMARY

The human Lkb1 kinase, encoded by the ortholog of
the invertebrate Par4 polarity gene, is mutated in
Peutz-Jeghers cancer syndrome. Lkb1 activity
requires complex formation with the pseudokinase
Strad and the adaptor protein Mo25. The complex
can induce complete polarization in a single isolated
intestinal epithelial cell. We describe an interaction
between Mo25a and a human serine/threonine
kinase termed Mst4. A homologous interaction
occurs in the yeast Schizosaccharomyces pombe
in the control of polar tip growth. Human Mst4 trans-
locates from the Golgi to the subapical membrane
compartment upon activation of Lkb1. Inhibition of
Mst4 activity inhibits Lkb1-induced brush border
formation, whereas other aspects of polarity such
as the formation of lateral junctions remain unaf-
fected. As an essential event in brush border forma-
tion, Mst4 phosphorylates the regulatory T567
residue of Ezrin. These data define a brush border
induction pathway downstream of the Lkb1/Strad/
Mo25 polarization complex, yet separate from other
polarity events.

INTRODUCTION

The lkb1 tumor suppressor gene encodes a serine/threonine

kinase, mutated in around 90% of Peutz-Jeghers patients (Giar-

diello et al., 2000). Studies in Caenorhabditis elegans (Watts

et al., 2000; Kemphues et al., 1988) and Drosophila melanogaster

(Martin and St Johnston, 2003) have identified the Lkb1 ortholog

par4 as a master regulator of polarity in multiple cellular

processes. We have shown previously that Lkb1, itself a very

weak, nuclear kinase, forms a complex with the pseudokinase

Strada or b and the putative adaptor protein Mo25a or b (Baas

et al., 2004; Boudeau et al., 2003). In this cytoplasmic complex,

Lkb1 is stable and highly active.

Members of a small family of kinases which include the Par1/

Mark and AMPK kinases can be activated by Lkb1 by direct

phosphorylation of their activation loop (Lizcano et al., 2004).
Deve
Through phosphorylation of AMPK, the Lkb1 complex controls

cellular metabolism by enhancing glucose uptake, glycolysis,

and fatty acid oxidation or by inhibiting energy-consuming

anabolic processes (Alessi et al., 2006). Independently, we

have shown that human Lkb1 functionally resembles the inverte-

brate polarity gene Par4, in that it plays a central role as an

inducer of polarization in epithelial cells (Baas et al., 2004). The

effect of Lkb1 on polarization is not restricted to cells of epithelial

origin; it has now, for instance, been shown to be relevant for

neuronal cells in the mouse cerebral cortex (Barnes et al.,

2007; Shelly et al., 2007). The effects on polarity are—at least

in part—mediated by phosphorylation of the microtubule

affinity-regulating kinases Mark1–4 in vertebrates and Par1 in

the model organisms D. melanogaster and C. elegans. Par1/

Mark kinases in turn regulate cellular polarization by modulating

the microtubule cytoskeleton (Drewes et al., 1997).

The adaptor protein Mo25 is conserved from yeast to human.

In the fission yeast Schizosaccharomyces pombe, Mo25 and

the Nak1 kinase play an essential role in polarized growth and

accumulation of F-actin at the cell tip during S and G2 phases

(Mendoza et al., 2005; Kanai et al., 2005). Nak1 has five human

homologs: Mst1–4 and Ysk1. Mst1 and Mst2 may play a role in

apoptosis (Graves et al., 1998; Lee et al., 2001). Mst3 and

Ysk1 have an apparent role in migration, a process that may

be interpreted as a form of cellular polarization (Lu et al., 2006;

Preisinger et al., 2004). The function or downstream targets of

Mst4 remain unknown, although it has been shown that this

kinase interacts with the Golgi matrix protein GM130 (Preisinger

et al., 2004) and resides on Golgi vesicles in the cell.

One of the polarity-related phenomena that is induced by Lkb1

in intestinal epithelial cells is the induction of brush borders at the

apical domain (Baas et al., 2004). Independent studies have

indicated a central role for Ezrin in the formation of brush borders

in mouse retinal and intestinal cells and in luminal epithelia of

C. elegans (Bonilha et al., 2006; Gobel et al., 2004; Saotome

et al., 2004). Ezrin is a member of the ERM (Ezrin, Radixin,

Moesin) family. Ezrin can exist in an ‘‘open’’/active or ‘‘closed’’/

inactive state (Niggli and Rossy, 2008). In the open conformation,

Ezrin can interact with the plasma membrane, F-actin, and

multiple signaling molecules (Niggli and Rossy, 2008), creating

a platform for the actin-rich brush borders which are particularly

prominent on intestinal epithelial cells (Saotome et al., 2004).

Activation of Ezrin is mediated by initial PIP2 binding and
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subsequent phosphorylation of threonine 567 (Fievet et al.,

2004). Mutations of this residue to either alanine or aspartic

acid has been shown to result in an inactive or an active Ezrin

protein, respectively (Fievet et al., 2004).

Here we show that Mo25 interacts with Mst4 and that forma-

tion of an active Lkb1/Strad/Mo25 complex results in the trans-

location of Mst4 from Golgi vesicles to the subapical domain of

polarizing cells. Translocation of Mst4 induces the phosphoryla-

tion of the actin remodeler Ezrin at its regulatory residue T567.

Based on this study, we propose a pathway in which Mst4 relays

a polarizing signal from the Lkb1 complex to Ezrin, resulting in

the formation of brush borders.

