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In a recent paper, we presented a nonperturbative higher order Generalized Uncertainty Principle (GUP)
that is consistent with various proposals of quantum gravity such as string theory, loop quantum grav-
ity, doubly special relativity, and predicts both a minimal length uncertainty and a maximal observable
momentum. In this Letter, we find exact maximally localized states and present a formally self-adjoint
and naturally perturbative representation of this modified algebra. Then we extend this GUP to D di-
mensions that will be shown it is noncommutative and find invariant density of states. We show that
the presence of the maximal momentum results in upper bounds on the energy spectrum of the free
particle and the particle in box. Moreover, this form of GUP modifies blackbody radiation spectrum at
high frequencies and predicts a finite cosmological constant. Although it does not solve the cosmological
constant problem, it gives a better estimation with respect to the presence of just the minimal length.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

The modification of the Heisenberg uncertainty principle in the
context of the Generalized Uncertainty Principle (GUP) and the
Modified Dispersion Relation (MDR) has attracted much attention
in recent years [1]. This interest arises from various theories of
quantum gravity such as string theory [2–5], loop quantum gravity
[6], noncommutative spacetime [7–9], and doubly special relativity
(DSR) [10–12]. All GUP proposals imply the existence of a minimal

length scale of the order of the Planck length �Pl =
√

Gh̄
c3 ≈ 10−35 m

where G is Newton’s gravitational constant (see for instance [13–
32]). Moreover, a perturbative GUP proposal that is consistent with
DSR theories is studied in Refs. [33–38].

Recently, we have proposed a nonperturbative higher order
generalized uncertainty principle which implies both a minimal
length uncertainty and a maximal observable momentum [39]

[X, P ] = ih̄

1 − β P 2
. (1)

This commutation relation agrees with Kempf, Mangano and Mann
(KMM) [8] and Noucier’s [30] proposals to the leading order of the
GUP parameter β . In momentum space, the position and momen-
tum operators can be written as [39]

Pφ(p) = pφ(p), (2)
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Xφ(p) = ih̄

1 − βp2
∂pφ(p). (3)

So the completeness relation and the scalar product take the fol-
lowing form:

〈ψ |φ〉 =
+1/

√
β∫

−1/
√

β

dp
(
1 − βp2)ψ∗(p)φ(p), (4)

〈
p
∣∣p′〉 = δ(p − p′)

1 − βp2
. (5)

Also the momentum of the particle is bounded from above

Pmax = 1√
β

, (6)

and the absolutely smallest uncertainty in position is

(�X)min = 3
√

3

4
h̄
√

β. (7)

Approximate maximally localization states (using KMM approach)
and quantum mechanical and semiclassical solutions of the har-
monic oscillator have been also obtained in this framework [39].

Here, we first find maximally localized states using Detournay,
Gabriel and Spindel approach. Then we present a formally self-
adjoint representation and study the problems of the free particle
and the particle in a box and show that their energy spectrum are
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bounded from above. We also address the generalization to D di-
mensions, validity of semiclassical approximation, invariant density
of states, cosmological constant, and blackbody radiation in this
GUP framework.

2. Maximally localized states

In KMM approach the maximally localized states are the solu-
tions of the following equation [8](

X − 〈X〉 + 〈[X, P ]〉
2(�P )2

(
P − 〈P 〉)

)
|ψ〉 = 0, (8)

where [X, P ] = i f (P ). However, unlike the ordinary quantum me-
chanics where f (P ) = 1h̄ and therefore 〈 f (P )〉 = h̄ for all states,
in general, the expectation value of [X, P ] depends on the state
considered [40,39]. So, except f (P ) ∼ 1 + β P 2, it is impossible,
for an arbitrary function f (P ), to write any exact solution for
the above equation (see [39] for an approximate solution). On the
other hand, Detournay and collaborators proposed an alternative
general scheme for finding such states based on a constrained vari-
ational principle [40]. In this framework, the maximally localized
states are the solutions of the following Euler–Lagrange equation
in momentum space
[−(

f (p)∂p
)2 − ξ2 + 2a

(
i f (p)∂p − ξ

)
+ 2b

(
v(p) − γ

) − μ2]ψ(p) = 0, (9)

where a and b are Lagrange multipliers and

(�X)2
min = min

〈ψ |X2 − ξ2|ψ〉
〈ψ |ψ〉 ≡ μ2, ξ = 〈ψ |X |ψ〉

〈ψ |ψ〉 ,

γ = 〈ψ |v(p)|ψ〉
〈ψ |ψ〉 . (10)

Here v(p) is an arbitrary function whose expectation value is finite
(see [40] for details). Now if we define

z(p) =
p∫

0

f −1(q)dq, (11)

and

z(+Pmax) = α+ > 0, z(−Pmax) = α− < 0, (12)

the normalized solution for b = 0 is [40]

ψML
ξ (p) = C exp

[−iξ z(p)
]

sin
{
μ

[
z(p) − α−

]}
, (13)

where

|C | =
√

2/h̄

α+ − α−
, μ = nπ

α+ − α−
, n ∈N, (14)

and the corresponding spread in position is given by

(�X)min
∣∣
b=0 = π

α+ − α−
. (15)

For our case, i.e., f (P ) = h̄/(1 − β P 2), we obtain

z(p) = h̄−1
(

p − β

3
p3

)
, (16)

and

α+ = + 2

3h̄
√

β
, α− = − 2

3h̄
√

β
. (17)

So the solution is
ψML
ξ (p) =

√
3
√

β

2
exp

[−iξ

h̄

(
p − β

3
p3

)]

× sin

[
μ

h̄

(
p − β

3
p3 + 2

3
√

β

)]

=
√

3
√

β

2
exp

[−iξ

h̄

(
p − β

3
p3

)]

× cos

[
3π

4

√
β

(
p − β

3
p3

)]
, (18)

and

(�X)min
∣∣
b=0 = 3π

4
h̄
√

β. (19)

Note that (�X)min|b=0 corresponds to a (local) minimum with re-
spect to γ and ψML

ξ (p) is normalized subject to the scalar product
presented in Eq. (4). Also the maximally localized states are not
mutually orthogonal

〈
ψML

ξ ′
∣∣ψML

ξ

〉

= 3
√

β

2

+1/
√

β∫

−1/
√

β

dp
(
1 − βp2) exp

[−i(ξ − ξ ′)
h̄

(
p − β

3
p3

)]

× cos2
[

3π

4

√
β

(
p − β

3
p3

)]

= 3
√

β

2

+ 2
3
√

β∫

− 2
3
√

β

dz exp

[−i(ξ − ξ ′)z

h̄

]
cos2

[
3π

4

√
βz

]

=
[

2(ξ − ξ ′)
3h̄

√
β

− 1

π2

(
2(ξ − ξ ′)

3h̄
√

β

)3]−1

sin

[
2(ξ − ξ ′)

3h̄
√

β

]
, (20)

as well as KMM proposal which is due to the fuzziness of space
in both frameworks. Now we can define the quasiposition wave
function as

ψQP(ξ) ≡ 〈
ψML

ξ

∣∣φ〉

=
√

3
√

β

2

+1/
√

β∫

−1/
√

β

dp
(
1 − βp2) exp

[
iξ

h̄

(
p − β

3
p3

)]

× cos

[
3π

4

√
β

(
p − β

3
p3

)]
φ(p). (21)

So the inverse transformation reads

φ(p) = 1√
6
√

βπ h̄

+∞∫
−∞

dξ
exp[− i

h̄ ξ(p − β
3 p3)]

cos[ 3π
4

√
β(p − β

3 p3)]ψQP(ξ). (22)

Moreover, the scalar product of states in terms of quasiposition
wave functions is given by

〈ψ |φ〉 =
+1/

√
β∫

−1/
√

β

dp
(
1 − βp2)ψ∗(p)φ(p)

= 1

6
√

βπ2h̄2

+∞∫
−∞

+∞∫
−∞

+1/
√

β∫

−1/
√

β

dp dξ dξ ′
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× (1 − βp2)

cos2[ 3π
√

β
4 (p − β

3 p3)]
× exp

[
i

h̄

(
ξ − ξ ′)(p − β

3
p3

)]
ψ∗

QP(ξ)ψQP
(
ξ ′). (23)

3. Formally self-adjoint representation

Although the set of Eqs. (2) and (3) is an exact representation of
the algebra presented in Eq. (1), it does not preserve the ordinary
nature of the position operator. Alternatively, we can write P =
f (p) and retain the ordinary form of the position operator, i.e.,
X = x where [x, p] = ih̄. Thus, using Eq. (1) we find d f

dp = 1
1−β f 2

which results in

f (p) − 1

3
β f 3(p) = p. (24)

Consequently, the alternative representation in exact and perturba-
tive forms is

X = x, (25)

P = 1 − i
√

3 + (−2β)1/3(3p + √
9p2 − 4/β )2/3

(2β)2/3(3p + √
9p2 − 4/β )1/3

, (26)

= p + 1

3
βp3 + 1

3
β2 p5 + 4

9
β3 p7 + · · · . (27)

Note that this representation is formally self-adjoint, i.e., A = A†

for A ∈ {X, P }. Also, the presence of the maximal momentum
Pmax = 1/

√
β is manifest from Eq. (26) which occurs at p = 2

3
√

β
.

