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KEYWORDS Summary Butyric acid, an extracellular metabolite from periodontopathic bacteria, induces
Periodontal diseases; apoptosis in murine thymocytes, splenic T-cells, as well as human Jurkat T-cells and peripheral
Periodontopathic blood mononuclear cells. Butyric acid-induced apoptosis is mediated by ceramide production, as
bacteria; well as reactive oxygen species (ROS) synthesis in mitochondria and subsequently JNK activation
Butyric acid; in MAP kinase cascades. Although the production of ROS and ceramide by themselves do not
Short-chain fatty acids; completely influence butyric acid-induced apoptosis, it can be concluded that ROS and ceramide
Apoptosis production are the major contributors to butyric acid-induced apoptosis. Human gingival

fibroblasts rescue butyric acid-induced T-cell apoptosis via proinflammatory cytokines, which
are produced by fibroblasts stimulated with butyric acid. Moreover, T-cell adherence to fibro-
blasts is enhanced by butyric acids and butyric acid-induced T-cell apoptosis is down-regulated by
T-cell adhesion to gingival fibroblasts. Butyric acid significantly suppresses the viability of
inflamed gingival fibroblasts and induces apoptosis in a dose-dependent manner, whereas intact
gingival fibroblasts isolated from healthy humans are resistant to butyric acid.

This review focuses on the effects of butyric acid and its possible contribution to destruction of
gingival tissues and modulation of local immunity at gingival sites (175/max. 200).
© 2009 Japanese Association for Dental Science. Published by Elsevier Ireland. All rights reserved.
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1. Introduction Recent studies in periodontal medicine suggest an association

between human periodontal disease and certain systemic
Adult periodontitis is a chronic destructive disease involving disorders such as diabetes mellitus, pneumonia, heart dis-
host inflammatory responses to Gram-negative bacteria. ease and preterm birth [1]. The severe destructive adult

Table 1 Concentration of short-chain fatty acids in the culture supernatant of each bacterial strain.

Culture supernatants Short-chain fatty acids level (mM)?

Acetic Propionic n-Butyric iso-Butyric n-Valeric iso-Valeric
BHIP 4.9+0.2 ND¢ 0.5+ 0.1 ND ND ND
P. gingivalis FDC381 (24 h)¢ 12.6 + 0.4 2.2+0.2 18.1 £ 0.6 4.7 +0.3 ND 9.8+ 0.5
P. gingivalis FDC381 (48 h) 12.7 £ 0.3 5.9+0.2 27.1+0.9 7.5+0.3 ND 14.7 £ 0.3
P. gingivalis W83 13.2 +£1.3 5.8 +£0.1 21.0+1.8 3.8+0.4 0.3 +0.1 12.6 £ 0.2
P. gingivalis ATCC 33277 8.5+0.2 2.5+0.1 18.9 £1.6 2.8+0.2 ND 6.7 £ 0.1
P intermedia ATCC 25611 12.8 £2.4 19.1 £2.0 0.1+0.1 4.7+ 0.4 ND 3.4+0.3
P. nigrescens ATCC 33563 15.4 +£1.0 ND ND 1.5+0.2 ND 4.5+ 0.1
F. nucleatum ATCC 33568 16.1 £ 1.5 4.6 £0.3 26.8+1.9 ND 0.2+0.1 ND
F. nucleatum ATCC 23726 12.2 £1.0 3.3+0.2 21.3+2.8 ND ND ND
C. ochracea ATCC 33596 8.6 +1.2 0.7+0.3 ND ND ND 0.2 +0.1
A. a.¢ ATCC 43718 (Y4) 14.1 +£1.3 ND ND ND ND ND
E. coli K235 5.2+0.3 ND ND ND ND ND

@ SCFAs present in the 48-h cultured supernatants were analyzed by gas-chromatography. Each measurement was based on the results of
three independent experiments; results are mean + SD.

b Brain Heart Infusion used as control.

© Not detected.

4 P gingivalis FDC 381 cultures grown for either 24 or 48 h.

€ Aggregatibacter actinomycetemcomitans.

Table 2 Cellular differences in sensitivity to apoptosis induced by culture supernatants.

