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A b s t r a c t - - A  steady flow of a rarefied gas induced by a temperature field is investigated, on the 
basis of kinetic theory, for the case where the temperature of each boundary is uniform (i.e., where the 
flow caused by the nonuniformity of the boundary temperature, such as the thermal transpiration 
flow, wnishes). More specifically, a rarefied gas confined in the gap between two coaxial elliptic 
cylinders at rest with different uniform temperatures is considered, and the steady gas flow induced 
in the gap is analyzed numerically by the direct simulation Monte Carlo method for a wide range 
of the Knudsen number. The flow patterns, together with the density and temperature fields, are 
obtained, and the features of the flow are clarified. 
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1. I N T R O D U C T I O N  

In a rarefied gas, in contrast  to the Navier-Stokes gas, a s teady flow can be induced by a s teady 
tempera ture  field even when there is no external force. For small Knudsen numbers, the features 

of such flows have been clarified on the basis of the asymptot ic  theory [1-5], a general theory 
describing the steady behavior of the gas at small Knudsen numbers, derived systematically from 
the Bol tzmann equation. According to the results, in addition to the well-known thermal  creep 

flow [6-8] induced along a boundary with a nonuniform temperature,  the thermal  stress slip flow 
(TSS flow for short) [2,9,10] and the nonlinear thermal stress flow (NTS flow) [4,5,11] are caused 

in the gas. The  TSS flow is induced over a boundary along which the tempera ture  gradient of 
the gas normal to the boundary is not uniform, and the NTS flow occurs in the gas where the 
distance between isothermal surfaces varies along them. Thus, both  flows can be induced in 

the case where the thermal  creep flow vanishes, i.e., where the tempera ture  of each boundary  is 
uniform. The  NTS flow, which is of the first order of the Knudsen number, is negligible when the 
t empera tu re  variation in the system is small. On the other hand, the TSS flow occurs even when 
the t empera ture  variation is small, though it is of the second order of the Knudsen number. Thus, 
the TSS flow is important  in a small system as in micr0machines, since the large tempera ture  

difference in a small distance hardly occurs. 

The  above flows for small Knudsen numbers are classified by the local tempera ture  field. In 
contrast,  for nonsmall or intermediate Knudsen numbers, the features of the induced flow are not 
characterized by the local tempera ture  but  are directly affected by the overall properties, i.e., 
the configuration of the system. In this situation, therefore, systems with various configurations 
should be investigated in order to clarify the features of the flow. However, it should be noted 
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that, if the temperature of a boundary is not uniform, a flow usually occurs along it. The thermal 
transpiration flow [12] and the thermophoresis of an aerosol particle [13] are typical examples of 
the flow. This flow makes it difficult to observe other types of flow caused by the direct effect 
of the configuration of the system. Therefore, for the purpose of clarifying the properties of the 
latter types of flow, we should investigate systems where the temperature of each boundary is 
uniform. 

In the present study, therefore, we consider such a system, i.e., a system where a uniformly 
cooled (or heated) body is placed in a rarefied gas confined in a closed vessel with a uniform 
temperature. More specifically, we consider a rarefied gas confined in the gap between two 
coaxial elliptic cylinders with different uniform temperatures and investigate the steady gas flow 
induced in the gap on the basis of kinetic theory. The analysis is carried out numerically by the 
direct simulation Monte Carlo (DSMC) method [14,15], and the behavior of the gas is clarified 
for a wide range of the Knudsen number. 

Now we should mention our previous works closely related to the present problem. In [16], a 
similar problem (a gas between noncoaxial circular cylinders) was investigated, in the case where 
the temperature difference between the body and the vessel is small (linearized problem), by an 
accurate finite-difference analysis of the linearized Boltzmann-Krook-Welander (BKW) equation, 
and the behavior of the flow was clarified for the whole range of the Knudsen number. The 
case with a large temperature difference (nonlinear problem) was studied in [17], where a body 
with sharp edges (flat plate) was considered with special interest in the effect of the edges on 
the flow. The behavior of the gas was analyzed for a wide range of the Knudsen number by the 
DSMC method, and it was shown that a fairly intense flow is induced by the effect of the sharp 
edges. The relation between these previous results and the flow in the present problem (nonlinear 
problem with a smooth boundary) will also be discussed. 

