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In this paper we prove a generalization of the stability of approximately additive
mappings in the spirit of Hyers, Ulam, and Rassias. € 1994 Academic Press, Inc.

INTRODUCTION

Questions concerning the stability of functional equations seem to have
been first studied by Ulam [6]. In 1941 Hyers [1] showed that if § >0 and
f:E,— E,, with E, and E, Banach spaces, such that

If/(x+y)=flx}=fy)<d, forall x, yeE,,
then there exist a unique T': E, — E, such that
T(x+y)=T(x)+ T(y)
and
I/(x) = T(x) <9,

for all x, ye E,, and if f(tx) is continuous in 7 for each fixed x, then T is
a linear mapping.

In 1978 a generalized solution to the Ulam problem for approximately
linear mappings was given by Rassias [5]:

Consider E,, E, to be two Banach spaces and f: E; —» E, to be a map-
ping such that f(zx) is continuous in ¢ for each fixed x. Assume that there
exist # >0 and pe [0, 1) such that

Ifx+ ) =) =l g

forany x, yekE,.
x| ?+ I ph? = '
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Then there exists a unique linear mapping T: E, — E, such that

/) =Tl __20
=7 S22

forany xekE,.

Isac and Rassias [3,4] obtain further generalizations of the Hyers—
Rassias theorem (see [2] for a report on the development of the subject

during the last 50 years).

We denote by (G, + ) an abelian group, by (X, ||-|) a Banach space, and

by ¢: G x G — [0, c0) a mapping such that

B(x, y):= Y 27*p(2*x, 2Xy) < 0

k=0

for all x, ye G.

THEOREM. Let! f: G — X be such that

Ifx+»)—f—fOWII<olx, y), foral x, yeG.

Then there exists a unique mapping T: G — X such that

T(x+ y)=T(x)+ T(y), forall x,yegG,
and

IA(x) =Tl <3¢(x, x),  forall xeG.

Proof. For x =y inequality (2) implies
1/(2x) = 2 (x)[l < o(x, x).
Thus
127 (2x) ~ f(x)I < Jo(x,x)  forall xeG.

Replacing x by 2x, inequality (5) gives

127 /(2%x) — f(2x)|| < 30(2x, 2x) forall xeG.

From (5) and (6) it follows that

1272(2%%) — F(X) < 127(2%x) =27 'f (2x)|
+127(2x) = f(x)l
<27 '1o(2x, 2x) + Lo(x, x).

(1)

(2)

(4)
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Hence
1272£(2%x) = SO < 5 Lo(x, x) + 39(2x, 2x)] (7)

for all xeG.
Replacing x by 2x, inequality (7) becomes

1272/(2°x) — f(2x0)l < 3 L0(2x, 2x) + 3(2°x, 2%X)],
and therefore

1273 (2°%) — f(x) < 127 (2%x) =27 2x)| + 127 (2x) — f(x)]
<27 [o(2x, 2x) + 1(2%x, 22x)] + Loo(x, x).

Thus
1273%(2%x) — f(x)l

1 1 1
<§l:(p(x,x)+§(p(2x, 2x)+§—2-(p(22x, 22x):| (8)

for all xeG.
Applying an induction argument to n we obtain

n—1
1277(2%) — f()I <3 ), 27 (2%, 2%x) 9)
k=0

for all xeG.
Indeed,

”2A"‘+”f(2"“x)—f(x)|| < “27(n+ly'(2n+1x)_2—1f(2x)|l
+ 127 2% £,

and with (9) and (5) we obtain
n—1
2=V ) — fO <2718 Y 275025 1x, 25 1x) + Lo(x, x)
k=0

=1 Y 27%p(2*x, 2*x).

k=0

We claim that the sequence {2 "f(2"x)} is a Cauchy sequence. Indeed,
for n>m we have
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12777 (2"x) =27 "f(27x) | =2 727" A2 2 — f(27x))|

<27m% Z 24k¢(2k+mx’ 2k+mx)

Taking the limit as m — oo we obtain

lim |277f(2"x) —27"f(2"x)|| = 0.

nm— o

Because of the fact that X is a Banach space it follows that the sequence

{27"f(2"x)} converges.
Denote

T(x)= fim TX),

now 2"

We claim that 7 satisfies (3).
From (2) we have

12" +2%) — f(2"x) = f2"V) < @(27x, 2"y)
for all x, y e G. Therefore
1277f(2"x +2"p) = 277f(27x) = 27 (2" S 27"(27x, 27).
From (1) it follows that

lim 2 "(2"x, 2"y)=0.

Then (10) implies
IT(x+y)— T(x)—T(y)| =0.
To prove (4), taking the limit in (9) as n — oo, we obtain

(T(x)— f(x) <3d(x, x), for all xeG.

(10)

It remains to show that 7 is uniquely defined. Let F: G — X be another

such mapping with
Flx+ y)=F(x)+ F(y)

and (4) satisfied.
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Then
I70x) = Fle)ll = |277T(2"%) = 27 "F(2"x)|
SI277T(2%) = 272" | + 27 7(27x) = 27 "F(27x )|
<27"4G(27x, 27x) + 2775 (2"x, 27x)
=27"®(2"x, 2"x)
=2-" i Z’k(p(Zk*"x, 2k+nx)
k=

=0
=Y 27 Pp(2%x, 27x).
p=n
Thus
| T(x)— F(x)|| < Z 27 Pp(2%x, 27x) forall xeG. (11)

p=n

Taking the limit in (11) as # —» oo we obtain

T(x)= F(x) forall xeG. Q.E.D.

APPLICATION

Let G be a normed linear space and define H: R, xR_ — R, and
@o: R, —» R, such that

@o(4)>0, forall 1>0,
0o(2)<2
@0 (24) < @ (2) @po(A), forall A>0

H(2t, s) < @o(L) H(t, s), forall 1, seR, ., i>0.

We take in our theorem

o(x, yy=H(|x|l, Iyll).
Then
@(2%x, 2%y)y = H(2*||xIl, 2%yl
< @o(2%) H(|x)l, Iyl
< (o 20 H(lIx, 1)),
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and because ¢,(2) <2 we have

P(x, y) < Z 27 (o (2 H(lIx, I ¥1l)

k=0

= H(||x|, ,
oy HO )

and the relation (4) becomes

1)~ TCol <5 3% 1) <5

—_—(’Z@H(HXH, lIx11)

or

1
1/ () = Tl S 57— =53 @ollixll) H(1, 1)

®0(2)

Remark. The above result generalizes results of Isac and Rassias [3, 4]
and Rassias [5] because if f(¢x) is continuous in ¢ for each fixed x and

T(x)= lim 27"f(2"x),

n-—+ o0

then T 1s a linear mapping (see [5]).
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