Culture supernatants DNA fragmentation (%)

Jurkat U-937 THP-1 Cag-22 Gin 1°
BHI 7.2+1.1 5.4+ 0.4 6.4+ 0.4 8.9+0.2 8.2+ 4.1
P. gingivalis FDC381 28.4+2.3 24.2 +2.1 24.4+21 NT¢ NT
P. gingivalis W83 23.4+2.8 27.5+2.8 27.5+1.8 NT NT
P. gingivalis ATCC 33277 28.9+1.7 21.4+3.2 28.8+2.0 9.8+ 1.8 9.5+3.8
P. intermedia ATCC 25611 7.4+1.2 6.9+ 0.8 8.8+0.4 8.4+1.8 7.4+ 4.4
P. nigrescens ATCC 33563 6.8+1.3 49+ 0.7 6.8 +0.8 8.2 +2.1 8.2 +£5.1
F. nucleatum ATCC 33568 58.4 + 3.2 36.4+1.8 37.2+1.5 NT NT
F. nucleatum ATCC 23726 55.8 +2.8 38.2+2.1 39.8 + 3.1 11.1+1.4 11.1+£3.4
C. ochracea ATCC 33596 7.4+1.8 6.8+ 0.8 6.3+0.4 NT NT
A. a. ATCC 43718 (Y4) 9.8+1.4 7.2+ 0.5 7.1+0.9 9.2+4.3 11.5 £ 4.1
E. coli K235 7.6 +0.8 5.5+0.4 8.2+1.2 NT NT
Butyric acid® 1.25 mM 12.4+2.6 9.8+1.2 19.8 £2.8 9.1+3.2 6.2+2.8
5.0 mM 28.9 + 3.1 26.5+2.4 28.4+3.4 10.8 £2.8 11.2 £ 3.1

2 Cells were treated with 48-h cultured supernatants for 21 h. Harvested cells were assayed by the DPA assay (46). Each measurement was
based on the results of three independent experiments; results are mean =+ SD.

 Human cell lines: Jurkat; T lymphoma cell, U937 and THP-1; monocytic leukemia cell, Ca9-22; oral epitherial carcinoma cell, Gin 1;
gingival fibroblast.

¢ Brain Heart Infusion used as control.

9 Not tested.

€ Aggregatibacter actinomycetemcomitans.

f Sodium butyrate.
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periodontitis is caused by a mixed bacterial infection with a
combination of certain periodontopathogens [1]. These bac-
teria produce a variety of virulence factors such as proteases,
lipopolysaccharides (LPS), fimbriae, and butyric acid.
Butyric acid is one of the short-chain fatty acid (SCFA), an
extracellular metabolite from anaerobic bacteria, and
described as a saturated unbranched alkyl monocarboxylic
acid of four carbon atoms [2]. Most of the work on SCFA has
been performed with the intestinal microflora of human and
animal hindguts. Butyric acid exhibits several unexpected
properties when added to cells in culture and also in vivo. The
main effects can be summarized as follows: (1) arrest of cell-
proliferation and induction of apoptosis, (2) alteration of cell
morphology and ultrastructure, and (3) alteration of gene
expression. It is important to note that all of the effects of
butyric acid are reversible. The other SCFA are much less
effective or not effective at all in cell growth and gene
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Figure 1

expression. Butyric acid strongly inhibits histone deacety-
lases (HDACs), leading to the alteration in chromosomal
stricture and gene expression [3,4].

Periodontopathic bacteria produce high levels of butyric
acid and induces apoptosis in murine- and human T- and B-cells
[5—7]. Emerging evidence indicates the bacterial modulation
of apoptosis in an important part of pathogenesis. Specific
pathogens or their extracellular products may induce host cell
apoptosis [8,9]. For example, apoptosis has been observed in
T-cells from patients with AIDS, as well as in activated per-
ipheral blood lymphocyte cultures infected with HIV-1[10,11].
In chronic inflammatory disorders, individuals with chronic
hepatitis C have high hepatocyte loss due to apoptosis [12].
Bacteria such as Helicobacter pylori can also induce macro-
phage apoptosis [13]. Apoptosis is a key event in the regulation
of the lifespan of terminally differentiated leukocytes in
chronic inflamed human gingival tissue [14,15].

BA-treated

URLE

Effect of butyric acid on Jurkat cell adhesion to human fibroblast Gin 1 cell monolayer. Jurkat cells were directly co-

cultured with Gin 1 cells in the presence or absence of 5 mM butyric acid for 30, 60 and 120 min. The number of Jurkat cells adherent to
Gin 1 cells was counted under a phase-contrast microscope (A and B). In other experiments, Jurkat or Gin 1 cells were pretreated with
5 mM butyric acid for 2 h, and then co-cultured with Gin 1 or Jurkat cells, respectively, for 1 h. The number of Jurkat cells adherent to
Gin 1 cells was counted by using a phase-contrast microscope. The results are expressed as the means =+ standard errors of the means
(erro bars) of three different experiments with triplicate cultures. Values that were significantly different from those of corresponding

negative controls at P < 0.01 are indicated by asterisks.
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This review focuses on the possible contribution of butyric
acid to the destruction of gingival tissues and the modulation
of local immunity at gingival sites.

