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Abstract

Let G(n,m) be a connected graph without loops and multiple edges which has n vertices and
m edges. We find the graphs on which the zeroth-order connectivity index, equal to the sum of
degrees of vertices of G(n,m) raised to the power —%, attains maximum.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let G(n,m) be a connected graph without loops and multiple edges which has n
vertices and m edges. Denote by u its vertex and by o, the degree of the vertex u,
that is the number of edges of which « is an endpoint. Denote further by (uv) the
edge whose endpoints are the vertices u and v. In 1975 Randi¢ proposed a topological
index, suitable for measuring the extent of branching of the carbon-atom skeleton of
saturated hydrocarbons. The Randi¢ index defined in [9] is: =", (6.0,)~"/*, where
the summation goes over all edges of G. Randi¢ himself demonstrated [9] that his index
is well correlated with a variety of physico-chemical properties of alcanes. y became
one of the most popular molecular descriptors to which two books are devoted [6,8].
The general Randi¢ index w, is w, = Z(W) (0,0,)*, where the summation goes over

all edges of G. The zeroth-order Randi¢ index y defined by Kier and Hall [7,8] is

=Y @)

(u)
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Fig. 1. Extremal graph G(12,23), ny =5,n3 = 1,n5 =3,n6 =2,n1; = 1.

where the summation goes over all vertices of G. Kier and Hall gave a general
scheme based on the Randi¢ index to calculate also zeroth-order °y and higher-order
connectivity indices "y. For example, the second order connectivity index is: 2y =
Z(uvw) (8,0,0,,)""%, where the summation goes over all paths of length 2. Initially,
the Randi¢ connectivity index was studied only by chemists [7,8], but recently it at-
tracted the attention also of mathematicians [1,2,4,5]. In [3] the general Randi¢ index
has been studied for o = —1, that is the former index proposed by Randi¢. One of the
most obvious mathematical questions to be asked in connection with ™y is which graphs
(from a given class) have maximum and minimum "y values [1]. These questions are
interesting for chemists too, because there is a connection between connectivity indices
and some physico-chemical properties for “chemical graphs”. The solution of such
problems turned out to be difficult, and only a few partial results have been achieved
so far.

Denote by n; the number of vertices of degree i. Then: *y =n/v/1+ny/vV/2+ -+
n,—1/v/n — 1. The function °y attains maximum on the following connected graphs. For
m=n—1, it is a star graph, then we add a new edge (for m =n) between two vertices
of degree 1 and get a clique of 3 vertices. Adding one more edge (for m =n + 1)
between one vertex out of the clique and some vertices in the clique increases the
degree of this vertex by 1 until it is joined to all those of the clique. We get a clique
of 4 vertices (m =n+2) and we continue to add edges in this manner until we arrive
at the complete graph (Fig. 1). Denote by G* = G*(n,m) the graph on which °y attains
maximum.



L. Pavlovi¢| Discrete Applied Mathematics 127 (2003) 615-626 617

Theorem. Let G(n,m) be a connected graph without loops and multiple edges with n
vertices and m edges. If m=n+k(k—3)/2+ p, where 2 <k <n—1and 0 < p < k-2,
then

2(G(n,m)) < °7(G*)
—k—1 1 k—1-— 1
2 Py Ly

+ + - :
V1 vp+1 vk —1 Vk n—1

It means that the extremal graph above described, must have nj=n—k—1, n,.1 =1,
ng_1=k—1—p, np=pand n,_ =1.
The theorem describes the solution of the following problem (P):

moom | om Mu—i
max—= + — + — 4+ +

vVioVv2 V3 n—1

under two graph constraints:

(1)

nytnytny 4o =n, (A)

ni+2ny 4 3n3 4 -+ (n — Dnyy =2m. (B) (B)

It is not difficult to prove the theorem for trees.
Lemma 1. If m =n — 1, the function °y attains maximum on the star graph.

Proof. When m =n — 1, then k=2 and p=0. We find n; and n,_; from constraints
(A) and (B)

1 2 n—23
=n—-1-(1—-—— -1 - — - — (1= _
np=n ( n—2>n2 ( n—2>n3 ( n_2>”n 2,

ny 2n3 3ny (n—3)n,_

n—2 n—-2 n-2 n—2

n,,,lzl—

After their substitution in %y, this function becomes

n—2
1 1 n—1—j ji—1
r=n Jn—1 Zj_:z ViT n—2 a—ova—1)"

Since (see Lemma 2): (n—2)/v/j < (n—1—/)/V/1+(j—1)/v/n—1for 1 <j<n-—1,

we conclude that OX attains maximum for n; =0, j =2,3,...,n — 2. Then: n; =n —
lLbmm=ny=-=n,_2=0, n,_; =1 and max,—,_1"y=n—-1+1/vVn—1. O

Lemma 2. Let r,s, and t be real numbers such that: 0 <r <s <t. Then
t—r _t=s N s—r
Vs Nt

and the equality holds only for s=r and t.
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Proof. If s=r or s=¢, it is obvious that equality holds. Denote by f(s)=(t—s)/\/r +
(s — )/t = (t = r)/\/s. Then ¢*f/0s* = —3(t — r)s™>* < 0 and the upper inequality
follows because the function f is strictly concave. [J

Corollary 1. For real number s, such that s > 1, holds:
2 1 1
— < + .
Vs oNs—1 s+1

If we want to find extremal graphs for other values of m we cannot use the same
method because the solutions do not correspond to graphs.
The proof of the following lemma is easy and is omitted.

Lemma 3. If ny #0 in G(n,m), then n,_; < 1. If ny=ny=---=n;_1 =0 and n; 20
then n,— <i.

Lemmad. Ifn,_1=1and ny=1(l 2 2) in G(n,m), then n,_j=n,_jj1=-+-=n,_3=
ny—2 =0.

Proof. Consider a vertex of degree k (k > 1). Since / vertices of degree 1 are adjacent
to the vertex of degree n — 1, this vertex can be adjacent to the most n — 1 — / other
vertices. It means that k <n—171—1. O

When n,_; =1 and n; =/, instead of problem (P) we can consider the following
problem (P’ )‘
max— 4 T2 8 il N
VioVv2 o V3 M/ e Y

under the constraints:

my+ny g+t =n—1-1, (A"

m+2n3+3ng+---+m—1—-2)m,_ ;1 =2(m—n+1). (Bh

2. The main part of the proof

The proof of the theorem is based on mathematical induction. It is easy to check
that the theorem is true for n =5 and 4 < m < 10. We will suppose that the theorem
is true for every graph G(i,j), where 5<i<n—landi—1<;< (;). We have to
prove the theorem for graphs G(n,m), where n —1 <m < (3). The case m=n—1 is
done and the cases m=() and (;)—1 will not be considered because they correspond
to unique graphs. Since m=n+k(k—3)/24+ p, where 2 <k <n—1land 0 < p < k-2,
we need to consider two cases: (1) k=n—1 and (2) 2 <k < n—2. At first, we will
prove the theorem for k =n — 1.

Case 1: k=n—1.



L. Pavlovi¢| Discrete Applied Mathematics 127 (2003) 615-626 619

Lemma 5. Inequality (1) holds for the graphs G(n,m), m=n+k(k —3)/2 + p, where
k=n—1land 0< p<n-—3.

Proof. The number of edges is m=(n* —3n+4+2p)2=n—1)n—-2)2+ p+1,
where 0 < p<n-—-3.1f p> 1, then ny=ny=n3=---=n,=0 and n,,; > 0. Contrary
to this, if G(n,m) would have one vertex of degree p (or less), by deleting one vertex
of degree p we get the graph G'(n— 1,m — p) ( not necessarily connected), which has
more edges than the complete graph on n — 1 vertices. The fact that n,,; > 0 means:
Npp1 70 or npy1=0,np127#0 01 npry=n,2=0,n,,37#0 and so on. Denote by Pf,’““
the problem for given p when ny=ny=---=n,=np1=npo=---=n,1;=0, npp;j 11 #0

and by %%5*/*" the optimal value of %y for the problem P5™/™' The optimal value
of % for given p is %y, = maxo<,; <, , 4 757", When we have n,;.1 #0, then

np—y < p+j+1 (Lemma 3).
Let us solve the problem P4/ 0 < p <n—4, 0 <j <n—p—4. (When p=n-—3,
we have only one graph, that is the complete graph without one edge.)
Mp+tj+1 Np+j+2 Np+j+3 Np—1

max e —
Vp+j+1 Vp+j+2 Vp+j+3 vn—1

under the constraints:

Rpijr1 F0prjp2 tpyj3 + -+ =n,
(P+J+Dnpijr +(p+j+2mpjia+ -+ —Dnyy=n* =3n+4+42p,

nn71:p+j+1_§y~

Let us solve the system of the latter three equalities in n,_1,n,—» and n,4 ;4

) P —nQ2p+2j+5)+ PP +2p+5p+ /346
T n—p—j—3 n—p—j—3
_ 2npyi43 _ 3npijta
n—p—j-3 n—p—j-3
L —p—j—Pms (n—p—j-2)
n—p—j—3 n—p-j=3"

n—p+j-—3 1

(aris I (1 AT p—j=3) e

2 3
- (1 - —p—1—3) Mt = (l - —p—J—s>

—p—j—4 —p—j—2
U (I A A R I i
n—p—j—3 n—p—j—3
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After substituting 7, 41,n,—> and n,_; back into 0y, we have
0y — n—p+j-3
T n=p—Jj=3)Vp+tj+1
Jrnzfn(2p+2j+5)+p2+2pj+5p+j2+3j+6Jrp+j+1
(mn—p—j—3)V/n—-2 vn—1

Jrniin(l n—i—2 B i—p—j—1 >
e \Vi i—p—j=3WpFitl (n—p—j-3)0n-2

+€(_ 1 1 n—p—j—2 )
Vi—1 (m—p—j-3)Wptjtl (n—p J—=3)Vn-2

Since (because of Lemma 2)

n—p—j—3< n—i—2 +i—p—j—1
Vi YRR Vn =2
n—p—j—2< 1 +n—p—j—3.
Vn—2 vVe+i+1 Vn—1
The latter inequality is obtained for i =n — 2 from the inequality
n—p—j—2< n—i—1 +i—p—j—
Vi YRR Vn—1
It means that we will get the maximum value of °y if we put: n P2 =Mpyjg3 ==
n,—3=¢=0 and
07p+j+1_ n—p+j—3

T —p—j-3)p i+
+n2fn(2p+2j+5)+p2+2pj+5p+j2+3j+6+p+j+1

for p+j+1<i<n-—2,

for p+j+1<i<n-—1L

(n—p—j—3)W/n—-2 vn—1
for p=0,1,...,.n—4 and j=0,1,...,n — p — 4. This solution does not correspond
always to a graph (except for j=0, 75" =0;5 *1). We put symbol ~ for this solution,
but the true graph solution %75/ is less than or equal to 7% AR

Now we show that %y ™ is the maximum value of ¢ x for a given number p, that
O/f,’H = maXo<j<n— p— 40Xp+f+1 Since 974! < 07p+7*1 it is sufficient to prove
that 5 p = Maxg<;<n—p—4 ,{p /1 We have to prove the following inequality:

1 n—p-—2 p+1
0z p+]+1< + + . 5
& vVp+1 Vn—2 vn—1 )
We transform inequality (5) (for n — p —j —3#0) to (6)
n—p—j-3 n-—ptj-3 jo-—p—j-1) j-p-j=-3)_,
NrED NI ESED Vn—2 n—1 -

(6)
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We introduce the abbreviations: 4=+/p+1, B=+/p+,j+1, C=+n—1and D=
v/n — 2 in order to facilitate writing. After this, inequality (6) becomes
fn-p—j=3 n-p-j-3 n-p-j-1 n-p-—j-1
J AB[A + B] CB[C + B] CD[C + D] CB[C + B]
which is transformed into
Jn—p—j=3) [(n=—p—-2)4+B+C)
BC(B+C) A(A+B)A+C)

_(n—p—j—l)(B+C—|—D)}>0
D(B + D)(C + D) -
This inequality holds for j =0,1,....,n — p — 4 and for p=0,1,...,n — 4 because
n—p—2=2n—p—j—1for j>=1 (for j =0 in (8) holds equality) and
A+B+C - B+C+D 9)
A(A+B)YA+C)  DB+D)C+D)
Since 4 < D, follows: 1/(4 + B) > 1/(B+ D) and 1/(4 + C) > 1/(C + D), and (9)

becomes (4 + B+ C)/4 > (B + C + D)/D. The last inequality is true again because
A < D.

}20 (7)

(8)

We proved that the maximum value of °y for a given number p is ° ;(fp’“
1 n—p-—2 +1
0%5+1 _ + p p

VPl Vn=2  Vn—1
for p=0,1,...,n—4. This value is attained on a graph which has n,_1=p+1, n,_»,=
n—p—2and n, =1 0

Case 2: 2 <k <n-2.

Now we will consider the graphs G(n,m), where m = n + k(k — 3)/2 + p and
2<k<n—2and 0< p<k—2 We will prove that G* has at least one vertex of
degree n — 1.

Lemma 6. Let n —t (¢t = 2) be the maximum degree and | be the minimum degree
of the vertices in G*. Then every vertex of the minimum degree | must be adjacent
to every vertex of the maximum degree n — t.

Proof. Suppose the opposite, namely, that there exists a vertex u of degree / which is
not adjacent to a vertex w of the maximum degree. Denote by G’ a graph obtained from
G* by deleting an edge between vertex u and some vertex v of degree j (I < j < n—t)
and joining the vertices u and w with a new edge. Then

. 1 1 1 1
"1G) = 'uG) =

Vn—t+1 B \/n—t+\/j—1 B Vi

> 1 o1 . 1 1 -
Vi—t+1 an—t Vn—t—1 ~/n—t

because the function 1/\/j — 1 — 1/4/j is decreasing and because of Corollary 1. [J

0
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Lemma 7. The minimum degree of vertices in G* which has the maximum degree
n—t, t=21is 1.

Proof. Suppose the opposite, namely, that the minimum degree of vertices in G* is
I, 1 =22. A vertex u of degree [ is adjacent to one vertex of the maximum degree
and to other vertex v. Denote by G’ a graph obtained from G* when we delete the
edge between vertices u and v and introduce a new edge between vertex v and a
vertex w of degree j (I < j < n—t). We can always do this because the degree k of
vik<n—t<n-—1 and there exists at least one vertex w which is not adjacent to
vertex v. Then

1 1 1 1
0 GI _ 0, G*: _ _
N R ARY/a B
1 1 1 1
> - —+ - —>0
VIi-1 VI i+l Vi

because the function 1/4/j + 1 — 1/4/7 is increasing and because of Corollary 1. [J
Lemma 8. The extremal graph G* must have at least one vertex of degree n — 1.

Proof. Suppose the contrary, that is, that the maximum degree of the vertices is n — ¢
(t = 2). As we showed, all vertices of degree 1 must be adjacent to one vertex w of
degree n — t. Denote by G’ a graph obtained from G* when we delete one vertex
of degree 1. The graph G'(n’,m’) has n’ =n — 1 vertices and m' = m — 1 edges (for
k < n—2) and for it inductive hypothesis holds

0 s n—1—k—1 1 k—1—p p 1
(G') < + + + =+
") V1 Ve+T  VE-1  Vk Vn=2
and
1 1 1
0 * 0 /
(G*)="1(G)+ —F—=+ -
MO =+ 3 =~ o
n—1—k 1 k—1—p p
< + + + =
V1 Ve+1 o VE=1 WV
. 1 n 1 1
Vn=2 n—t Vn—t—-1
—-1-k 1 k—1-— 1
z p+£+

V1 +\/p+1+\/k—1 N/ n—1

because 1/vn —2—1/v/n—1 < 1/v/n—t — 1—1/y/n — t. It means that : °¢(G*) < (n—
1—k)/V14+1//p+ 1+(k—1—p)/Vk — 1+ p/\/k+1/\/n — 1, which is impossible. *
attains this value on a graph which has ny=n—k—1, npp1 =1, m_1=k—p—1, m;=p
and n,_;=1. O

Subcase 2a: 2 <k <n-—2, n #0.
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First, we consider the extremal graphs which have n; #0. Then n,_; =1 (Lemmas
3 and 8) and all vertices of degree 1 must be adjacent to this unique vertex of degree
n—1.

Lemma 9. Inequality (1) holds for all graphs G(n,m), n,_1 =1, ny =1, (I = 1) and
for 2 <k<n-2.

Proof. Inequality (1) will be valid for all graphs G(n,m), n,—; =1 and n; = I, if the
following inequality holds:

Mo
V2 3 vn—1-1
—k—-1-1 1 k—1-—

< il + T+1+ =1 Jrﬁ

under constraints: (A') and (B'). We first prove (2) for / > 2. Consider a graph G’'(n—
1,m—1), which is obtained from G(n,m), when we delete one vertex of degree 1. The
graph G'(n—1,m—1) has n{ =/—1 and one vertex of degree n—2 (because the other
vertices can have degree at the most » — 1 — /), and we can use Lemma 4. Namely,
when nj =1—1,then n, ,=n,_, =---=mn,_3=0 (because n —1— (I —1)=n—1)
and the same constraints: (A') and (B') hold. Since G'(n— 1,m — 1) has n— 1 vertices
and n — 1 + k(k — 3)/2 + p edges, it satisfies the inductive hypothesis. Holds

Mo M e
V2 V3 vn—1-—1
n—1l—k—1-(-1) 1 k—1—p p
< + + + 4
NG N RS Y/ )

for every 2 <k <n—2and 0 < p < k—2. We omitted the symbol’, but all denotations
pertain to G'. Inequality (2’) is just inequality (2), which is now proved because the
constraints are the same.

Now we show that inequality (2) holds for /=1, that is, when the graph G’ has no
vertex of degree one. Since n,_, > 1 in the graph G'(n — 1,m — 1), we can introduce
the following substitution: n,_» =1+ n),_,. By the inductive hypothesis for the graph
G’ holds

(3)
under the costraints

mtny+--+na=n—1,

2nmy+3nmy+ -+ —2)n—y =2(m—1). €))



624 L. Pavlovi¢| Discrete Applied Mathematics 127 (2003) 615-626

After this substitution inequality (3) and system of equalities (4) becomes (3’) and
(4). Namely, it holds

np n3

Nl

I
ny_o

Np—3
V3 vn—=3 Vn-2

<nflfkflJr 1 +kflprrp 3
= V1 N R
under the costraints
ny st s+, ,=n—2,
ny+2n3+ -+ (—Mn,_3+n—3)m,_,=2(m—n+1). 4)

Equalities (4') are just the constraints: (A'), (B!) and inequality (3’) is inequality
(2) for I=1. O

Subcase 2b: 2 <k <n—-2,n =0.
We will now consider the case when n; = 0. The proofs of the next two Lemmas
10 and 11 are similar to those of Lemmas 6 and 7 and are omitted.

Lemma 10. Let ny=n,=---=n,_1=0,n,#0 (r = 2) in the extremal graph G* and
n—1zn—ty=2n—t,=---=n—t._y be the first r maximum degrees of vertices.
Then every vertex of degree r must be adjacent to every vertex of these maximum
degrees.

Lemma 11. If in G*, ny=ny=---=n,_1 =0 and n, #0, then the extremal graph G*
has r vertices of degree n — 1.

Earlier we proved the theorem for £ = »n — 1, namely when the number of edges
m > (n* — 3n 4 4)/2. It remains to prove the theorem when m < (n> — 3n + 4)/2.

Lemma 12. If m < (n* —3n+2)/2 then the extremal graph G*, such that: ny =n, =
co-=n,_1 =0 and n, #0 (r = 2), does not exist.

Proof. