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Abstract

We argue that a remnant is formed for all black objects in gravity’s rainbow. This will be based on the 
observation that a remnant depends critically on the structure of the rainbow functions, and this depen-
dence is a model independent phenomena. We thus propose general relations for the modified temperature 
and entropy of all black objects in gravity’s rainbow. We explicitly check this to be the case for Kerr, 
Kerr–Newman-dS, charged-AdS, and higher dimensional Kerr–AdS black holes. We also try to argue that 
a remnant should form for black saturn in gravity’s rainbow. This work extends our previous results on 
remnants of Schwarzschild black holes [1] and black rings [2].
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Lorentz symmetry is one of the most important symmetries in nature, and this symmetry fixes 
the form of the standard energy–momentum dispersion relation, E2 − p2 = m2. However, most 
approaches to quantum gravity suggest that the Lorentz symmetry might only be an effective 
symmetry in nature, and so, in the ultraviolet limit the Lorentz symmetry might break modifying 
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the standard energy–momentum dispersion relation. For example, it is known that even though 
gravity is not renormalizable, it can be made renormalizable by adding higher order curvature 
terms. These higher order curvature terms produce negative norm ghost states in the theory. It is 
possible to add terms with higher order spatial derivatives to the theory, without adding any terms 
with higher order temporal, which reduces to the general relativity in the infrared limit. This 
theory is called Horava–Lifshitz gravity, and in it the standard energy–momentum dispersion 
relation gets modified in the ultraviolet limit [3,4].

Furthermore, one of the most famous approaches to quantum gravity is the string theory. Even 
in string theory, it is expected that the standard energy–momentum dispersion relation will get 
modified. This is because it is not possible to probe spacetime below the string length scale, and 
the existence of this minimum length scale will induce a maximum energy scale in the theory 
[5,6]. This maximum energy scale will in turn deform the standard energy–momentum dispersion 
relation [7,8]. In fact, the modification of the standard energy–momentum dispersion relation 
seems to be an almost universal feature of all models of quantum gravity, such as spacetime 
discreteness [9], spontaneous symmetry breaking of Lorentz invariance in string field theory 
[10], spacetime foam models [11] and spin-network in loop quantum gravity (LQG) [12], and 
non-commutative geometry [13].

The standard energy–momentum dispersion relation gets modified because of the existence 
of a maximum energy scale EP in nature. Hence, just as the velocity of light is the maximum 
attainable velocity in special relativity, the Planck energy is the maximum attainable energy in 
these theories with modified dispersion relations (MDR). In fact, it is possible to construct a 
generalization of special relativity with two universal invariants, i.e. the velocity of light and 
Planck energy [14]. This generalization of special relativity is called doubly special relativity 
(DSR) [15]. In fact, it has been possible to generalize DSR to curved spacetime, and arrive at a 
doubly general relativity, or gravity’s rainbow [16]. The name gravity’s rainbow is motivated by 
the fact that in this approach the geometry of spacetime depends on the energy of the particle used 
to probe it, and so, this geometry is represented by a one parameter family of energy dependent 
metrics forming a rainbow of metrics.

Since gravity rainbow is based on generalizing DSR to curved spacetime, it is important to 
define the modified dispersion relations in DSR. These modified dispersion relations have to be 
constrained to reproduce the standard dispersion relation in the infrared limit. Thus, we can write,

E2f 2(E/EP ) − p2g2(E/EP ) = m2 (1.1)

where EP is the Planck energy, and the functions f (E/EP ) and g(E/EP ) are called rainbow 
functions. They modify the energy–momentum dispersion relation in the ultraviolet limit, and 
they reproduce the standard dispersion relation in the infrared limit, if the following limits holds,

lim
E/EP →0

f (E/EP ) = 1, lim
E/EP →0

g(E/EP ) = 1. (1.2)

Now the modified metric in gravity’s rainbow can be constructed using [16]

g(E) = ηabea(E) ⊗ eb(E), (1.3)

and the energy dependence of the frame fields is given by

e0(E) = 1
ẽ0, ei(E) = 1

ẽi , (1.4)

f (E/EP ) g(E/EP )
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where the tilde quantities refer to the energy independent frame fields. The energy E in the metric 
is the scale at which the geometry of spacetime is probed [16]. For example, if an observer uses 
a particle to measure the geometry of spacetime, then E is the energy of that particle.