RESULTS

Mo25 Is Required for Lkb1-Strad-Induced Brush
Border Formation
Previously, we reported that the induced expression of Strad in

intestinal epithelial cells leads to stabilization of Lkb1 in

a complex with Strad and Mo25 and in its subsequent activation.

We utilized Ls174T intestinal epithelial cells, engineered to stably

express a Myc-tagged Lkb1 and a doxycycline-inducible, Flag-

tagged Strada (Baas et al., 2004). Induction of Strada in these

so-called W4 cells leads to rapid polarization of isolated indi-

vidual cells, as evidenced by the formation of an apical brush

border as well as by the correct sorting of apical and basolateral

markers and of components of junctional complexes (Baas et al.,

2004).

Mo25 is a component of the active Lkb1 complex (Boudeau

et al., 2003), yet the involvement of Mo25 for Lkb1-induced polar-

ization in living cells has not been addressed previously. Two

Mo25 genes exist in the mammalian genome, Mo25a and b.

Of these, only Mo25a was found to be expressed in Ls174T cells

(data not shown). To study the involvement of Mo25a in induction

of polarity, we downregulated Mo25a expression by means of

retrovirally mediated expression of shRNA in W4 cells. Upon

induction of Strada by doxycycline, W4 cells polarized and

formed brush borders, as visualized with CD66 and TfR and the

F-actin-binding compound phalloidin-TRITC, respectively. W4

cells with reduced expression of Mo25a (Figures 1A and 1B)

lost their ability to polarize and form brush borders in response

to Lkb1 activation (Figure 1C), whereas W4 cells expressing

scrambled shRNA polarized properly. This demonstrated that

Mo25a is essential for Lkb1-induced polarization and brush

border formation.
Deve
Phosphorylated Ezrin Mediates Lkb1-Induced Brush
Border Formation
To study the involvement of Ezrin phosphorylation in the forma-

tion of brush borders as induced by activated Lkb1, we per-

formed western blot and confocal analysis of polarized W4 cells

stained for phosphorylated Ezrin. By western blot analysis, we

found a reduced signal for phosphorylated Ezrin in shMO25 cells

compared to control cells (Figure 1D). Furthermore, a clear signal

for phosphorylated Ezrin-T567 occurred specifically in the brush

borders of these cells and not in the Mo25a knockdown cells

(Figure 1E). This suggested that phosphorylation of Ezrin is

a key downstream event in Lkb1/Strad/Mo25-induced brush

border formation.

We then exogenously expressed wild-type (WT) or the domi-

nant-negative Ezrin mutant T567A (Fievet et al., 2004) in W4

cells and induced the expression of Strada for 24 hr. Brush

border formation was visualized by actin staining, whereas Ez-

rin was detected with an anti-VSV antibody. Cells expressing

WT Ezrin retained their ability to form brush borders (45/50),

whereas brush borders were completely absent in T567A Ez-

rin-expressing cells (0/50) (Figure 1F). This implied an involve-

ment of phosphorylated Ezrin in Lkb1-induced brush border

formation.

Identification of Mst4 as a Potential Mediator
between Lkb1 and Ezrin
The sequence around T567 of Ezrin does not resemble an

optimal Lkb1 phosphorylation site (Boudeau et al., 2003), sug-

gesting that Ezrin is not a direct downstream target of Lkb1.

Indeed, we were unable to demonstrate direct phosphorylation

of Ezrin by the Lkb1 complex (data not shown). Therefore, we

pursued the identification of intermediary proteins by two

different approaches: (1) by performing a yeast two-hybrid

screen with Mo25a as bait, and (2) by searching for kinases

capable of phosphorylating Ezrin at T567 in vitro.

Mo25 structurally resembles armadillo/heat repeat adaptor

proteins such as b-catenin and importins (Milburn et al., 2004).

ItsC-terminalhydrophobic pocketbinds a Trp-Glu-Phesequence

at the C terminus of Strad (Milburn et al., 2004). We hypothesized

that the remainder of the Mo25 molecule could serve as a docking

platform for effector molecules of the Lkb1 complex. To identify

such interactors, we performed a yeast two-hybrid screen with

full-length Mo25a on a human placenta library. The screen was

validated by the observation that the most frequently identified
Figure 1. Mo25a and Ezrin Mediate Lkb1-Induced Polarization of W4 Cells

(A) Protein expression of Mo25a in W4 cells expressing shRNA for Mo25a. W4-derived lysates expressing pRetrosuper with shRNA against Mo25a (sequences

I–IV) or a scrambled sequence (Scr) were blotted and immunostained for Mo25a and tubulin.

(B) mRNA expression of Mo25a in W4 cells expressing shRNA for Mo25a. W4-derived RNA expressing pRetrosuper with shRNA against Mo25a (sequences I–IV)

or a scrambled sequence (Scr) were blotted and probed for Mo25a.

(C) Reduced expression of Mo25a in W4 cells results in loss of polarization. W4 cells with shRNA against Mo25a or a scrambled sequence (Scr) were treated with

doxycycline for 24 hr, fixed, and immunostained for apical CD66 (green), basal lateral CD71/TfR (green), and actin (red). Arrows indicate brush borders. The scale

bars represent 10 mm.

(D) Activation of the Lkb1-Mo25a pathway induces the phosphorylation of Ezrin. W4 and shRNA Mo25a cells were treated with doxycycline for 24 hr and subse-

quently subjected to western blot analysis. Lysates were stained for phosphorylated Ezrin (P-Ezrin), Ezrin, Strad, and Mo25a.