Now X and P are symmetric operator on the dense domain S∞
with respect to the following scalar product in the momentum
space:

〈ψ |φ〉 =
+ 2

3
√

β∫

− 2
3
√

β

ψ∗(p)φ(p)dp. (28)

We have schematically depicted the behavior of P versus p in
Fig. 1.

In this representation, to write the Hamiltonian, it is more ap-
propriate to use Eq. (27) and express the Hamiltonian perturba-
tively as

H = p2

2m
+ V (x) + β

p4

3m
+ β2 7p6

18m
+O

(
β3), (29)

which agrees with perturbative version of the KMM proposal to
O(β) [29]. In the quantum domain, this Hamiltonian results in the
following generalized Schrödinger equation in position space rep-
resentation:

− h̄2

2m

∂2ψ(x)

∂x2
+ β

3m

∂4ψ(x)

∂x4
− 7β2

18m

∂6ψ(x)

∂x6

+O
(
β3) + V (x)ψ(x) = Eψ(x), (30)

where the extra terms are due to the GUP-corrected terms in
Eq. (29). As mentioned before, this representation is naturally per-
turbative that is apparent from Eq. (30).

Note that for an operator A which is “formally” self-adjoint
(A = A†) such as (25) and (27), this does not prove that A is truly
self-adjoint because in general the domains D(A) and D(A†) may
be different. The operator A with dense domain D(A) is said to be
self-adjoint if D(A) = D(A†) and A = A†. For instance, the posi-
tion operator (25) is merely symmetric in this representation, but
Fig. 1. Schematic behavior of P versus p in the second representation for the ordi-
nary quantum mechanics (red line) and the GUP framework (blue line). (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this Letter.)

not self-adjoint. To see this point, notice that in this representation
and in momentum space, the wave function φ(p) have to van-
ish at the boundaries of the p interval (−2/3

√
β < p < 2/3

√
β ).

So X is now the derivative operator ih̄∂/∂ p on an interval with
Dirichlet boundary conditions. But this means that X cannot be
self-adjoint because all candidates for the eigenfunctions of X (the
plane waves) are not in the domain of X because they do not obey
the Dirichlet boundary conditions. Calculating the domain of the
adjoint of X shows that it is larger than that of X , so X is not a
true self-adjoint operator, i.e.,

+ 2
3
√

β∫

− 2
3
√

β

dp ψ∗(p)

(
ih̄

∂

∂ p

)
φ(p)

=
+ 2

3
√

β∫

− 2
3
√

β

dp

(
ih̄

∂ψ(p)

∂ p

)∗
φ(p) + ih̄ψ∗(p)φ(p)

∣∣
p=+ 2

3
√

β

− ih̄ψ∗(p)φ(p)
∣∣

p=− 2
3
√

β

. (31)

Now since φ(p) vanishes at p = ± 2
3
√

β
, ψ∗(p) can take any arbi-

trary value there. Therefore, although its adjoint X† = ih̄∂/∂ p has
the same formal expression, it acts on a different space of func-
tions, namely

D(X)

=
{
φ,φ′ ∈ L2

( −2

3
√

β
,

+2

3
√

β

)
;φ

( +2

3
√

β

)
= φ

( −2

3
√

β

)
= 0

}
,

(32)

D
(

X†)

=
{
ψ,ψ ′ ∈ L2

( −2

3
√

β
,

+2

3
√

β

)
;no other restriction on ψ

}
.

(33)

To better clarify this point, we can also use the von Neumann’s
theorem [41,42]. Thus, we need to find the wave functions that
satisfy the eigenvalue equation

X†φ±(p) = ih̄∂pφ±(p) = ±iλφ±(x). (34)
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The solutions are

φ±(p) = C±e∓λp. (35)

Since both φ±(p) belong to L2( −2
3
√

β
, +2

3
√

β
), the deficiency indices

are (1,1). Therefore, the position operator is not self-adjoint but
has a one-parameter family of self-adjoint extensions which is in
agreement with the previous result.

3.1. Free particle

In ordinary quantum mechanics, the free particle wave function
up(x) is defined as the eigenfunction of the momentum operator,
namely P̂ up(x) = pup(x) where p is the eigenvalue. Since the mo-
mentum operator in position space is given by P̂ = −ih̄ ∂

∂x , we have

−ih̄
∂up(x)

∂x = pup(x) which has the following solution

up(x) = 1√
2π h̄

exp

(
ipx

h̄

)
, (36)

where the constant of integration is chosen to satisfy

∞∫
−∞

u∗
p(x)up

(
x′)dp = δ

(
x − x′). (37)

In the GUP scenario, to find the momentum eigenfunction in posi-
tion space, we write the eigenvalue equation as

1 − i
√

3 + (−2β)1/3(−3ih̄∂x +
√

−9h̄2∂2
x − 4/β )2/3

(2β)2/3(−3ih̄∂x +
√

−9h̄2∂2
x − 4/β)1/3

u℘(x)

= ℘u℘(x), (38)

where ℘ is the eigenvalue of P . Now, let us take the solution in
the form of Eq. (36)

u℘(x) = Aexp

(
ipx

h̄

)
, (39)

where p = f (℘). Inserting this solution in Eq. (38) results in

1 − i
√

3 + (−2β)1/3(3p + √
9p2 − 4/β)2/3

(2β)2/3(3p + √
9p2 − 4/β)1/3

= ℘, (40)

or

p = ℘ − β

3
℘3, (41)

so we have

u℘(x) = Aexp

[
i

h̄

(
℘ − β

3
℘3

)
x

]
. (42)

The eigenfunctions are normalizable

1 = AA∗
+ 2

3
√

β∫

− 2
3
√

β

dp = 4AA∗

3
√

β
. (43)

Therefore

u℘(x) =
√

3
√

β

2
exp

[
i

h̄

(
℘ − β

3
℘3

)
x

]
. (44)

The momentum eigenfunctions now satisfy
+ 2
3
√

β∫

− 2
3
√

β

u∗
℘

(
x′)u℘(x)dp =

+1/
√

β∫

−1/
√

β

(
1 − β℘2)u∗

℘

(
x′)u℘(x)d℘, (45)

= 3h̄
√

β

2(x − x′)
sin

(
2(x − x′)

3h̄
√

β

)
. (46)

Finally, since ℘max = 1/
√

β , the energy of the free particle E = ℘2

2m
is bounded from above

Emax = 1

2mβ
. (47)

To find Eq. (44) we supposed that the coefficient A does not
depend on the momentum. If we relax this assumption, the max-
imally localized states can be used to find the quasiposition wave
function of the momentum eigenstate φ℘(p) = δ(p − ℘) in a
straightforward way. So inserting φ℘(p) in Eq. (21) results in

ψQP(ξ) =
√

3
√

β

2

(
1 − β℘2) cos

[
3π

√
β

4

(
℘ − β

3
℘3

)]

× exp

[
iξ

h̄

(
℘ − β

3
℘3

)]
, (48)

and therefore A(℘) =
√

3
√

β
2 (1 − β℘2) cos[ 3π

√
β

4 (℘ − β
3 ℘3)]. How-

ever, for this case the solutions are no longer the eigenfunctions
of the position operator which is the consequence of non-self-
adjointness property of the position operator. Thus, in comparison,
Eq. (48) represents the physically acceptable solutions.

3.2. Particle in a box

As another application, let us consider a particle with mass m
confined in an infinite one-dimensional box with length L

V (x) =
{

0, 0 < x < L,

∞, elsewhere.
(49)

The corresponding eigenfunctions should satisfy the following gen-
eralized Schrödinger equation

− h̄2

2m

∂2ψn(x)

∂x2
+ βh̄4

3m

∂4ψ(x)

∂x4
− 7β2h̄6

18m

∂6ψ(x)

∂x6
+O

(
β3)

= Enψn(x), (50)

for 0 < x < L and they also meet the boundary conditions ψn(0) =
ψn(L) = 0. In Refs. [28,18], the above equation is thoroughly solved
to O(β) and its exact eigenvalues and eigenfunctions are found.
Because of the boundary conditions, if we take the normalized
ansatz

ψn(x) =
√

2

L
sin

(
nπx

L

)
, (51)

Eq. (50) is satisfied and we obtain

Hψn(x) =
(
εn + 4

3
βmε2

n + 28

9
β2m2ε3

n

+ 80

9
β3m3ε4

n + · · ·
)

ψn(x) (52)

where εn = n2π2h̄2

2mL2 . Now the comparison between Eqs. (50) and
(52) shows
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En = εn + 4

3
βmε2

n + 28

9
β2m2ε3

n + 80

9
β3m3ε4

n + · · · , (53)

= εn

[1 − i
√

3 + (−2)1/3(3γn +
√

9γ 2
n − 4)2/3

41/3(3γn +
√

9γ 2
n − 4)1/3

]2

, (54)

where γn = 2βmεn . Therefore, to first order of GUP parameter we

have En = n2π2h̄2

2mL2 + β n4π4h̄4

3mL4 which is in agreement with the result
of Ref. [28]. These results show that in this GUP scenario there is
no change in the particle in a box eigenfunctions but there is a
positive shift in the energy spectrum which is proportional to the
powers of β .

We now estimate the energy spectrum using the semiclassical
scheme. For the particle in a box, the Wilson–Sommerfeld formula
∮

p dx = nh, n = 1,2, . . . , (55)

results in

pn = nh

L
. (56)

Since the high energy–momentum P depends on the low energy–
momentum through pn = Pn − (1/3)β P 3

n (24), the semiclassical
energy spectrum is given by

E(SC)
n = P 2

n

2m

=
[

1 − i
√

3 + (−2β)1/3(3pn +
√

9p2
n − 4/β )2/3

√
2m(2β)2/3(3pn +

√
9p2

n − 4/β )1/3

]2

. (57)

It is straightforward to check that the semiclassical result (57) ex-
actly coincide with the quantum mechanical spectrum (53). There-
fore, the number of states is finite

nmax =
⌊

2L

3h
√

β

⌋
, (58)

where x� denotes the largest integer not greater than x, and the
maximal energy of the particle in a box reads

Emax = 1

2mβ
. (59)

So we found that this upper bound is similar to the case of the
free particle. However, note that because of the presence of the
maximum momentum Pmax this result is not surprising. Indeed for
both cases we have Emax = P 2

max/2m. Moreover, for the case of the

harmonic oscillator, the maximal semiclassical energy is E(SC)
max =

1/mβ [39]. This value can be roughly estimated if we associate the
same amount of energy to both kinetic and potential parts of the
Hamiltonian, namely E(SC)

max = E(K )
max + E(P )

max = 2Emax.
It is now worth mentioning that the existence of the upper

bound on the energy spectrum in the GUP scenario is also ad-
dressed by Quesne and Tkachuk in the context of Lorentz-covariant
deformed algebra with minimal length when it is applied to the
(1 + 1)-dimensional Dirac oscillator [43]. For that case the energy
spectrum reads

|En| = c√
β

√
1 + βm2c2 − 1

(1 + βmh̄ωn)2
, n = 0,1,2, . . . , (60)

where m and ω are the oscillator’s mass and frequency, respec-
tively. Therefore both the deformation parameter and the energy
spectrum are bounded from above, i.e.,

|E|max = c√
β

, β <
1

m2c2
. (61)

In comparison, unlike the particle in a box (58), n is not bounded
and ranges from zero to infinity. However, there is no restriction
on β in our formulation in contrary to the covariant version of the
KMM algebra.

3.3. WKB approximation

To check the validity of the Wilson–Sommerfeld quantization
rule for this modified quantum mechanics, we need to show
that the zeroth-order wave function, which satisfies the gen-
eralized Schrödinger equation (30), can be written as ψ(x) �
exp[(i/h̄)

∫
p dx]. So let us take

ψ(x) = eiϕ(x), (62)

where ϕ(x) can be expanded as a power series in h̄ in the semi-
classical approximation, i.e.,

ϕ(x) = 1

h̄

∞∑
n=0

h̄nϕn(x). (63)

So we have

∂2ψ(x)

∂x2
= (−ϕ′2 + iϕ′′)ψ(x), (64)

∂4ψ(x)

∂x4
= (

ϕ′4 − 6iϕ′2ϕ′′ − 3ϕ′′2 − 4ϕ′′′ϕ′ + iϕ′′′′)ψ(x), (65)

...

where the prime indicates the derivative with respect to x. Now to
zeroth-order ϕ(x) � ϕ0(x)/h̄ and for h̄ → 0 we obtain

ϕ′2
0 + 2

3
βϕ′4

0 + 7

9
β2ϕ′6

0 +O
(
β3) = 2m

(
E − V (x)

)
. (66)

Thus, the comparison with Eq. (29) shows ϕ′
0 = p and conse-

quently

ψ(x) � exp

[
i

h̄

∫
p dx

]
, (67)

which is the usual zeroth-order WKB wave function obeying the
Wilson–Sommerfeld quantization rule.

4. Generalization to D dimensions

We now extend the developed formalism in previous sections
to D spatial dimensions. We then present the generalized Poisson
brackets in the classical limit and study the density of states.

4.1. Generalized Heisenberg algebra for D dimensions

A natural generalization of the one-dimensional commutation
relation (1) that preserves the rotational symmetry is

[Xi, P j] = ih̄δi j

1 − β P 2
, (68)

where P 2 = ∑D
i=1 Pi P i . This relation implies a nonzero minimal

uncertainty and a maximal observable momentum in each posi-
tion coordinate. If the components of the momentum operator are
assumed to be commutative
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[Pi, P j] = 0, (69)

then the Jacobi identity determines the commutation relations be-
tween the components of the position operator as

[Xi, X j] = 2ih̄β

(1 − β P 2)2
(Pi X j − P j Xi), (70)

which results in a noncommutative geometric generalization of po-
sition space. To exactly satisfy these commutation relations, the
position and momentum operators in the momentum space repre-
sentation can be written as

Piφ(p) = piφ(p), (71)

Xiφ(p) = ih̄

1 − βp2
∂pi φ(p). (72)

Xi and P j are now symmetric operator on the domain S∞ with
respect to the scalar product:

〈ψ |φ〉 =
+1/

√
β∫

−1/
√

β

dD p
(
1 − βp2)ψ∗(p)φ(p), (73)

where p2 = ∑D
i=1 pi pi . The identity operator is

1 =
+1/

√
β∫

−1/
√

β

dD p

(1 − βp2)
|p〉〈p|, (74)

and the scalar product of momentum eigenstates is

〈
p
∣∣p′〉 = δD(p − p′)

1 − βp2
. (75)

In this representation, the components of the momentum operator
are still essentially self-adjoint, however the components of the
position operators are merely symmetric and do not have physical
eigenstates.

Since the commutation relations (68)–(70) do not break the ro-
tational symmetry, we can express the generators of rotations in
terms of the position and momentum operators as

Li j ≡ (
1 − β P 2)(Xi P j − X j P i), (76)

as the generalization of the ordinary orbital angular momentum.
Now the momentum space representation of the generators of ro-
tations is

Li jψ(p) = −ih̄(pi∂p j − p j∂pi )ψ(p), (77)

and

[Pi, L jk] = ih̄(δik P j − δi j Pk), (78)

[Xi, L jk] = ih̄(δik X j − δi j Xk), (79)

[Li j, Lkl] = ih̄(δik L jl − δil L jk + δ jl Lik − δ jk Lil), (80)

as well as in ordinary quantum mechanics. However, the geometry
is noncommutative, namely

[Xi, X j] = −2ih̄β

(1 − β P 2)2
Li j . (81)
4.2. Density of states

The right hand side of Eq. (1) shows that the “effective” value
of h̄ is P dependent. So the size of the unit cell in the phase space
that is occupied by each quantum state can be also considered of
as being momentum dependent. This fact changes the momentum
dependence of the density of states and affects the calculation of
cosmological constant, blackbody radiation spectrum, etc. Similar
to the KMM algebra [44], we should check that any volume of the
phase space evolves such that the number of states inside it does
not change with respect to time as the analog of the Liouville the-
orem.

The Poisson brackets in classical mechanics correspond quan-
tum mechanical commutators via

1

ih̄
[A, B] �⇒ {A, B}. (82)

Thus the classical limits of Eqs. (68)–(70) are given by

{Xi, P j} = δi j

1 − β P 2
, (83)

{Pi, P j} = 0, (84)

{Xi, X j} = 2β

(1 − β P 2)2
(Pi X j − P j Xi), (85)

and the Heisenberg equations for the coordinates and momenta
read (i, j run over the spatial dimensions and the summation con-
vention is assumed)

Ẋi = {Xi, H} = {Xi, P j} ∂ H

∂ P j
+ {Xi, X j} ∂ H

∂ X j
, (86)

Ṗ i = {Pi, H} = −{X j, Pi} ∂ H

∂ X j
. (87)

Note that in one dimension Eq. (86) implies that although the mo-
mentum is bounded from above, the velocity

Ẋ = {X, H} = P

m(1 − β P 2)
, (88)

ranges from −∞ to +∞ as P goes to ± 1√
β

. We now prove that

the weighted phase space volume
(
1 − β P 2)D

dD X dD P , (89)

is invariant under time evolution as the analog of the Liouville
theorem. The evolution of Xi and Pi during an infinitesimal time
interval δt is

X ′
i = Xi + δXi, (90)

P ′
i = Pi + δPi, (91)

where

δXi =
[
{Xi, P j} ∂ H

∂ P j
+ {Xi, X j} ∂ H

∂ X j

]
δt, (92)

δPi = −{X j, Pi} ∂ H

∂ X j
δt. (93)

After this infinitesimal evolution, the infinitesimal phase space vol-
ume is changed according to

dD X ′ dD P ′ =
∣∣∣∣∂(X ′

1, . . . , X ′
D , P ′

1, . . . , P ′
D)

∂(X1, . . . , XD , P1, . . . , P D)

∣∣∣∣ dD X dD P , (94)

where
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∂ X ′
i

∂ X j
= δi j + ∂δXi

∂ X j
,

∂ X ′
i

∂ P j
= ∂δXi

∂ P j
,

∂ P ′
i

∂ X j
= ∂δPi

∂ X j
,

∂ P ′
i

∂ P j
= δi j + ∂δPi

∂ P j
. (95)

The Jacobian can be calculated to first order in δt as

∣∣∣∣∂(X ′
1, . . . , X ′

D , P ′
1, . . . , P ′

D)

∂(X1, . . . , XD , P1, . . . , P D)

∣∣∣∣ = 1 +
(

∂δXi

∂ Xi
+ ∂δPi

∂ Pi

)
+ · · · .

(96)

So we have

(
∂δXi

∂ Xi
+ ∂δPi

∂ Pi

)
1

δt

= ∂

∂ Xi

[
{Xi, P j} ∂ H

∂ P j
+ {Xi, X j} ∂ H

∂ X j

]
− ∂

∂ Pi

[
{X j, Pi} ∂ H

∂ X j

]

=
[

∂

∂ Xi
{Xi, P j}

]
∂ H

∂ P j
+ {Xi, P j} ∂2 H

∂ Xi∂ P j
+

[
∂

∂ Xi
{Xi, X j}

]
∂ H

∂ X j

+ {Xi, X j} ∂2 H

∂ Xi∂ X j
−

[
∂

∂ Pi
{X j, Pi}

]
∂ H

∂ X j
− {X j, Pi} ∂2 H

∂ P j∂ Xi

=
[

∂

∂ Xi
{Xi, X j}

]
∂ H

∂ X j
−

[
∂

∂ Pi
{X j, Pi}

]
∂ H

∂ X j

=
[
− 2β(D − 1)

(1 − β P 2)2
P j

]
∂ H

∂ X j
−

[
2β

(1 − β P 2)2
P j

]
∂ H

∂ X j

= −2βD

(1 − β P 2)2
P j

∂ H

∂ X j
, (97)

which to first order in δt results in

dD X ′ dD P ′ = dD X dD P

[
1 − 2βD

(1 − β P 2)2
P j

∂ H

∂ X j
δt

]
. (98)

Moreover

1 − β P ′2 = 1 − β(Pi + δPi)
2

= 1 − β
(

P 2 + 2PiδPi + · · ·)

= 1 − β

(
P 2 − 2Pi{Xi, P j} ∂ H

∂ X j
δt + · · ·

)

= 1 − β

(
P 2 − 2Pi

1 − β P 2

∂ H

∂ Xi
δt + · · ·

)

= (
1 − β P 2) + 2β Pi

1 − β P 2

∂ H

∂ Xi
δt + · · ·

= (
1 − β P 2)[1 + 2β Pi

(1 − β P 2)2

∂ H

∂ Xi
δt + · · ·

]
. (99)

Therefore, to first order in δt

(
1 − β P ′2)D = (

1 − β P 2)D
[

1 + 2βD

(1 − β P 2)2
Pi

∂ H

∂ Xi
δt

]
. (100)

Now using Eqs. (98) and (100), it is obvious that the weighted
phase space volume (89) is an invariant, i.e.,