It has been observed that modification of the metric by certain phenomenologically motivated 
rainbow functions, changes the thermodynamical behavior of Schwarzschild black holes [1] and 
black rings [2], close to the Planck scale. This modification changes both their temperature and 
entropy as they evaporate down to Planck scale. In fact, in gravity’s rainbow the temperature 
of these black objects starts to decrease after reaching a maximum value. At a critical size this 
temperature becomes zero and so does the entropy. Thus, a black remnant is left over. Motivated 
by the earlier works on a Schwarzschild black holes and black rings, we will argue that all black 
objects will leave a remnant in gravity’s rainbow. In fact, we will demonstrate that the formation 
of the remnant depends on the form of rainbow functions, and this dependence holds for all black 
object in gravity’s rainbow. We will also explicitly construct a black remnant for various types of 
black holes and a black saturn.

2. General relation for temperature in gravity’s rainbow

The modified temperature of Schwarzschild black holes in gravity’s rainbow was considered 
in [1,17–20] and it was found to be related to the standard temperature T0 by

T = T0
g(E)

f (E)
, (2.1)

where f (E) and g(E) are rainbow functions. We will define units such that c = 1, h̄ = 1, G = 1, 
and k = 1. In previous papers, we calculated the modified temperature for black rings [2] and 
higher dimensional Schwarzschild black holes [21], and we also found the same modification. 
We conjecture that the temperature of all black objects in gravity’s rainbow receive a modification 
by the ratio g(E)/f (E), i.e. obey Eq. (2.1).

To justify this conjecture, consider the following cases:

1. In Ref. [22], by using the tunneling formalism, it was shown that the temperature of any 
black hole in asymptotically flat or (A)dS space that can be expressed in the form

ds2 = −A(r)dt2 + 1

B(r)
dr2 + hij dxidxj (2.2)

is given by

T = 1

4π

√
A,r(r+)B,r (r+) (2.3)

where the derivative is evaluated at r+: the radius of the event horizon and is the largest r
solving B(r) = 0.

2. Rotating black holes in flat and (A)dS space can be cast in the form [23]

ds2 = −A(r, θ)dt2 + 1

B(r, θ)
dr2 + gθθdθ2 + gφφdφ2 − 2gtφdtdφ, (2.4)

and the temperature is given by [23,24]

T = 1 √
A,r(r+,0)B(r+,0). (2.5)
4π
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The temperature was evaluated at θ = 0 to simplify the equation without loss of generality 
since the surface gravity is constant everywhere on the horizon.

3. In this paper, we will define units such that c = 1, h̄ = 1, G = 1, and k = 1. From Ref. [25]
the metric of any black ring can be expressed in this form

ds2 = −A(x,y)dt2 + 1

B(x, y)
dy2 + gψψ(dψ + Nψdt)2 + gxxdx2 + gφφdφ2, (2.6)

and leads to the temperature

T = 1

4π

√
A,y(x, yh)B,y(x, yh) (2.7)

where yh is the horizon of the black ring.

Now in gravity’s rainbow, the modified metric is evaluated via Eq. (1.3), which means that to 
get the modified metric we simply make the change dt → dt/f (E/EP ) and all spatial coordi-
nates dxi → dxi/g(E/EP ). This is equivalent to changing A → A/f (E)2 and B → B/g(E)2

in the metrics (2.2), (2.4), and (2.6). Thus, the temperature in Eqs. (2.3), (2.5), and (2.7) is mod-
ified by the ratio g(E)/f (E), which motivates our conjecture of the universality of temperature 
modification in gravity’s rainbow. In the next section, we will see that, because of this general 
temperature relation, for certain rainbow functions all black objects end up in a remnant.