(E) Activation of the Lkb1-Mo25a pathway induces the phosphorylation of Ezrin in brush borders. W4 and shRNA Mo25a cells were treated with doxycycline for

24 hr and subsequently fixed and stained for phosphorylated Ezrin (P-Ezrin; green), actin (red), and DNA (blue). The scale bars represent 5 mm.

(F) Ezrin phosphorylation is essential for brush border formation. W4 cells expressing wild-type (WT) Ezrin or the non-phospho mutant Ezrin T567A were treated

with doxycycline for 24 hr, fixed, and immunostained for actin (red) and VSV-tagged Ezrin (green). The scale bars represent 5 mm.
lopmental Cell 16, 551–562, April 21, 2009 ª2009 Elsevier Inc. 553
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Figure 2. Mst4 Interacts with Mo25a

(A) List of putative Mo25a-interacting genes as identified by yeast two-hybrid

screen.

(B) GST-Mo25a interacts specifically with Mst4. GST-Mo25a pull-down

assays (PD) were performed in cell lysates expressing pCDNA-Myc (EV) or
554 Developmental Cell 16, 551–562, April 21, 2009 ª2009 Elsevier
interactor of Mo25a was Strada (Figure 2A). The kinase Mst4 was

another prominent hit in the screen (Figure 2A).

To exclude false positives from the Y2H screen, we exoge-

nously expressed the genes listed in Figure 2A in HEK293T

cells and performed pull-down assays with GST-Mo25a in

cell lysates. The results of these pull-downs confirmed exclu-

sive binding of GST-Mo25a to Mst4 (Figure 2B) and Strada

(data not shown). The other genes listed in Figure 2 did not

interact with GST-Mo25a (data not shown). Similarly, Mst1

and Mst2 did not interact with Gst-Mo25a (Figure 2B), under-

scoring the specificity of the interaction between Mst4 and

Mo25a.

To document an endogenous interaction between Mo25a and

Mst4, we induced expression of Flag-tagged Strada in W4 cells

as bait to capture endogenous Mo25a complexes (Figure 2C).

This indeed allowed us to precipitate endogenous Mo25a.

Moreover, endogenous Mst4 readily coprecipitated with

Mo25a (Figure 2C). These proteins were only seen in immuno-

precipitations derived from lysates of doxycycline (Dox)

-induced cells, confirming the specificity of the interaction.

Furthermore, Mst4 did not coprecipitate with Strada in the

absence of endogenous Mo25a (Figure 2D), indicating that

Strad does not form a direct interaction with Mst4. These data

show unambiguously that endogenous Mo25a is complexed

with endogenous Mst4, at least when Mo25a is bound to

induced Strada.

In parallel to the Y2H screen, we performed an in vitro kinase

assay with 80 selected kinases on an Ezrin peptide containing

the T567 phosphorylation site (Figure 3A). In this screen, we

identified the Mst and Rock kinases as the most potent kinases

for the Ezrin peptide (Figure 3A). The latter kinase is a well-known

activator of Ezrin in cell migration (Matsui et al., 1998; Haas et al.,

2007; Lee et al., 2004; Sahai and Marshall, 2003). Although Mst1

and 2 were also able to phosphorylate Ezrin, they do not interact

with GST-Mo25a (Figure 2B). As a result of these findings, we

therefore excluded Mst1 and 2 from further studies. Recently,

PKCi was also identified as an Ezrin kinase (Wald et al., 2008).

However, PKCi did not show any activity on the Ezrin peptide

in our hands (Figure 3A), whereas it readily phosphorylated

CREB (S133) and MARCKS(S152/156) -derived peptides (data

not shown).

To confirm Mst4’s specificity for Ezrin, we performed in vitro

kinase assays on a set of 80 selected peptide substrates (Fig-

ure 3B; see Figure S1 available online). Significant levels of phos-

phorylation were only observed with the Ezrin-derived peptide,

suggesting that Mst4 was highly dedicated to Ezrin as its down-

stream target.

Myc-tagged Mst1, Mst2, or Mst4. Mst kinases were detected with anti-Myc

in pull-downs and total cell lysates (10% of input) after western blotting (WB).

(C) Endogenous complex formation of Mo25a and Mst4. Immunoprecipita-

tions with control mouse immunoglobulins (Ctrl) or anti-Flag Strad were

performed in W4-derived lysates treated with doxycycline (Dox) for 24 hr.

Samples were blotted and immunostained for endogenous Mst4, Mo25a,

and Flag-tagged Strad.

(D) Endogenous complex formation of Mo25a and Mst4. Immunoprecipita-

tions with anti-Flag Strad were performed in W4 and shRNA Mo25a-derived

lysates treated with doxycycline for 24 hr. Samples were blotted and immuno-

stained for endogenous Mst4, Mo25a, and Flag-tagged Strad.
Inc.
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To extend these observations, we purified recombinant Ezrin

and Mst4 from bacteria and performed an in vitro kinase assay.

The samples were subjected to western blotting and the level of

phospho-Ezrin was determined with a specific antibody raised

against pT567 Ezrin (Figure 3C). These data confirmed that

full-length Ezrin can be phosphorylated in the presence of puri-

fied Mst4 at the predicted sequence.

To explore whether the phosphorylation of Ezrin was indeed

dependent on Mst4 in vivo, we cultured shRNA-mediated Mst4

knockdown cells and scrambled (Scr) controls with or without

doxycycline and performed western blot analysis for phosphor-

ylated T567 Ezrin, total Ezrin, and Mst4. Dox-induced activation

Figure 3. Mst4 Links Lkb1 to Ezrin Phos-

phorylation

(A) A subset of the 80 kinases tested in a DELFIA-

based in vitro kinase assay with an Ezrin-derived

substrate peptide representing threonine 567.