2. P R O B L E M  

Let us consider a rarefied gas in the two-dimensional domain between two coaxial elliptic 
cylinders at rest. Let the surface of the outer cylinder (pipe) be given by ( X 1 / a l )  2 + X g  = L 2, 
(al > 0, L > 0), and that of the inner cylinder by (X1/ao)  2 + (X~/bo) 2 = L ~, (0 < ao < al ,  0 < 
b0 < 1), where (X1, X2, )(3) is the rectangular space coordinate system with the Xa axis along 
the common axis of the cylinders. Further, we assume that the inner cylinder is kept at a uniform 
temperature To and the outer cylinder is kept at another uniform temperature T1. (See Figure 1.) 
We investigate the steady behavior of the gas for a wide range of the Knudsen number on the 
basis of kinetic theory under the following assumptions. 

(i) The gas molecules are hard spheres of a uniform size and undergo complete elastic collisions 
among themselves. 

(ii) The gas molecules make diffuse reflection on the surfaces of the inner and outer cylinders. 

We now summarize the additional main notations used in this paper: ~ = (~1, ~2, ~3) is the 
molecular velocity, f ( X 1 ,  X2,  ~) is the velocity distribution function of the gas molecules, p is 
the density of the gas, v = (vl, v2, v3) is its flow velocity (vs = 0), T is its temperature, P0 is the 
average density of the gas over the domain, m is the mass of a gas molecule, dm is its diameter, 
lo = (v f21rd2po/m)-1  is the mean free path of the gas molecules in the equilibrium state at rest 
with density P0 and temperature To, Kn = lo lL  is the Knudsen number, and R is the gas constant 
per unit mass. 

3. BASIC EQUATION A N D  B O U N D A R Y  C O N D I T I O N  

The present problem, which is time-independent and spatially two-dimensional, is symmetric 
with respect to the X1 and )(2 axes. Therefore, we can analyze the problem only in the first 
quadrant by imposing the specular reflection condition on the symmetry axes in the gas. 
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with 

Pw = - " ~ w  .n<O ~- n f  d~l d~2 d~3, (6) 

To, (on the inner cylinder), 

Tw = T1, (on the outer cylinder), 

where n is the unit normal vector, pointing into the gas, to the boundary. 
The symmetry condition on the X1 and X2 axes in the domain of the gas (aoL < X1 "< alL,  

X2 = 0 and X1 = O, boL < X2 < L) is expressed as 

f (X1 ,  X2, ~) "~ f (X1 ,  X2, ~ - 2(~. n)n),  (~. n > 0), (7) 

where n = (0, 1, 0) on the X1 axis and n = (1, 0, 0) on the X2 axis. 
The macroscopic variables are expressed by the moments of f ,  e.g., 

p = / f d~l d~2 d~3, 

v = - ~ f  d~l d~2 d~3, (8) 
P 

T = (3-~p) f (t~- v) " ( ' -  v)f d~l d'zd~3, 

where the range of integration is the whole space of ~. 

Figure 1. Rarefied gas between two elliptic cylinders (the first quadrant). 

The Boltzmann equation in the present situation is written as follows [5,18]: 

Of Of 
~ l -ff--~l + ~ 2 - ~ 2  = J ( f , f ) , (1) 

g ( f  , f )  = lm f (f' f" - f f . ) S d ~ ( c t )  d~l. d~2. d~3., (2) 

with 
S = I(~. - ~)'a[d2m 

2 ' ( 3 )  

f = f ( X l ,  X2, ~), f .  = f ( Z l ,  Z2, ~.), 

f '  = f (X1 ,  X2, ~'), f.~ = f ( X l ,  X2, ~'.), (4) 

¢' = + - a l a ,  = - - 

where t~ is a unit vector, df l (a)  is the solid angle element around c~, ~, = (~1., ~a., ~a.) is the 
variable of integration corresponding to ~, and the integration is carried out over the whole space 
of a and that  of ~.. 

The boundary condition on the inner and outer cylinders is given as 
~:2 ~_C2.~_c2X 

P w  ~1 ~2 ~3 
f = (2~rRTw)3/2 exp 2 ~ :  ] '  ( ~ . n  > 0), (5) 
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4. OUTLINE OF N U M E R I C A L  ANALYSIS 

We analyze the boundary-value problem (1), (5), and (7) by the standard DSMC method (see 
[14,15]). The method is basically time-dependent. Thus, we obtain the solution as the long-time 
limit of the solution of the unsteady problem composed of the time-dependent Boltzmann equa- 
tion (equation (1) with the time-derivative term ~ (t is the time) added to the left-hand side), 
the boundary conditions (5) and (7), and an appropriately chosen initial velocity distribution 

/ = f(o). (9) 

The outline of the process of DSMC computation is summarized as follows [5]. 

(i) We divide the gas region in the first quadrant in the XIX:  plane into S small cells of 
unequal size. 

(ii) We assign N(t) particles to the ~th cell (g = 1, 2, . . . ,  S), where N(~) is chosen to be 
(0) proportional to the area of the cell A(t) and to the density P(t) at a representative point 

in the cell corresponding to the initial velocity distribution (9), i.e., 

p(O)• (0 "~(~) 
N( t )=  Corn ' (10) 

with Co being a constant that is common to all the cells. The positions of the particles 
are distributed randomly in the cell, and their velocities are distributed according to the 
initial velocity distribution (9). 

(iii) Let X ('0 and ~(n) be the position and velocity of the n th particle ( n = 1, 2 . . . .  , N, where 
N = )-~ts=l N(~)). For a small time step At, we change the position of each particle in the 

X1X2 plane as (X~n),X~ n)) --* (X~ n) + ~n)At, X~ n) + ~n)At). The particles that go out 
from the gas region in this change are cast in the region according to the condition (5) 
or (7). Here recounting the number of the particles in each cell, we take the new number 

as N(t). 
(iv) The collision process of the particles in each cell CA(o) is computed independently from 

other cells as follows. To a pair of the particles with velocities ~(J) and ~(k), we assign the 
following probability P(gi k) for their collision: 

p~;k) = 7rd2 Co ,~(k) _,~0)[ A(t)'At (11) 

We first choose M(O pairs randomly from the N(t)(N(o - 1)/2 pairs in the cell, where M(t) 
is a number such that 

- 1)  

<< 2 ' 
( 1 2 )  

Then, for each of M(0 pairs, we determine whether it collides or not according to the 
elevated probability for their collision, 

p Igor)ONce)- 1)] (13) 

The determination of the collision pairs by the above two steps instead of equation i l l )  
which is efficient and legitimate for small pO:k). For the is a time-saving procedure, pairs 
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that collide, we select a unit vector a assuming that the probability for (~ lying in the 
solid-angle element d~ is 

I(~ (k) - ~(~)). ~ld~ 
2~l~ (k) -~( j ) l  ' 

and replace their velocities (~(J), ~(k)) by (~(i) + [(~(k) _~(i)).~]~, ~(k) _ [(~(k)_~(j)).(~]a). 
The velocities of the pairs that do not collide are left unchanged. With the new veloci- 
ties ~(J), we construct the velocity distribution function f at the cell under consideration 
after time At as 

f = \ A(~) ] all j i. A(,) 

where 5(¢) is the (three-dimensional) delta function. From equation (8) with equation (14), 
the density, flow velocity, and temperature of the gas at the cell is expressed as 

mCoN(t) 
P = A(e) ' 

v ( £ )  z , ' , )  
all j in A(t) 

( ' ) z  (,,,,_v) ¢,,,,_v) T 
' - '  all j in A(t) 

(15) 

We carry out the above procedure for all the cells. 
(v) With the new positions in process (iii) and new velocities in process (iv) of the particles, 

we go back to process (iii). 

We repeat processes (iii)-(v) until the steady state is judged to be established. 
The procedure described above, which is a standard method of DSMC (Bird's method), is 

shown to be mathematically consistent with the Boltzmann equation as well as physically natu- 
ral [5,19]. That is, in the present problem, the velocity distribution function at arbitrary time t 
obtained by repeating processes (iii)-(v) converges to the solution of the time-dependent Boltz- 
mann equation subject to boundary conditions (5) and (7) and to initial condition (9) in the limit 
N(t) --, c¢ and D(~) ~ 0 in each cell and At - ,  0 (with ]~(J)lmaxAt ~< D(~) in each cell), where 
D(e) is the linear dimension of the cell A(~) (thus A(0 ~ D~) for the cell of a regular shape). The 
convergence means that any moments of f of the form (14) in each cell become arbitrarily close 
to the corresponding moments of the solution of the Boltzmann equation (weak convergence) 
(see [5] for the details). 

In the actual computation, where the available number of particles and that of cells axe re- 
stricted by computing capacity and time, the true steady state is never reached even after a 
long time, that is, the macroscopic variables as well as the velocity distribution function always 
show large temporal fluctuations. Therefore, the steady state is judged to be established if, for 
example, the averages of macroscopic variables at each time step over a certain time interval 
(consisting of a large number of time steps) are independent of the choice of the interval. We 
usually compute the average of the fluctuating "steady" solution over a great number of time 
steps and regard the result as the desired steady solution. This averaging process, however, has 
not been legitimated so far. 

5. R E S U L T S  O F  N U M E R I C A L  A N A L Y S I S  

First, the computation for the case with a0 -- 0.3, b0 -- 0.7, and al = 1.5 and with T1/To = 5 
is performed for a wide range of the Knudsen number (from relatively small to large one). The 
behavior of the gas in this range is well represented by the cases shown in Figures 2 and 3. In 

35-112-B 
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Figure 2. Flow-velocity  field for ao = 0.3, bo = 0.7, and a l  = 1.5 and for T~/To = 5. 
(a) Kn = 0.1, (b) Kn = 0.5, (c) Kn = 1, (d) Kn = 2, (e) Kn = 5. T h e  arrows 
indicate the  nondimensional  flow velocity v/ (2RTo)I /2(va = 0) at their start ing 
points,  and their scale  is shown in the  figures. T h e  symbol  O represents the  point  
with  the max imum speed,  and the  values IVlmax/(2RTo) 1/2 are 5.72 x 10 - a  (Kn = 
0.1),  6.58 x 10 - 3  ( I ~  = 0.5),  7.30 X 10 - 3  ( I ~  = 1), 5.72 x 10 - 3  ( I ~  = 2), and 
3.69 x 10 - 3  (Kn = 5). 
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Figure 2. (cont.) 