(
1 − β P ′2)D

dD X ′ dD P ′ = (
1 − β P 2)D

dD X dD P . (101)
4.3. The cosmological constant

The cosmological constant can be obtained by summing over
the zero-point energies of the harmonic oscillator’s momentum
states. Using the canonical form of the zero-point energy of each
oscillator with mass m

1

2
h̄ω = 1

2

√
p2 + m2, (102)

the sum over all momentum states per unit volume is

Λ(m) =
∫

d3 p
(
1 − βp2)3

(
1

2

√
p2 + m2

)

= 2π

1/
√

β∫
0

dp
(
1 − βp2)3

p2
√

p2 + m2

= π

20β2
f
(
βm2), (103)

where

f (x) = 1

96

[(
96 + 192x + 476x2 + 380x3 + 105x4)√1 + x

− (
480x2 + 720x3 + 450x4 + 105x5) cosh−1(

√
x )

]
,

(104)

and f (0) = 1. In the massless limit we find

Λ(0) = π

20β2
= 1

10

[
Λ(0)

]KMM
, (105)

that is ten times smaller than the massless cosmological constant
predicted by the KMM proposal [44]. This finite result is due to
the vanishing of the density of states at high momenta where
p = 1/

√
β plays the role of the UV cutoff. So in this scenario we

do not need to put by hand an arbitrary scale as the UV cutoff and
the cosmological constant is automatically rendered finite. Note
that since 1/

√
β is proportional to the Planck mass MPl, Λ(0) is

too large in practice and consequently the cosmological constant
problem still remains unsolved. However, our formulation gives the
better estimation of Λ with respect to that obtained in the KMM
framework.

4.4. The blackbody radiation spectrum

Because of the weight factor (1 − β P 2)3 in 3-dimensions, the
average energy of the electromagnetic field per unit volume at
temperature T is given by

〈E〉 = 8π

c3

∞∫
0

dν

(
1 − β

(
hν

c

)2)3( hν3

ehν/kB T − 1

)

=
∞∫

0

dν uβ(ν, T ), (106)

where

uβ(ν, T ) =
(

1 −
(

ν

νβ

)2)3

u0(ν, T ). (107)

Here

u0(ν, T ) = 8πhν3

3

1
hν/k T

, (108)

c e B − 1
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Fig. 2. The blackbody radiation spectrum in the GUP framework at temperature
T = 0.1Tβ . (For interpretation of the references to color in this figure, the reader
is referred to the web version of this Letter.)

Fig. 3. The blackbody radiation spectrum in the GUP framework at temperature
T = Tβ . (For interpretation of the references to color in this figure, the reader is
referred to the web version of this Letter.)

is the ordinary spectrum function and νβ = c/h
√

β . To show the
effect of the minimal length uncertainty and the maximal momen-
tum on the shape of the spectral function, we have depicted the
functions

f0(ν, T ) = (ν/νβ)3

e(ν/νβ)(Tβ/T ) − 1
, (109)

fβ(ν, T ) = (
1 − (ν/νβ)2)3

f0(ν, T ), (110)

in Figs. 2 and 3, and compared them with the case of just the
minimal length uncertainty [44]

f KMM
β (ν, T ) = 1

(1 + (ν/νβ)2)3
f0(ν, T ), (111)

where Tβ = c/kB
√

β . As the figure shows, for small frequencies
(ν � νβ ), fβ(ν, T ) closely coincides with f KMM

β . However, it devi-

ates from f KMM
β as the frequency increases.

5. Conclusions

In this Letter, we studied a higher order generalized uncertainty
principle that implies both a minimal length uncertainty and a
maximal momentum proportional to h̄

√
β and 1/

√
β , respectively.

We found maximally localized states and presented a formally
self-adjoint representation that preserves the ordinary nature of
the position operator and results in the perturbative generalized
Schrödinger equation. We exactly solved the problems of the free
particle and the particle in a box and showed that the existence
of the maximal momentum Pmax = 1/

√
β is manifest through this

representation. We then generalized this proposal to D dimensions
and found the invariant density of states. We showed that the
blackbody radiation spectrum are modified at high frequencies and
compared the results with the KMM proposal. Although the cos-
mological constant was rendered finite, the smallness of the GUP
parameter resulted in a large cosmological constant that could not
solve the cosmological constant problem. However, our calculated
cosmological constant is a better estimation with respect to the
presence of just the minimal length.
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