(B) A subset of in vitro kinase assays with purified

Mst4 on 80 substrate peptides. Phosphorylation

was determined by means of the DELFIA tech-

nique combined with phospho-specific anti-

bodies.

(C) Mst4 phosphorylates Ezrin in vitro. Purified

Ezrin was incubated for 15 min at 37�C in the

presence or absence of purified Mst4. Ezrin phos-

phorylation was visualized after western blotting

with a specific antibody raised against phosphor-

ylated Ezrin T567. Quantification was performed

by ImageJ (http://rsb.info.nih.gov/ij) and repre-

sents three independent experiments. Error bars

indicate SD after normalization to a noninduced

sample in control cells.

(D) Lkb1-induced phosphorylation of Ezrin is

dependent on Mst4. W4-derived lysates, express-

ing pRetrosuper with shRNA against Mst4 or

a scrambled sequence (Scr) and treated with or

without doxycycline, were blotted and immuno-

stained for Mst4, AMPK, phospho-AMPK, Ezrin,

and phospho-Ezrin. Quantification was performed

by ImageJ and represents three independent

experiments. Error bars indicate SD after normali-

zation to a noninduced sample in control cells.

of Lkb1 resulted in phosphorylation of

Ezrin at T567 and, in agreement with the

in vitro analysis from Figures 3A–3C, cells

lacking expression of endogenous Mst4

lost their ability to induce the phosphory-

lation of endogenous Ezrin upon Strad

induction (Figure 3D). As a control for

Lkb1 activity, we stained the western

blots for phosphorylated AMPK and total

AMPK (Hong et al., 2003) and observed

that activation of endogenous AMPK by

Lkb1 was independent of Mst4

(Figure 3D).

Mst4 and Ezrin Act Downstream
of Lkb1 in Brush Border Formation
The potential role for Mst4 in polarization

was tested by shRNA-mediated knock-

down in W4 cells. The cells were seeded in the presence or

absence of doxycycline for 24 hr in order to induce polarization

(Baas et al., 2004). Subsequently, the cells were either stained

for actin (Figure 4A) or tested for expression of Mst4, Strada,

Lkb1, and Mo25a on western blot (Figure 4B). In control cells,

we observed a clear induction of brush border formation (46/

50 cells) (Figure 4A), whereas brush borders were virtually absent

in Mst4 knockdown cells (4/50). Western blot analysis showed

no reduction in Lkb1, Strad, or Mo25a, indicating that the effect

was not due to reduced expression of these proteins (Figure 4A).

Importantly, exogenous expression of Myc-tagged mouse

Mst4 in Mst4 knockdown cells rescued brush border formation
Developmental Cell 16, 551–562, April 21, 2009 ª2009 Elsevier Inc. 555
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(44/50), thereby excluding off-target effects as a result of the

shRNA transfection (Figure 4A). These data indicated that Mst4

mediates Lkb1-induced brush border formation of Ls174T cells.

To establish that shMst4 cells were unable to form brush

borders as a result of their inability to activate Ezrin, we ex-

pressed inactive (T567A) and active (T567D) Ezrin in W4 cells.

Cells were stained for VSV-tagged Ezrin mutants and brush

borders were visualized by phalloidin-rhodamine (Figure 4C).

Confocal analysis revealed that shMst4 cells expressing the

active Ezrin T567D regained their ability to form brush borders

(41/50) (Figure 4C), whereas the T567A Ezrin mutant-expressing

cells did not form brush borders (0/50) (Figure 4C). From this, we

concluded that Ezrin phosphorylation acts downstream of the

Lkb1-Mst4 pathway in brush border formation. Moreover,

expression of active Ezrin in either Ls174T cells (Figure 4C) or

nonpolarized W4 cells (data not shown) results in the formation

of nonpolarized brush borders (41/50). This suggests that Lkb1

Figure 4. Lkb1 Induces Brush Borders via

Mst4 and Ezrin

(A) Reduced expression of Mst4 in W4 cells results

in loss of polarization. W4 cells with shRNA against

Mst4 or a scrambled sequence (Scr) with or

without exogenous expression of wild-type Mst4

were treated with doxycycline for 24 hr, fixed,

and immunostained for actin (red) and Myc-

tagged Mst4 (green). Arrows indicate brush

borders. The scale bars represent 10 mm.

(B) Protein expression of Mst4, Strad, Lkb1, and

Mo25a in W4 cells expressing shRNA for Mst4.

W4-derived lysates expressing pRetrosuper with

shRNA against Mst4 or a scrambled sequence

(Scr) and treated with or without doxycycline

were blotted and immunostained for Mst4, Strad,

Lkb1, and Mo25a.

(C) Ezrin acts downstream of Mst4 in brush border

formation. Ls174T and W4 cells with shRNA

against Mst4 or a scrambled sequence (Scr) with

or without exogenous expression of EzrinT567A

or T567D were treated with doxycycline for

24 hr, fixed, and immunostained for actin (red)

and VSV-tagged Ezrin (green). Arrows indicate

transfected cells. The scale bars represent 10 mm.

regulates both the polarized localization

and Mst4-dependent activation of Ezrin.

Lkb1 Regulates the Localization, but
Not Autophosphorylation, of Mst4
The Mst4 serine/threonine kinase is auto-

phosphorylated at T178, an essential

prerequisite for full kinase activity,

because mutation of T178 into alanine

(T178A Mst4) results in a dominant-nega-

tive mutant of Mst4 (Preisinger et al.,

2004). This mutant was used to test the

requirement for the kinase activity of

Mst4 in brush border formation. Myc-

tagged wild-type and T178 Mst4 were

transfected into W4 cells and subse-

quently seeded in the presence of doxy-

cycline. Cells were stained for the Myc-tagged Mst4 proteins

together with actin. Confocal imaging showed that cells express-

ing the T178A Mst4 protein lost their ability to form brush

borders, whereas the WT Mst4-expressing cells formed brush

borders in a normal fashion (Figure 5A).

The major mechanism by which Lkb1controls the activity of

downstream MARK/AMPK family kinases involves the phos-

phorylation of residues in their regulatory loop. In order to

analyze whether Lkb1 may control the activity of Mst4 by a similar

mechanism, we generated W4 cells expressing HA-tagged Mst4

and immunoprecipitated Mst4 from these cells treated with

doxycycline for 24 hr or with 10 mM NaF for 30 min. Of note,

NaF is a nonspecific and cell-permeable Ser/Thr phosphatase

inhibitor which will increase the phosphorylation of a large

number of proteins in living cells (Jaumot and Hancock, 2001).

Western blot analysis was performed with antibodies against

Mst4 and T178 phospho-Mst4 (Figure 5B). Although Lkb1 is fully
556 Developmental Cell 16, 551–562, April 21, 2009 ª2009 Elsevier Inc.
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active after a 24 hr induction of Strad (Baas et al., 2003), there

was no obvious increase in Mst4 autophosphorylation, suggest-

ing that Lkb1 does not regulate the kinase activity of Mst4.

Another way of regulating proteins is through changes in

subcellular localization. Mst4 has been described as a GM130-

binding protein localizing to the Golgi apparatus in migrating

fibroblasts (Preisinger et al., 2004). To explore the possibility

that Lkb1 regulates the localization of Mst4, we expressed

Mst4-GFP in W4 cells and induced their polarity with doxycy-

cline. Cells were then fixed and stained for GM130 and actin.

Confocal analysis showed that in nonpolarized W4 (50/50)

(Figure 5C) and in the parent Ls174T cells (50/50) (not shown),

Mst4 was restricted to GM130-containing vesicles similar to

the reported localization in fibroblasts (Preisinger et al., 2004).

Upon polarization, Mst4 accumulated at the subapical domain

of the cell near the brush border, as revealed by phalloidin stain-

Figure 5. Lkb1 Regulates the Localization

of Mst4

(A) Expression of kinase inactive Mst4 in W4 cells

results in loss of polarization. W4 cells with wild-

type (WT) Mst4 or kinase inactive (T178A) Mst4

were treated with doxycycline for 24 hr, fixed,

and immunostained for actin (red) and Myc-

tagged Mst4 (green). The scale bars represent

5 mm.

(B) Lkb1 does not regulate the autophosphorylation

ofMst4. W4cellswith exogenous expression of HA-

tagged Mst4 were subjected to immunoprecipita-

tions with anti-HA in RIPA buffer and subsequently

blotted and stained with anti-phospho-Mst4/Ysk1.

Quantification was performed by ImageJ and

represents three independent experiments. Error

bars indicate SD after normalization to a nonin-

duced sample in control cells.

(C) Lkb1 induces the translocation of Mst4 in W4

cells. W4 or W4 shRNA Mo25a cells expressing

GFP-Mst4 were treated with doxycycline for

24 hr, fixed, and immunostained for actin (red),

GM130 (white), and GFP-Mst4 (green). Asterisks

indicate brush borders; arrows indicate vesicles.

The scale bars represent 5 mm.

(D) Mst4 localizes to the apical side of DLD-1 cells.

DLD-1 cells expressing Mst4-GFP are in green.

Actin is indicated in red. The scale bar represents

5 mm.

(E) Mst4 localizes to the apical side of enterocytes

in the small intestine. Small intestine was stained

for endogenous Mst4; brown color indicates

Mst4, and nuclei are stained in blue. Confocal

image shows Mst4 (red), E-cadherin (green), and

nuclei (blue) in small intestine.

ing (Figure 5C). The translocation of Mst4

was not observed in the shRNA Mo25a

cells (Figure 5C), indicating that the trans-

location of Mst4 was fully dependent on

Mo25a.

In spontaneously polarized DLD-1

cells, we observed a similar apical locali-

zation of Mst4 (Figure 5D). Furthermore,

we performed an in vivo staining of

Mst4 on mouse tissues and could find a specific Mst4 staining

in the apical domain of enterocytes in the small intestine

(Figure 5E). In other tissues, there was no obvious staining for

Mst4. This supports our earlier observation in W4 cells that

Mst4 is localized at the apical domain of polarized epithelial cells.

Mst4 Induces Brush Borders, but No Other Polarity
Events Downstream of Lkb1
Next, we addressed whether the effect of Mst4 was restricted to

brush border formation or, alternatively, extended to other

aspects of Lkb1-induced polarity. To that end, sorting of the

apical markers CD66 and CD26 and basal TfR were studied in

shMst4 and shScr W4 cells. The stainings revealed that both

CD66 (45/50) and CD26 (43/50) localized to the apical domain

and TfR to the basal site of the cells (39/50) in an Mst4-indepen-

dent fashion (Figure 6A), whereas the localization of the brush
Developmental Cell 16, 551–562, April 21, 2009 ª2009 Elsevier Inc. 557
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border marker Villin was fully dependent on Mst4 (43/50)

(Figure 6A).