3. Remnant for all black objects due to gravity’s rainbow

In the literature of gravity’s rainbow, many proposals exist for the rainbow functions 
f (E/EP ) and g(E/EP ) [26–32]. The choice of the rainbow functions is supposed to be based 
on phenomenological motivations. We use one of the most interesting and most studied rainbow 
functions that was proposed by Amelino-Camelia et al. in [33,34]

f (E/EP ) = 1, g (E/EP ) =
√

1 − η

(
E

EP

)n

. (3.1)

The MDR with these functions is compatible with some results from non-critical string theory, 
loop quantum gravity and κ-Minkowski non-commutative spacetime. This MDR was used to 
study the dispersion of electromagnetic waves from gamma ray bursters [34]. It also solves the 
ultra high energy gamma rays paradox [35,36], and the paradox of the 20 TeV gamma rays 
from the galaxy Markarian 501 [35,37]. In addition, this MDR provides stringent constraints on 
deformations of special relativity and Lorentz violations [38,39]. For a more detailed discussion 
about the phenomenological implications of the functions (3.1), it is very useful to consult the 
review [40].

This choice means that the modified temperature becomes

T = T0

√
1 − η

(
E

EP

)n

. (3.2)

According to [41–44], the uncertainty principle �p ≥ 1/�x can be translated to a lower bound 
on the energy E ≥ 1/�x of a particle emitted in Hawking radiation, and the value of the uncer-
tainty in position can be taken to be the event horizon radius. Hence,

E ≥ 1 ≈ 1
. (3.3)
�x r+
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It may be noted that even though the metric is energy dependent in gravity’s rainbow, the usual 
uncertainty principle still holds [19,45]. The temperature becomes

T = T0

√
1 − η

(
1

r+EP

)n

. (3.4)

From this equation, we see that the temperature goes to zero when the black hole evaporates 
to a horizon radius on the order of the Planck scale

r+ = η1/n

EP

= η1/nlP , (3.5)

where lP is the Planck length. The radius cannot get lower, because the temperature becomes 
imaginary. This means that the black hole stops radiating and we end up with a remnant. This was 
confirmed in our previous papers [1,2] by calculating the entropy and heat capacity. We found that 
both also go to zero at r+ = η1/n/EP which means the black hole no longer radiates Hawking 
radiation, and so, it cannot get any smaller. This reasoning applies to all types of black objects, 
and we reach the conclusion that all black objects in gravity’s rainbow end up in a remnant at the 
Planck scale. It may be noted that the stage of zero Hawking radiation is a physical stage, and 
is a standard description of a black hole remnant [41]. It may be useful to consult this detailed 
review on black hole remnant [46].

4. General relation for entropy in gravity’s rainbow

4.1. Entropy of Schwarzschild black holes

In Section 2, we saw that in gravity’s rainbow, there is a general formula for the modified 
temperature that applies to all black objects. In this section, we investigate the possibility of a 
similar general relation for the modified entropy.

For the Schwarzschild black hole the modified temperature takes the form [1]

T = 1

8πM

√
1 − η

(
1

r+EP

)n

(4.1)

with r+ = 2M . Substituting for M and r+ by the area A = 4πr2+ = 16πM2 leads to

T = 1√
4πA

√√√√1 − η

(
1

EP

√
4π

A

)n

(4.2)

since dM = 1
4
√

4πA
dA, the first law of black hole thermodynamics dM = T dS leads to the 

entropy

S =
∫

1

4

√
1 − η

(
1

EP

√
4π
A

)n
dA, (4.3)

which goes to S = A/4 when η → 0. This integral does not have a solution for general n. As an 
example, when n = 2
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Fig. 1. Modified entropy from gravity’s rainbow for different values of the power n.

S = A

4

√
1 − 4πη

AE2
P

+ πη

2E2
P

ln

(
AE2

P

(
1 +

√
1 − 4πη

AE2
P

)
− 2πη

)
, (4.4)

but the entropy is simpler when n = 4

S = A

4

√
1 − 16π2η

A2E4
P

. (4.5)

Fig. 1 is a plot of the modified entropy as a function of A for different values of n, assuming 
η = 1 and EP = 5.

4.2. Entropy of higher dimensional Schwarzschild black holes

In a previous paper [21], we calculated the modified temperature of higher dimensional 
Schwarzschild black holes to be

T = d − 3

4πr+

√
1 − η

(
1

r+EP

)n

. (4.6)

The area of the black hole is A = 	d−2r
d−2+ , where 	d−2 is the volume of the (d −2) unit sphere 

and is given by

	d−2 = 2π
d−1

2



(

d−1
2

) , (4.7)

and the horizon radius

r+ = 1√
π

⎛
⎝ 8M


(
d−1

2

)
Md−2

P (d − 2)

⎞
⎠

1
d−3

. (4.8)

When we substitute r+ =
(

A
) 1

d−2
in the temperature (4.6) we get
	d−2
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T = T0

√√√√1 − η

(
1

EP

(
	d−2

A

) 1
d−2

)n

. (4.9)

Thus, the entropy becomes

S =
∫

1

4

√
1 − η

(
1

EP

(
	d−2

A

) 1
d−2

)n
dA. (4.10)

When η → 0, we get the standard entropy S = A/4 which holds for all black objects in any 
dimension, and when d = 4 we get the expressions in the previous subsection. For black objects 
in five dimensions d = 5, such as black rings, the entropy is given by the integral

S =
∫

1

4

√
1 − η

(
1

EP

3
√

2π2

A

)n
dA. (4.11)

This integral is simpler when n = 6 and leads to

S = A

4

√√√√1 − η

E6
P

(
2π2

A

)2

. (4.12)

4.3. Generalization to all black objects?

We conjecture that the entropy found from Eq. (4.10) is a general result for all black objects in 
gravity’s rainbow with the functions (3.1), but with the area of the other black objects instead. In 
the following sections, we will check this result for four dimensional black holes using Eq. (4.5)
for n = 4, and five dimensional black holes using Eq. (4.12) for n = 6. These specific values of 
n are examples to simplify the calculations, but the conclusions hold for any n.

5. Kerr black holes

The metric of Kerr black holes takes the form [47]

ds2 = −dt2 + 2Mr

�
(dt − a sin2 θdφ)2 + �

�
dr2 + �dθ2 + (r2 + a2) sin2 θdφ2, (5.1)

where

� = r2 + a2 cos2 θ, � = r2 + a2 − 2Mr. (5.2)

The temperature is found via Eq. (2.5) to be [23,47]

T0 = 1

2π

(
r+

a2 + r2+
− 1

2r+

)
. (5.3)

The entropy is given by

S = A

4
= π(r2+ + a2). (5.4)

In gravity’s rainbow the temperature is modified by
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T = 1

π

(
r+

a2 + r2+
− 1

2r+

)√√√√1 − η

(
1

EP

√
4π

A

)n

(5.5)

where we used E ≈ √
4π/A as for the Schwarzschild case in Eq. (4.2), but with A =

4π(a2 + r2+). To get the modified entropy from the modified temperature, we could use the 
first law of black hole thermodynamics

dS = 1

T
dM − 	

T
dJ − �

T
dQ (5.6)

where 	, J , �, and Q are respectively the angular velocity, the angular momentum, the electro-
static potential, and the charge. For Kerr black holes

	 = a

r2+ + a2
, J = a(a2 + r2+)

2r+
, Q = 0. (5.7)

Thus, the modified entropy for n = 4 is given by

S = π
(
E4

P (a2 + r2+)2 − η
)

E4
P (r2+ + a2)

√
1 − η

E4
P (a2+r2+)2

. (5.8)

Substituting (a2 + r2+) = A/4π and simplifying, we get the exact relation in (4.5). We checked 
that this relation holds also for different values of n, but the equations are more complicated. 
Figs. 2 and 3 are plots of the temperature and entropy of Kerr black holes, using the generic 
values η = 1, EP = 5 and a = M/2; other values lead to the same qualitative behavior.