Figure 2, the flow-velocity field (in the first quadrant) is shown for Kn = 0.1, 0.5, 1, 2, and 5, where 
the arrows indicate the nondimensional flow velocity v/ (2RTo)  1/2 with v3 = 0 at their starting 
points and their scale is shown in each figure. The symbol O in Figure 2 indicates the point with 
the maximum speed [Vlmax/(2RT0) 1/2, the magnitude of which is given in the caption. Figure 3 
shows the isothermal and isodensity lines for Kn -- 0.1, 0.5, 2, and c~. At Kn = 0.1, a clockwise 
circulating flow is induced along the inner cylinder and is dominant in the flow field. But, if we 
observe carefully, we notice that a slow counterclockwise circulating flow is also induced along 
the outer cylinder. At Kn = 0.5, the flow speed increases on the whole; in particular, the flow 
along the outer cylinder is intensified significantly. As Kn is increased to 1, the inner clockwise 
flow weakens considerably, whereas the outer counterclockwise flow still grows slightly. With 
the further increase of Kn (Kn = 1 --, 2 --* 5), the inner flow attenuates rapidly, but the decay 
of the outer flow is slow. The flow vanishes in the free molecular case (Kn = c~). This fact 
is proved rigorously in a more general system (arbitrary shapes, arrangement, and temperature 
distributions of the vessel and bodies and Maxwell-type boundary condition) in [20,21], where 
the exact solution describing the general behavior of a free molecular gas in a closed domain 
(or an open domain with certain conditions at infinity) with boundaries of arbitrary shapes and 
temperature distributions is constructed. The temperature and density fields in Figure 3d are the 
result of this exact solution. The behavior of the gas for small Kn is described by the asymptotic 
theory in [4]. According to it, the flow vanishes in the continuum limit Kn--+ 0, but, contrary 
to the general understanding, the temperature field in this limit is different from that obtained 
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! i  ;', 
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(b) 
Figure 3. Isothermal and isodensity lines for a0 = 0.3, bo = 0.7, and al = 1.5 
and for T1/To = 5. (a) Kn = 0.1, (b) Kn = 0.5, Cc) Kn = 2, (d) gn = co. The 
line - -  indicates the isothermal lines: T/To  = 1.6 % 0.2m, m = 0, 1, . . . ,  15 in Ca); 
T/To  = 2.0+0.2m, m = 0, 1, . . . ,  12 in (b); T/To  = 2.2%0.2m, m = 0, 1 . . . . .  10 in (c); 
and T/To  --- 2.4%0.1rn, m = 0, 1, . . . ,  15 in (d). The line . . . .  indicates the isodensity 
lines: P/Po = 2.2 - 0.1m, m = 0, 1, . . . ,  14 in (a); p/Po = 1.6 - 0.1m, m = 0, 1,... ,8 
in (b); P/Po = 1.35 - 0.05m, rn = 0,1, . . . ,10 in (c); and P/PO = 1.2 - 0.025m, 
m = 0,1 . . . . .  11 in (d). 

by the  hea t -conduct ion  equa t ion  (the correct system of the equat ions  and  b o u n d a r y  condi t ions  

is given in [4]). For small  Kn, the local properties of the system determine  the flow field; various 

flows such as the thermal  stress slip flow [2,9,10] and  the nonl inear  thermal  stress flow [4,5,11] are 

induced in this s i tuat ion.  In  order to describe the above behavior  of the gas by the  B o l t z m a n n  

equa t ion  (wi thout  the help of the asymptot ic  theory),  a very accurate  numerical  analysis  for small  

Kn is required, which is a difficult task, as is seen from [4]. In  part icular ,  the  DSMC compu ta t i on  

wi th  such high accuracy is pract ical ly impossible. 

To see the  effects of the  t empera tu re  ratio and  geometry, two typical  examples are shown 

in  Figures  4 and  5. The  flow-velocity field and the isothermal  and  isodensi ty lines in the  case 

wi th  the same geometry  (a0 = 0.3, b0 = 0.7, and  a l  = 1.5) bu t  wi th  a smaller  t e m p e r a t u r e  rat io 

T 1 / T o  -- 2 are shown for Kn = 0.5 in Figure 4. The  features of the flow pa t t e r n  are more or less 

the  same as Figure  2b, bu t  the flow speed is reduced considerably. The  corresponding results  

in  the  sys tem where the inner  cylinder is a circular cylinder of radius 0.6L (i.e., ao = b0 = 0.6 
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Figure 3. (cont.) 
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and al = 1.5) are shown for T1/To = 5 and Kn = 0.5 in Figure 5. It is seen from Figures 2b 
and 5a that  the flow pattern is quite different depending on the shape of the inner cylinder. In 
Figure 5a, the inner clockwise flow disappears and the outer counterclockwise flow extends to the 
inner cylinder. 

The data  on the simulation scheme used to obtain the results in Figures 2-5 (except Figure 3d 
which is based on the exact solution) are summarized as follows. 

(a) Initial condition: The Maxwellian distribution with density P0, temperature To, and flow 
velocity zero is taken as the initial velocity distribution f(0). 

(b) Cells: The system of simulation cells used in the computation for Figures 2-4 (ao = 0.3, 
bo = 0.7, and al = 1.5) is shown in Figure 6. Here, the gas region (in the first quadrant) is 
first divided into fine sub-cells by the lines X 1 / L  = nal/600 (al = 1.5, n = 1 ,2 , . . . ,  599) 
and X 2 / L  = n'/400 (n' = 1, 2 , . . . ,  399) (thus, each sub-cell is the square with side length 
L/400, except irregular ones in contact with the cylinder surfaces). The simulation cells 
are then formed in such a way that each cell is a cluster of a number of sub-cells. The 
total number of simulation cells is 775. In the case of Figure 5 (a0 = b0 = 0.6, al = 1.5), 
a different system of cells (546 cells), constructed in a similar way, was used. 

(c) Particles: The total number of particles N is 775000 for Figures 2-4 and 546000 for 
Figure 5. 

(d) Time step: The time step At is 5t0/102v/-~ for Kn -- 0.1 and t0/102v/'~'I~ for Kn > 0.5, 
where to is the mean free time corresponding to /0 ,  i.e., to = (v/'~/2)(2RTo)-t/21o. 



24 K. AOKI et aL 

1.0 ~ Tl/To = 2 K n  = 0.5 

, . . . . . . , , ; , , . ,  ' . . . - . . . . . "  .,% 

o 0.3 X1/L ~.5 

(a) Flow-velocity field. 

1.0 TJTo = 2 g n  = 0.5 

0 0.3 X1/L 1.5 
(b) Isothermal and isodensity lines. 

Figure 4. Flow-velocity field and isothermal and isodensity lines at  Ka = 0.5 for 
a smaller temperature ratio T1/To = 2 and for a0 = 0.3, b0 = 0.7, and a l  -- 1.5 
(the same geometry as Figure 2). In (a), the  arrows indicate the  nondimensional  
flow velocity v/(2RTo) 1/~ (v3 = 0) at  their  s tar t ing points,  and their  scale is shown 
in t he  figure; t he  symbol  O represents  the  point  with t he  max imum speed, where  
[Vlmax/(2[~r'o) 1/2 = 2.44 x 10 -3 .  In (b), - -  indicates the  isothermal lines T/To = 
1.35 + 0.05m, rn = 0, 1 , . . . ,  10, and . . . .  the  isodensity lines P/Po = 1.2 - 0.025rn, 
m = 0 , 1 , . . . , 1 2 .  

(e) Collision process: In the step (iv) of Section 4, M(g) is assumed to be 0.3N(t) for Kn = 0.1 
and 0.1N(t ) for Kn _> 0.5 in all the cells and all the time. 

(f) Average: In Figures 2-5, the averages of the data  at each two time steps over the interval 
2 × 105At are shown for Kn -- 0.1, and those of the data  at each time step over 105At 
are shown for Kn _> 0.5. The averages are taken after the steady state is judged to be 
established. 

In addition to the above data, we make some supplementary remarks related to the compu- 
tation. First, the system of cells in (b), where the cell sides except ones on the boundary are 
parallel to the X1 or X2 axis though zigzag, is convenient for determining in which cell the par- 
ticles lie after step (iii) in Section 4, and thus allows a highly efficient computation. Secondly, 

pU,k) (equation (13)) in the step (iv) of Section 4 for the choice we monitored the probabil i ty ,  M(t) 
of M(t) in (e) because it should be less than 1. In the test for a0 = 0.3, b0 = 0.7, and al  = 1.5 
and for T1/To = 5 over 6000 time steps with 77500 particles for Ku = 0.5, 1 and with 775000 
particles for Kn = 0.1, the observed maximum of pU,k) M(£) is  0 . 6~17  (Krl ~-~ 0.1), 0.6701 (Kn = 0.5), 
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(a) Flow-velocity field. 
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(b) I so thermal  and  isodensi ty  lines. 

F igure  5. Flow-velocity field and  i so thermal  and  isodensi ty  lines a t  Kn = 0.5 for 
T1/To = 5 when  the inner cylinder is a circular one, i.e., ao = bo = 0.6, a l  = 1.5. 
In  (a), t h e  arrows indicate  t he  nond imens iona l  flow velocity v/(2RTo)l/2(v3 = 0) a t  
the i r  s t a r t i n g  points ,  and  the i r  scale is shown in t h e  figure; t he  symbo l  C) represen ts  
t he  po in t  wi th  t h e  m a x i m u m  speed,  where  IV[m~,/(2RTo) 1/2 = 8.64 x 10 -3 .  In (b), 
- -  ind ica tes  t h e  i so the rmal  lines T/To = 2.2 + 0.2m, m = 0, 1 , . . . ,  11, and  . . . .  t h e  
i sodens i ty  lines P/Po = 1.45 - 0 .05m, m = 0, 1 . . . . .  13. 
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F igure  6. S y s t e m  of cells used  for ao = 0.3, be = 0.7, and  a l  ---- 1.5. 
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and 0.3735 (Kn = 1). Further, in the same test with M(~) = 0.1N(e) and M(~) = 0.2N(t) for 

Kn = 0.1, the exceeds 1 for 0.0134 percent of all the pairs chosen for the check of collision 

when M(e) = 0.1N(~) [m vl~(J,k) = 1.8516), and only for 2.2 × 10 -s percent (only two pairs) . . . . .  M(t) 
when M(~) = 0.2N(e) (max p(j'k) -- 1.0218). Thirdly, the X3 component v3 of the flow velocity, " M(g)  

which should be zero exactly, does not vanish in the actual computation because of the limitations 
of computational condition (finite particle number, finite cell size, etc.). This gives a measure 
of accuracy of the computation. In our computation, Iv31/(2RTo) 1/2 is less than 4.70 x 10 -4, 
4.59 × 10 -4, 4.22 x 10 -4, 4.95 × 10 -4, 4.72 x 10 -4, 3.58 x 10 -4, and 4.45 × 10 -4, respectively, in 
the case of Figures 2a, 2b, 2c, 2d, 2e, 4, and 5 in 80% of the cells in the domain (the maximum 

flow speed in the ZlZ2  plane, (v~ + v2)~ / (2RTo)  1/2, in each case is given in the captions of 
Figures 2, 4, and 5). Finally, we also carried out the computation corresponding to Figure 2 
with a smaller number of particles (77500 particles). Its flow velocity, the fluctuation of which 
is larger than that in Figure 2, agrees well with Figure 2, and its isothermal and isodensity lines 
agree completely with those obtained by using 775000 particles (e.g., Figures 3a-3c). 

The computation was carried out on HP9000 735 workstations in the Fluid Dynamics Lab- 
oratory, Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto 
University. 

6. DISCUSSIONS 

Referring to the results in Figures 2 and 3, we briefly discuss the physical mechanism of the 
flow. In the following, we assume To < T1 as in Figures 2 and 3. 

To begin with, we consider the flow along the inner cylinder. For small Kn, the velocity 
distribution of the gas molecules is determined by the local properties of the macroscopic variables, 
i.e., p, v, T and their derivatives. The state of the gas near the inner cylinder in Figures 2a 
and 3a, where Kn = 0.1, seems to be fairly close to this situation because the local density p 
is about 2p0 and thus the local mean free path is about lo/2 there. The temperature field in 
Figure 3a shows that the temperature gradient in the gas near the inner cylinder has not only 
the component normal to the cylinder surface but also the component parallel (or tangential) 
to it. Owing to this tangential temperature gradient, a flow is induced along the cylinder from 
the colder part to the hotter part by the same mechanism as the thermal creep flow [6-8,13], in 
spite of the fact that the temperature of the cylinder itself is uniform. On the other hand, for 
moderate and large Kn, the velocity distribution of the gas molecules is not characterized by the 
local properties of the macroscopic variables but is affected by the overall properties of the system, 
such as its configuration. In the free molecular flow (Kn = ~ ) ,  where the gas flow vanishes, the 
velocity distribution of the molecules impinging on the inner cylinder is isotropic. This fact is not 
obvious but the consequence of [20,21]. Since the velocity distribution of the outgoing molecules 
is isotropic in the case of the diffuse reflection, no tangential force acts on the surface of the 
cylinder. When Kn is large but finite, the isotropy of the velocity distribution of the impinging 
molecules is distorted by molecular collisions because the configuration is not symmetric. This 
gives a tangential force on the cylinder. The reaction of this force, which is imparted to the gas 
by molecular collisions, induces a flow. For large Ka, the distortion of isotropy of the velocity 
distribution of the impinging molecules is small, and, in addition, molecular collisions that transfer 
the reaction to the gas near the cylinder are rare. Therefore, the induced flow vanishes rapidly 
as Kn is increased. The mechanism described above is essentially the same as that given in [17], 
where a flow induced along a flat plate (instead of an elliptic cylinder) is investigated. The 
striking difference is that, in the case of the flat plate, a very steep temperature gradient in the 
direction parallel to the plate arises in the gas along the plate near the edges, and thus a localized 
but intense flow is induced there. 

We next consider the flow induced along the outer cylinder. This flow is caused by a different 
mechanism clarified in [16], where a gas flow induced between two noncoaxial circular cylinders 
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with slightly different temperatures is studied by an accurate finite-difference analysis of the 
linearized B KW  equation. We will outline the mechanism in a slightly different way. As we have 
mentioned, no flow is induced in the free molecular case (Kn = oo). Now let us look at a point 

(say, point A) on the outer cylinder where the tangential velocity is appreciable in Figure 2b, 2c, 
or 2d, and let us consider the mass flux due to the molecules impinging on point A from a given 
direction. According to the general theory [20,21], the flux does not depend on the direction in 
the free molecular flow (Kn = c~). Molecular collisions affect the flux. The gas in the upper left 
region in Figure 2 is more cooled by the inner cylinder than that  in the lower right region (see 
Figure 3). The molecules impinging on point A from the upper left region are more cooled or 
decelerated by molecular collisions in the cooler region. Therefore, the total mass flux due to the 
molecules impinging on point A is in the upper leftward direction. Since the velocity distribution 
of the outgoing molecules is isotropic, a flow occurs in the upper leftward direction along the 
outer cylinder. As Kn is decreased, the effect of molecular collisions becomes larger, and thus 
the flow is intensified. At sufficiently small Kn, where the state of the gas is characterized by 
local properties of the macroscopic variables, the mechanism described above does not apply, 
and other types of flow, such as the thermal creep flow, thermal stress slip flow, and nonlinear 
thermal stress flow, become important. The mechanism outlined above should not be confused 
with tha t  of the thermal creep flow. In the latter, a stationary state with a temperature gradient 
along the boundary is first considered, where the mass fluxes of the impinging molecules from 
the two directions are balanced and therefore the momentum flux to a small surface element is 
estimated to have a tangential component, and the momentum exchange between the gas and 
the boundary wall is discussed. The molecules reflected on the wall soon collide with another 
molecule and establish a flow near the wall in such a way that  the tangential momentum flux of 
the impinging molecules is canceled. In the former, on the other hand, the reflected molecules 
proceed some distance without collision and thus do not cause their direct effect on the gas near 
point A; the molecules coming from the neighboring wall retain their property. Thus the global 
configuration is important.  (The free molecular flow is its extreme case.) 

The entire flow field is determined by the balance of the two types of flow at each Kn. In 
Figure 5a, where the inner cylinder is a circular one, the flow along the outer cylinder does not 
show a large difference from that  in Figure 2b, as expected from the mechanism of the flow. On 
the other hand, Figure 5b shows that  the density and temperature fields in the gas are almost 
cylindrically symmetric. This means that  the velocity distribution of the molecules impinging on 
the circular cylinder is almost isotropic. Therefore, the upward flow along the inner cylinder (cf. 
Figure 2b) disappears, and the circulating flow driven on the outer cylinder extends to the inner 
cylinder. 
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