Previously, we have shown that Caco2 cells, a cell line widely

used for polarity studies, relies on Lkb1 for its spontaneous

polarization (Baas et al., 2004). We therefore explored the phys-

Figure 6. Mst4 Plays a Pivotal Role in Brush

Border, but Not Apical, Polarity

(A) Mst4 mediates brush borders. W4 cells with

shRNA against Mst4 or a scrambled sequence

(Scr) were treated with doxycycline for 24 hr, fixed,

and immunostained for actin (red), the apical

markers CD66 and CD26 (green), basal marker

TfR (green), or brush border marker Villin (green).

The scale bars represent 10 mm. Arrows indicate

localization of either CD26 or TfR.

(B) Reduced expression of Mst4 in Caco2 cells

results in loss of brush borders. Caco cells with

shRNA against Mst4 or a scrambled sequence

(Scr) were cultured for 3 weeks to allow polariza-

tion and differentiation, and subsequently fixed

and immunostained for actin (red) and ZO1

(green), Villin (green), TfR (green), or CD26 (green).

The scale bars represent 5 mm.

(C) Reduced expression of Mst4 in Caco2 cells

results in loss of microvilli. Caco2 cells expressing

scrambled shRNA (shSCR) or Mst4 shRNA

(shMst4) were cultured for 3 weeks, fixed, and

subjected to transmission electron microscopy.

Arrows indicate desmosomes; arrowheads indi-

cate tight junctions; N indicates the nucleus in

the boxes indicated in the zoomed-in images.

The scale bars represent 1 mm.

iological relevance of Mst4 for brush

border formation in Caco2 cells sponta-

neously polarized after 3 weeks of culture

in a confluent monolayer (Chantret et al.,

1988). Analyses were performed by stain-

ing for the brush border marker Villin, the

tight junction marker ZO1, apical marker

CD26, basal marker TfR, and actin. Cells

in which Mst4 was downregulated by

shRNA had lost the ability to form brush

borders, as evidenced by the failure to

recruit Villin to the apical site of the cell

(Figure 6B). However, polarized localiza-

tion of ZO1, CD26, and TfR in these cells

was not altered (Figure 6B). This sug-

gested that Mst4 mediates brush border

formation, rather than polarization per se.

In parallel to the confocal imaging of

polarized Caco2 cells, we analyzed the

cells by transmission electron micros-

copy and observed a strong reduction in

microvillus length and number when

Mst4 expression was reduced by means

of shRNA (Figure 6C). Of note, the organi-

zation of tight junctions, desmosomes,

and cell-cell junctions in shMST4

cells appeared to be unaffected when

compared to control Caco2 cells (Figure 6C), thus confirming

the conclusion that Mst4 specifically directs the formation of

actin-based brush border structures at the apical domain and

does not mediate the effect of Lkb1 on polarization of cell-cell

junctions.
558 Developmental Cell 16, 551–562, April 21, 2009 ª2009 Elsevier Inc.
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DISCUSSION

During epithelial cell polarization, cells specify their basal, lateral,

and apical membrane domains. A controlling role of Lkb1 was

previously demonstrated in our single-cell system, in which the

activation of Lkb1 by Strad results in the formation of brush

borders flanked by the tight junction marker ZO1 and in correct

sorting of apical and basolateral markers (Baas et al., 2003). In

the current study (Figure 7), we have identified Mst4 as an inter-

actor of the Lkb1/Strad/Mo25 complex. Mst4 specifically

controls the formation of brush borders at the apical domain

and has no effect on polarization per se. Thus, Lkb1 may regulate

different aspects of polarity through separate pathways, of

which the Mst4-Ezrin pathway is one.

The role of a Mo25-Mst4 interaction in the control of polarity

appears conserved between yeast and human. Nak1 is an

S. pombe S/T kinase and is the closest yeast homolog of the

mammalian Mst kinase family. S. pombe displays a cylindrical

morphology during vegetative growth, characterized by F-actin

accumulation and cell growth at one cell tip during the early

phase of the cell cycle, whereas forming two growth tips at

a later stage (Mitchison and Nurse, 1985). Control of this

mono- and bipolar phenotype is exerted by a complex of at

least four proteins: Mo25, Nak1, Orb6, and Mor2 (Kanai et al.,

2005; Mendoza et al., 2005). Nak1 is at the center of the

complex by forming direct physical interactions with Mo25,

Orb6, and Mor2 (Kanai et al., 2005). The complex plays a pivotal

role in single-cell polarity and actin polymerization at the growing

cell tip. Temperature-sensitive inactivating mutations of these

genes result in spherical growth (Kanai et al., 2005; Mendoza

et al., 2005). It is of interest that the S. pombe Mst homolog

Nak1 interacts with the S. pombe Mo25 homolog to control

polarized actin cap formation, a structure that could be consid-

Figure 7. Model

Strad and Mo25 interact and activate Lkb1 in

the cytoplasm. This results in the translocation

of Mst4 from Golgi vesicles to the apical

membrane and the polarized localization of Ezrin.

Subsequently, Mst4 phosphorylates and thereby

activates Ezrin, which is an essential step in the

formation of brush borders at the apical site.

ered reminiscent of actin-based brush

borders in human epithelial cells.

In Dictyostelium discoideum, the Mst

family is represented by severin kinase

(SvkA). SvkA knockout cells are severely

defective in aspects of polarity, as indi-

cated by disturbances in cytokinesis and

directed slug movement (Rohlfs et al.,

2007). In our experiments with Mst4, we

only observed an effect on apical brush

border formation and noticed no defects

in cytokinesis or migration (data not

shown). However, reduced expression of

Ysk1/Mst5 and Mst1 in migrating cells

reportedly affects polarized migration

(Preisinger et al., 2004; Katagiri et al.,

2006), suggesting that individual Mst kinase family members

might control different aspects of polarity-related cell behaviors.

Mst4 interacts directly with the Golgi matrix protein GM130

(Preisinger et al., 2004). Translocation to the cell membrane is

dependent on activation of Lkb1 and appears to be required

for the induction of brush borders. We do not know the exact

molecular mechanism underlying this regulated translocation

event. In migrating cells, reducing the expression of Lkb1 atten-

uates the Golgi reorientation toward the direction of migration

and inhibits the polarized migration of these cells (Zhang et al.,

2008). The best-studied kinase downstream of Lkb1 is AMPK.

Recent studies show that AMPK can mediate specific polarity

signals (Lee et al., 2007; Mirouse et al., 2007). A possible mech-

anism for AMPK in polarity might, similar to Lkb1, be its effect on

the assembly and disassembly of the Golgi (Miyamoto et al.,

2008). The notion that vesicle transport is an essential step in

polarity has also been illustrated by the recent observation that

clathrin mediates basolateral polarity by regulating the exit of

basolateral proteins from the Golgi complex (Deborde et al., 2008).

In this paper, we identify Ezrin as a downstream target of Mst4.

Phosphorylation of Ezrin at T567 converts the molecule from

a closed to an open state, enabling the simultaneous binding

of the actin cytoskeleton and the plasma membrane (Niggli

and Rossy, 2008). Ezrin can also recruit GEFs for different

GTPases, thereby enhancing processes essential for brush

border formation, such as actin polymerization (D’Angelo et al.,

2007). The role for Ezrin and Ezrin-binding protein 50 in brush

border formation has been demonstrated by gene knockout

(Morales et al., 2004; Saotome et al., 2004). Both knockouts

had a strongly reduced length and number of microvilli in the

intestine (Morales et al., 2004; Saotome et al., 2004). Moreover,

the observation that active Ezrin-induced brush borders were

polarized in Strad-induced cells, whereas they were uniformly
Developmental Cell 16, 551–562, April 21, 2009 ª2009 Elsevier Inc. 559
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formed in cells without Strad expression (Figure 4C), suggests

that Lkb1 also regulates the localization of Ezrin. Moreover,

polarized localization of active Ezrin is still observed in shMst4

cells, suggesting that Mst4 is only involved in phosphorylation

of Ezrin and not the polarized recruitment of Ezrin to the apical

domain (Figure 4C).

In conclusion, our data indicate that Lkb1 can regulate specific

polarization events by signaling toward different effector path-

ways. One of these pathways includes the translocation of

Mst4 to the apical domain and, subsequently, localized Ezrin

phosphorylation resulting in the formation of brush borders.

EXPERIMENTAL PROCEDURES

Antibodies and Constructs

Antibodies: anti-HA-tag (12CA5) was from Boehringer Mannheim. Anti-Myc

tag (sc-789) was obtained from Santa Cruz Biotechnology. Anti-Flag (F1804)

was obtained from Sigma-Aldrich. Anti-Mo25 (2027-1) and anti-Mst4 (2049-1)

were obtained from Epitomics. Anti-Strad has been described in Baas et al.

(2004). F-actin was stained with rhodamine-labeled phalloidin (Molecular

Probes).

Plasmids: GST-Mo25, Myc-Lkb1, and Flag-Strad have been described

previously (Baas et al., 2004). Mst4 was a kind gift from Francis Barr (Preisinger

et al., 2004), pRetrosuper was from Dr. R. Bernards (Brummelkamp et al.,

2004), and WT/T567A Ezrin was from Dr. M. Arpin (Fievet et al., 2004). Mst4

mutants were generated by PCR and cloned in a Myc-tagged pCDNA3.1

vector and in GST-6P-1 (27-4597-01; Amersham Biosciences) using the

BamHI and XbaI restriction sites. The following primers were used to generate

the different Mst4 mutants:

MST4h-1 50-AAGAATTCATGGCCCACTCGC-30

MST4h-2 50-TTTCTAGAAAATGAATTTGTGTTTC-30

MST4h-3 50-AAGAATTCATGGTAAAAAATTCAAAG-30

MST4h-4 50-TTTCTAGAACTCGGAATCAGATTC-30

MST4h-5 50-TTTCTAGAAGGGGGATTCG-30.

Full-length Mst4 was amplified with primers 1 and 5, kinase-GM130

domains with 1 and 4, kinase with 1 and 2, and GM130-Cterm with 3 and 5.

For the knockdown studies of Mst4, we cloned the following primers in

pRetrosuper:

50-GATCTGGTCTGGACTATCTGCATTTTCAAGAGAAATGCAGATAGTCC

AGACCTTTTTA-30

50-AGCTTAAAAAGGTCTGGACTATCTGCATTTCTCTTGAAAATGCAGAT

AGTCCAGACCA-30.

As control, we used nonfunctional scrambled sequences, as follows:

50-GATCTTGAGAGTGGTGATCCATCTTTCAAGAGAAGATGGATCACCA

CTCTCATTTTTA-30

50-AGCTTAAAAATGAGAGTGGTGATCCATCTTCTCTTGAAAGATGGATC

ACCACTCTCAA-30.

For the knockdown studies of Mo25a, we cloned the following primers in

pRetrosuper:

50-GATCTGCAGTAGCTCAACTTGCTCTTCAAGAGAGAGCAAGTTGAGC

TACTGCTTTTTA-30

50-AGCTTAAAAAGCAGTAGCTCAACTTGCTCTCTCTTGAAGAGCAAGTT

GAGCTACTGCA-30

and

50-GATCTCTCCTACTGTTGAATACATTTCAAGAGAATGTATTCAACAGTA

GGAGTTTTTA-30

50-AGCTTAAAAACTCCTACTGTTGAATACATTCTCTTGAAATGTATTCAA

CAGTAGGAGA-30.
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Cell Culture

The HEK293, Caco, and W4 cell lines were maintained in Dulbecco’s modified

Eagle’s medium (DMEM; BioWhittaker) containing 10% heat-inactivated fetal

calf serum (FCS; GIBCO) at 37�C/5% CO2. Cells were passaged by trypsiniza-

tion. HEK293 and W4 cells were transiently transfected with P-PEI (Poly-

science); 2 mg of DNA was mixed with 6 ml of P-PEI (1 mg/ml) in 100 ml of

DMEM, and incubated for 30 min at room temperature. Subsequently, 2 ml

of DMEM with FCS containing 500,000 cells was added to the DNA-PEI

mixture, which was then incubated in a six-well plate for 24 hr. W4 cells with

stable expression of pRetrosuper-siMst4 or -siMo25a were generated by

retroviral transduction and subsequent selection with puromycin 0.5 mg/ml

(Invitrogen). Transfection and production of amphotropic retroviruses and

pRetrosuper are described elsewhere (Berns et al., 2004; Michiels et al., 1995).

Yeast Two-Hybrid Screen

cDNA encoding full-length human MO25 was cloned into the pB38 vector

derived from pBTM116 and used as bait to screen a random primed human

placental cDNA library cloned into the pP6 plasmid derived from the original

pGADGH. Using a mating approach as previously described (Formstecher

et al., 2005), the yeast two-hybrid screen was performed to ensure a minimum

of 50 million interactions tested.

Pull-Down Assays

To assay binding of Mst4 to Mo25a, 10 3 106 HEK293 or W4 cells were seeded

1 day prior to the experiment. Cells were lysed in lysis buffer A (50 mM Tris-HCl

[pH 7.5], 100 mM NaCl, 10 mM MgCl2, 10% glycerol, and 1% NP40), and

centrifuged for 10 min at 14,000 rpm, at 4�C. The supernatant was incubated

with the indicated antibody or GST-Mo25 protein (5 mg) in the presence of

protein G-coated or GSH-coated beads, respectively (Sigma) at 4�C for 1 hr

while rotating. Beads were washed five times in lysis buffer A and resuspended

in 20 ml of SDS sample buffer. Protein complex formation was determined by

western blot analysis.

GST fusion proteins were purified from BL21 bacteria. Following overnight

culture, protein expression was induced with IPTG (0.1 mM, 4 hr, 37�C).

Bacteria were centrifuged and resuspended in PBS, 1% Triton X-100, and

10% glycerol and lysed by sonication (2 3 30 s, duty cycle 50% and output

6, Branson sonifier 250). Lysates were cleared by centrifugation for 15 min

at 14,000 rpm, at 4�C. GST fusion proteins were isolated by GSH-coated

beads while rotating head over head at 4�C for 30 min. Samples were then

washed five times with lysis buffer A and used as indicated (2 mg of GST fusion

protein per pull-down).

Confocal and Phase Contrast Microscopy

Forty-eight hours after transfection, cells were fixed by 3.7% formaldehyde

(Merck) in PBS for 5 min and permeabilized with 0.5% Triton X-100 in PBS.

Immunostainings were performed at 37�C for 1 hr with the indicated anti-

bodies. Fluorescent imaging was done with a Leica confocal laser scanning

microscope.

Electron Microscopy Fixation and Preparation

Confluent Mst4 shRNA and Scr shRNA Caco cells were fixed in 2% glutaralde-

hyde, 0.25% CaCl2, 0.25% MgCl2, and 0.1 M Na cacodylate (pH 7.4) at room

temperature for 4 hr. After rinsing in Na cacodylate (pH 7.4) at 4�C, cells were

postfixed with 1% OsO4 and 1.5% K3Fe(III)(CN)6 in 0.065 M Na cacodylate

buffer (pH 7.4) for 2 hr at 4�C in the dark. Dehydration was done with ethanol

and the cells were flat embedded in Epon. Ultrathin sections were cut perpen-

dicular to the coverslip and stained with uranyl acetate and lead citrate.

In Vitro Kinase Assay

Peptide phosphorylation was measured using dissociation-enhanced lantha-

nide fluorescence immunoassay (DELFIAÆ) per the manufacturer’s instruc-

tions (Perkin Elmer). Specific antibody against phospho-Ezrin (T567) was

from Cell Signaling Technology (3141). Lanthanide-labeled secondary anti-

bodies were from Perkin Elmer. Fluorescence was analyzed using the DELFIA

Victor 1420 multilabel counter and its accompanying software. (DELFIAÆ is

a registered trademark of Perkin Elmer.) Varying amounts of kinase were

added to a reaction volume of 50 ml containing 1.5 mM biotinylated substrate

peptide in streptavidin-coated 96-well plates. Reactions proceeded for
Inc.
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30 min at room temperature. Excess reagent was removed by washing the

plate, and phosphorylated peptides were detected using unlabeled anti-phos-

pho-Ezrin primary antibodies and lanthanide-labeled secondary antibodies.

Acidic enhancement solution was added per the manufacturer’s instructions,

to dissociate the lanthanide ions from the antibody, and stable fluorescent

lanthanide chelates were quantified by time-resolved fluorescence.

SUPPLEMENTAL DATA

Supplemental Data include one figure and can be found with this article online at

http://www.cell.com/developmental-cell/supplemental/S1534-5807(09)00044-6.
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