The thermodynamic stability of black holes is determined by the heat capacity at constant 
angular momentum CJ [48], which can be calculated from the thermodynamic relation

CJ = T

(
∂S

∂T

)
J

. (5.9)

Using the modified temperature and entropy we get for n = 4

CJ =
2π(a2 − r2+)(r2+ + a2)4

√
1 − η

E4
P (r2++a2)2

3a8 + 12a6r2+ − r8+ + a4

(
14r4+ − 5η

E4
P

)
+ 3r4+

η

E4
P

+ a2

(
4r6+ − 6r2+

η

E4
P

) . (5.10)

Fig. 4 is a plot of this relation, and we see that it diverges at a point at which the temperature 
reaches its maximum value, and then goes to zero. This means that the black hole stops exchang-
ing heat with the surrounding space, and hence predicting the existence of a remnant.

6. Kerr–Newman black holes in de Sitter space

The metric of the four dimensional Kerr–Newman black hole in asymptotically de Sitter space 
is given by [49,50]

ds2 = − �

ρ2

(
dt − a

�
sin2 θdφ

)2 + ρ2

�
dr2 + ρ2

�
dθ2

+ � sin2 θ

ρ2

(
adt − r2 + a2

�
dφ

)2

, (6.1)

where
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Fig. 2. Standard and modified temperature for Kerr black holes.

Fig. 3. Standard and modified entropy for Kerr black holes.

Fig. 4. Standard and modified heat capacity for Kerr black holes.
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� = (r2 + a2)

(
1 + r2�

3

)
− 2mr + q2, � = 1 − a2�

3
,

� = 1 + a2�

3
cos2 θ, ρ2 = r2 + a2 cos2 θ. (6.2)

q is the electric charge of the black hole, and � is the cosmological constant parameter.
The temperature can be obtained via the relation (2.5) with

A(r, θ) = � − �a2 sin2 θ

ρ2
, B(r, θ) = �

ρ2
(6.3)

and we get [49]

T0 = a2(3 + r2+�) + 3(q2 − r2+ + r4+�)

12πr+(a2 + r2+)
(6.4)

However, in gravity’s rainbow, the metric is modified such that dt → dt/f (E/EP ) and all spatial 
coordinates dxi → dxi/g(E/EP ). Thus, Eq. (2.5) yields the modified temperature (see Figs. 5
and 6)

T = a2(3 + r2+�) + 3(q2 − r2+ + r4+�)

12πr+(a2 + r2+)

√√√√1 − η

(
1

EP

√
4π

A

)n

(6.5)

where again we used E ≈ √
4π/A, with the area

A = 4π(r2 + a2)

1 + a2�/3
. (6.6)

The standard entropy is given by S0 = A/4. The modified entropy satisfies the first law of 
thermodynamics with the modified temperature

dM = T dS + 	dJ + �dQ (6.7)

where [49]

M = m

�2
, J = aM, Q = q

�
, � = ra

r2 + a2
, 	 = a�

r2 + a2
. (6.8)

Now we want to check if the relation in Eq. (4.5) holds for Kerr–Newman black hole. It is easier 
to assume the validity of Eq. (4.5) and check if differentiating it leads to the modified temperature 
in Eq. (6.5). From the first law, the parameters in Eq. (6.8) are related to the entropy via

1

T
=

(
∂S

∂M

)
J,Q

,
	

T
=

(
∂S

∂J

)
M,Q

,
�

T
=

(
∂S

∂Q

)
M,J

, (6.9)

where the partial derivatives are calculated using the identity

(
∂S

∂M

)
J,Q

=
det

(
∂(S,J,Q)
∂(r,a,q)

)
det

(
∂(M,J,Q)
∂(r,a,q)

) (6.10)

where ∂(S,J,Q)
∂(r,a,q)

is the Jacobian matrix. It is straightforward to check that by differentiating the en-
tropy we get exactly the parameters in (6.8) with the modified temperature (6.5), which confirms 
the generality of the entropy relation. This also confirms the existence of a remnant because the 
temperature and entropy go to zero when A → 4π

√
η/E2 .
P
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Fig. 5. Standard temperature of de-Sitter Kerr–Newman black holes, for different values of �.

Fig. 6. Modified temperature of de-Sitter Kerr–Newman black holes, for different values of �.

7. Charged AdS black holes

The metric of charged AdS black holes is given by [47]

ds2 = −f (r)dt2 + dr2

f (r)
+ r2dθ2 + r2 sin2 θdφ2 (7.1)

with

f (r) = 1 − 2M

r
+ Q2

r2
+ r2

l2
(7.2)

where Q is the charge and l is the AdS radius.
To find the temperature of the black hole, we can use Eq. (2.5) leading to

T0 = 3r4+ + l2(r2+ − Q2)

4l2πr3+
(7.3)

In gravity’s rainbow the modified metric takes the form
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ds2 = − A(r)

f (E)2
dt2 + 1

B(r)g(E)2
dr2 + 1

g(E)2
hij dxidxj (7.4)

and via Eq. (2.5) leads to the modified temperature

T = T0
g(E)

f (E)
= 3r4+ + l2(r2+ − Q2)

4l2πr3+

√√√√1 − η

(
1

EP

√
4π

A

)n

, (7.5)

where we used E ≈ √
4π/A = 1/r+ as in Eq. (4.2). (See Figs. 7 and 8.)

The standard entropy is given by S0 = A/4 = πr2+. The modified entropy can be calculated 
from the first law dM = T dS, where the mass in terms of r+ is found by solving f (r+) = 0
leading to

M = r4+ + l2(Q2 + r2+)

2r+l2
, (7.6)

and the entropy

S =
∫

1

T
dM =

∫
2πr+√

1 − η
(

1
EP

√
1
r+

)n
dr+. (7.7)

When n = 4 we get

S = πr2

√
1 − η

E4
P r4+

= A

4

√
1 − η

(
4π

A

)2

, (7.8)

which is the exact relation of Eq. (4.5) confirming our conjecture of its generality.
The heat capacity can be calculated from the thermodynamic relation C = T ∂S

∂T
leading to

C =
4πr2+

(
3r4 + l2(r2+ − Q2)

)√
1 − η

(
1

r+EP

)n

6r4+ + l2(6Q2 − 2r2+) + η
(

1
r+EP

)n (
3r4+(n − 2) + l2Q2(n − 6) + l2r2+(n + 2)

) (7.9)

when η → 0 we get the standard heat capacity in [47]. (See Fig. 9.)

From the above calculations we see that when r+ = η
1
n /EP the temperature, entropy and heat 

capacity all go to zero, which means the black hole stops evaporating and forms a remnant.

8. Higher dimensional Kerr–AdS black holes

In this section, we check our conjecture by calculating the temperature of higher dimensional 
Kerr–AdS black holes. The metric of Kerr–AdS black holes in d dimensions is given by [47,50]

ds2 = −W

(
1 + r2

l2

)
dτ 2 + 2m

U

(
Wdτ −

N∑
i=1

aiμ
2
i dφi

�i

)2

+
N∑

i=1

r2 + a2
i

�i

μ2
i dφ2

i

+ Udr2

F − 2m
+

N+ε∑
i=1

r2 + a2
i

�i

dμ2
i − 1

l2W(1 + r2/l2)

(
N+ε∑
i=1

r2 + a2
i

�i

μidμi

)2

(8.1)

where
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Fig. 7. Standard and modified temperature of AdS charged black holes.

Fig. 8. Standard and modified entropy of AdS charged black holes.

Fig. 9. Standard and modified heat capacity of AdS charged black holes.
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W =
N+ε∑
i=1

μ2
i

�i

, U = rε

N+ε∑
i=1

μ2
i

r2 + a2
i

N∏
j=1

(r2 + a2
j ),

F = rε−2
(

1 + r2

l2

) N∏
i=1

(r2 + a2
i ), �i = 1 − a2

i

l2
. (8.2)

We have N = (D − 1 − ε)/2 independent rotation parameters ai , where ε = 1 when d is even, 
and ε = 0 when d is odd. The horizon radius is the largest root of F − 2m = 0.

The temperature was calculated in [51]

T0 = 1

2π

[
r+

(
r2+
l2

+ 1

)
N∑

i=1

1

a2
i + r2+

− 1

r+

(
1

2
− r2+

2l2

)ε]
(8.3)

The easiest method to derive the temperature is from the entropy via 1/T = (∂S/∂M)Ji
, and the 

entropy is calculated from the area S = A/4. However, this relation between the entropy and the 
area does not hold in gravity’s rainbow. Another method is via Eq. (2.5) with

A(r) = W

(
1 + r2

l2

)
− 2m

U
W 2, B(r) = F − 2m

U
. (8.4)

This leads to the temperature in Eq. (8.3), and in gravity’s rainbow A → A/f (E) and B →
B/g(E) leading to the modified temperature

T = T0

√√√√1 − η

(
1

EP

(
	d−2

A

) 1
d−2

)n

, (8.5)

where we used E ≈ N
√

	d−2/A as for the higher dimensional Schwarzschild black hole in 
Eq. (4.9).

The calculation of the modified entropy from the first law is more complicated. It is easier to 
check the entropy equation (4.10) for a specific case such as d = 5 and n = 6, which means we 
have two angular parameters N = 2. In that case the area is given by

A = 	d−2

r1−ε+

N∏
i=1

a2
i + r2+
�i

= 2l4π2(r2 + a2
1)(r2 + a2

2)

2r(l2 − a2
1)(l2 − a2

2)
. (8.6)

The first law is given by [51]

dM = T dS +
N∑

i=1

	idJi (8.7)

with the parameters [50]

M = m	d−2

4π
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2

)
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,

	i =
ai

(
1 + r2+

l2

)
r2 + a2

. (8.8)

+ i
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By differentiating the entropy equation (4.12) with respect the parameters M , J1 and J2, as we 
did in the previous section, we get(

∂S

∂M

)
J1,J2

= 2π

r
(

1 + r2

l2

)(
1

r2+a2
1

+ 1
r2+a2

2
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×
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1

E6
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2r(l2 − a2

1)(l2 − a2
2)

l4(r2 + a2
1)(r2 + a2

2)

)2
⎞
⎠

−1/2

(8.9)

When we substitute the area we get(
∂S

∂M

)
J1,J2

= 1

T0

√
1 − η 1

E6
P

(
2π2

A

)2
= 1

T
(8.10)

which is the same as the modified temperature in Eq. (8.5) confirming our conjecture of the 
generality of the relation (4.12).

9. Black saturn

The general formulas we presented in this paper for the temperature and entropy can be di-
rectly applied to black saturns. Black saturn consists of a rotating black hole surrounded by a 
black ring. Its exact solution in five dimensions was constructed by Elvang and Figueras in [52], 
and its first law was considered in [53]. The metric of black saturn takes the form [52]

ds2 = −Hy

Hx

[
dt +

(
ωψ

Hy

+ q

)
dψ

]2

+ Hx

[
k2P

(
dρ2 + dz2

)
+ Gy

Hy

dψ2 + Gx

Hx

dφ2
]
(9.1)

where

Gx = ρ2μ4

μ3μ5
, Gy = μ3μ5

μ4
, (9.2)

P = (μ3μ4 + ρ2)2(μ1μ5 + ρ2)(μ4μ5 + ρ2) (9.3)
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1c
2
2M4

]
(9.4)
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1M1
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2
2M4

μ2
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]
(9.5)

F = μ1μ5(μ1 − μ3)
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2 + μ1μ4)
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√
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2
2R1

√
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√
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(9.7)

Ri =
√

ρ2 + (z − a1)2 (9.8)

and
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M0 = μ2μ
2
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2(ρ2 + μ1μ2)
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To simplify the equations, introduce the parametrization

L2 = a2 − a1, κi = ai+2 − a1

L2
, i = 1,2,3, (9.10)

where

μi =
√

ρ2 + (z − ai)2 − (z − ai) (9.11)

The calculations of the thermodynamic quantities of black saturn are complicated, because the 
metric depends on the three dimensionless parameters 0 ≤ κ3 ≤ κ2 ≤ κ1 ≤ 1 and a dimensional 
parameter L. The temperature of the black hole TBH and black ring TBR that make up the black 
saturn is given by [47,52]

T ′
BH = 1

2πL

√
(1 − κ2)(1 − κ3)

2(1 − κ1)

(1 + κ2c)
2

1 + κ1κ2(1−κ2)(1−κ3)
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(9.12)

T ′
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2πL
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2
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where

c = 1

κ2

(
ε

κ1 − κ2√
κ1(1 − κ2)(1 − κ3)(κ1 − κ3)

− 1

)
. (9.14)

Using the general relation for temperature in gravity’s rainbow (2.1) we get the modified 
temperature

TBH = TBH0
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3
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(9.15)

where we used E ≈ 3
√

2π2/A as in Eq. (4.9), because black saturn is five dimensional. The 
horizon area is given by

ABH = 4L3π2

√
2(1 − κ1)3

(1 − κ2)(1 − κ3)
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(9.16)
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Fig. 10. Standard temperature of the black hole in black saturns.

Fig. 11. Standard temperature of the black ring in black saturns.

The standard entropy is given by S = A/4, and from our conjecture of the generality of the 
entropy relation (4.12) the modified entropy of black saturn for n = 6 would be

SBH = ABH

4

√√√√1 − η

E6
P

(
2π2

ABH

)2

SBR = ABR

4

√√√√1 − η

E6
P

(
2π2

ABR

)2

. (9.17)

We see that both the temperature and entropy go to zero when A → η3/n/4πE3
P , which means 

that black saturns also form a remnant. Figs. 10 and 11 are plots of the standard temperature in 
Eq. (9.12) assuming κ1 = 1, and Figs. 12 and 13 are the modified temperature. We see that the 
modified temperature goes to zero signaling the existence of a remnant.

10. Conclusions

In this paper, we argued that a remnant is formed for all black objects due to gravity’s rain-
bow. We observe that a remnant is a general feature that depends more on the form of rainbow 
functions than on the specific black object studied. We also proposed general relations for the 
modified temperature and entropy of all black objects in gravity’s rainbow. We explicitly checked 
this to be the case for Kerr, Kerr–Newman–dS, charged-AdS, and higher dimensional Kerr–AdS 
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Fig. 12. Modified temperature of the black hole in black saturns.

Fig. 13. Modified temperature of the black ring in black saturns.

black holes. We also tried to argue that a remnant should form for black saturns. This work 
extends our previous results on remnants of Schwarzschild black holes [1] and black rings [2].

It may be noted that the existence of this remnant ensures that naked singularities cannot be 
observed. The evaporation of black object posed serious problems for cosmic censorship [54], as 
it was conceivable in ordinary general relativity, that a black object could evaporate completely 
leaving behind a naked singularity. However, such a situation does not occur for black objects in 
gravity’s rainbow. This is because of the singularity is always surrounded by the event horizon 
of the remnant.

It may be noted that a similar result has been obtained using generalized uncertainty principle 
(GUP). In the GUP approach, a modification of the Heisenberg algebra (to make it compatible 
with the existence of a minimum length scale) causes a deformation of the coordinates rep-
resentation of the momentum operators. This in turn deforms the standard energy–momentum 
dispersion relation. Thus, it seems that the modification of temperature and entropy of a black 
object can occur whenever the standard energy–momentum relation is modified. Besides, simi-
lar results are obtained too in the context of non-commutative geometry in [55,56] in which the 
authors showed that a remnant will be formed for the black hole in noncommutative geometry 
where the black hole will have modified emission spectra through deformed grey body factors 
with a maximum temperature before remnant formation. For useful review on black hole rem-
nant from noncommutative geometry, one can consult Refs. [57,58]. It would be interesting to 
try to get a better understanding of this link. It would also be interesting to study the change in 
the thermodynamical properties of these higher dimensional black objects, like black rings and 
black saturn using GUP.
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