2. Metabolic by-products of
periodontopathic bacteria

Previous investigations showed that the butyric acid concen-
tration in subgingival plaque from a periodontitis site can
reach 14.4—20 mM, and that its concentration in periodontal
pockets is correlated with the severity of periodontal dis-
eases [16—18]. Butyric acid was proposed to be an important
virulence factor in these periodontopathogens.

The respective metabolism of periodontopathic bacteria
such as Porphyromonas, Prevotella, and Fusobacterium spp.,
is characterized by the production of an identifiable finger-
print of SCFA, which are major by-products of anaerobic
metabolism that are released into the microenvironment
at the infection site [19—21]. Previous studies have demon-
strated that these SCFA exert inhibitory effects on gingival
fibroblast proliferation and phagocytosis. These studies also
demonstrated that SCFA present in the culture filtrates of
Porphyromonas gingivalis, Prevotella losheii, and Fusobac-
terium nucleatum, greatly inhibited murine T- and B-cell-
proliferation and cytokine production [22] (Table 1).

3. Butyric acid-induced apoptosis

3.1. Cellular differences in sensitivity to
apoptosis induced by butyric acid

The addition of high concentrations of butyric acid (5 mM)
inhibited murine T- and B-cell-proliferation and -induced
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apoptosis [5,6]. Similar results were obtained with the cell
lines of macrophages and monocytes [14]. However, fibro-
blasts and oral epithelial cells are resistant to butyric acid-
induced apoptosis. Nevertheless, inflamed gingival fibro-
blasts from individuals with adult periodontitis were highly
susceptible to mitochondria- and caspase-dependent apop-
tosis induced by butyric acid, compared to healthy gingival
fibroblasts [23] (Table 2).

3.2. Cellular events involved in butyric acid-
induced apoptosis

We previously investigated the contribution of reactive
oxygen species (ROS), mitochondria, ceramide and MAP
kinases in butyric acid-induced human Jurkat cell apoptosis
[7]. Following exposure of the cells to butyric acid, a pro-
nounced accumulation of ROS was observed. Exposure of
cells to butyric acid resulted in an increase in cellular
ceramide concentrationsin a time-dependent fashion. Buty-
ric acid-induced apoptosis was inhibited by a potent inhi-
bitor of sphingosine kinase. Using anti-extracellular signal-
regulated kinase (ERK), anti-c-Jun N-terminal kinase (JNK),
and anti-p38 phosphospecific antibodies, we showed a
decrease in ERK, but not in JNK and p38 phosphorylation
after treatment of cells with butyric acid. Pretreatment of
cells with the JNK inhibitor attenuated the effect of butyric
acid on apoptosis, whereas no effect was seen with the p38
inhibitor or the ERK inhibitor. These data indicate that
butyric acid-induced T-cell apoptosis is mediated by cera-
mide production, ROS synthesis in mitochondria, and JNK
activation in the MAP kinase cascade. These results were
further confirmed by the expression profile of butyric
acid-treated Jurkat cells obtained by means of cDNA arrays
[24—29].
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Figure 2  Analysis of Jurkat cells that adhere to human gingival fibroblast Gin 1 cells. Jurkat cells were directly co-cultured with Gin 1
cells in the presence of 5 mM butyric acid. The viability of Jurkat cells which adhered or unadhered to Gin 1 cells was examined by
SYTOX green nucleic acid staining (A), followed by confocal laser scanning microscopy (31). The results are expressed as the
means + standard errors of the means (error bars) of three different experiments with triplicate cultures. The viability of Jurkat cells
that were adherent or non-adherent to Gin 1 cells was also examined by agarose gel electrophoresis of DNA extracted from Jurkat cells

(B). Lane U, unadhered T-cells; lane A, adhered T-cells.
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4. Importance of cell-cell communication in
inhibiting T-cell apoptosis

Previous reports have demonstrated the direct and indirect
effects of human gingival fibroblasts (HGF) on the suscept-
ibility of T-cells to butyric acid-induced apoptosis. We have
reported that human gingival fibroblasts rescue butyric acid-
induced T-cell apoptosis via proinflammatory cytokines such
as interleukin (IL) -6 and IL-11, which are produced by
fibroblasts stimulated with butyric acid [30]. The number
of Jurkat T-cells adherent to HGFs was significantly increased
following the addition of butyric acid. All Jurkat cells that
adhered to HGFs remained viable, while the non-adherent
Jurkat cells exhibited marked apoptosis. The increase in T-
cell adhesion to HGFs was also observed when Jurkat cells,
but not Gin 1 cells, were pretreated with butyric acid. The
expression levels of CD44, very late antigen (VLA)-2 and VLA-
5, but not leukocyte function-associated antigen 1 (LFA-1)
and VLA-4 expression on Jurkat cells were increased follow-

ing treatment with butyric acid [31—37]. These results indi-
cate that T-cell adherence to fibroblasts is enhanced by
butyric acid, and that butyric acid-induced T-cell apoptosis
is down-regulated by T-cell adhesion to HGFs through an
interaction with the adhesion molecules CD44, VLA-2 and
VLA-5 expressed on T-cells stimulated with butyric acid
(Figs. 1-3).

5. Effects of butyric acid on microbial
interactions

SCFAs inhibit the growth of several strains of oral streptococci
and modulate biofilm-formation (unpublished data). Recent
studies showed that latently infected cells harbor the HIV-1
proviral DNA genome primarily integrated into heterochro-
matin, allowing the persistence of transcriptionally silent
proviruses [38,39]. It was demonstrated that HDAC inhibitors
such as trichostatin A and sodium butyrate could induce viral
gene expression [40—43]. Hypoacetylation of HDACs is
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Figure 3  Butyric acid induces apoptosis in inflamed gingival fibroblasts. (A) Healthy gingival fibroblasts (HGF; Gin-1, N23, N32, and

GF7) and inflamed gingival fibroblasts (IGF; F22-G, F33-G, M38-G, and F42-G) were cultured (A) with the indicated amount of butyric
acid for 24 h and (B) in the presence of 5 mM butyric acid for the indicated time periods. Harvested cells were stained with DAPI and
counted. The results are expressed as the mean =+ errors of the means (error bars) of three different experiments. (C) Agarose gel
electrophoresis of DNA. HGFs (Gin-1, N23, and GF7) and IGFs (F22-G, F33-G, M38-G, and F42-G) were cultured in the absence (lanes 1,
3,5,7,9, 11, and 13) or presence (lanes 2, 4, 6, 8, 10, 12, and 14) of 5 mM butyric acid (BA). (D) Nuclear morphologies of gingival
fibroblasts treated with butyric acid. HGF (N23, upper panels) and IGF (M38-G, lower panels) were cultured in the absence (left panels)
or presence (right panels) of 5 mM butyric acid (BA) and stained with DAPI. Representative results from the three independent
experiments. The scale bars, 10 um.



80

K. Ochiai, T. Kurita-Ochiai

Epithelial
cells

IL 6, IL-11
from HGFs

2) Direct effects of HGFs
(cellular adhesion)
Expression of

g% A) High concentration of butyric acid
0
- > & ; I Cell death
% @ =5 (Apoptosis)
g T cells
................. Effects Of ﬁbroblasts [
B) Low or moderate concentrations
. of butyric acid Hsalbiy
1) Indirect effects of HGFs gmgwal tissue
(cytokines) o

Partlal rescue
from
apoptosis

_|_

Rescue
from
apoptosis

@...

Periodontopathic bacteria (Butyric acid)

N

ARy

Figure 4

involved in the maintenance of HIV-1 latency by repressing
viral transcription [40,41,44]. Chromatin immunoprecipita-
tion assays revealed that the corepressor complex containing
HDAC1 and AP-4 was dissociated from the HIV-1 long terminal
repeat promoter upon stimulation with culture supernatant
of P. gingivalis containing butyric acid [45]. P. gingivalis-
infection could induce HIV-1 reactivation via chromatin mod-
ification and butyric acid appears to be responsible for this
effect. Therefore, periodontal diseases could be a risk factor
for HIV-1 reactivation in infected individuals and might con-
tribute to the systemic dissemination of the virus.

6. Conclusions

Butyric acid, a metabolic by-product of periodontopathic
bacteria, causes many different effects on periodontal tis-
sue. In the series of our experiments, we clearly demon-
strated that high concentration of butyric acid induces
cytotoxicity and apoptosis in many different cell types. Some
of the properties of butyric acid, i.e., its ability to alter
chromosomal structure and gene expression in many differ-
ent cell types, may influence the microenvironment at the

- - > ";._v____
- Fibroblasts
i ) Ee—— cé“——-=
) - 4

Effects of butyric acid on the periodontal tissue.

infection sites of periodontopathic bacteria. Therefore,
butyric acid could contribute to the destruction of gingival
tissues, induce alterations in immunomodulation, and play a
role in certain systemic diseases as well as in microbial
infections. In the contrast to these effects, low or modulate
concentrations of butyric acid induce profitable effects on
periodontal tissue such as promotion of cell growth and
healing of injured tissue (data not shown). Moreover, butyric
acid-induced T-cell apoptosis is down-regulated by T-cell
adhesion to gingival fibroblasts through an interaction with
the adhesion molecules, and proinflammatory cytokines that
produced by fibroblasts in the healthy gingival tissue (Fig. 4).
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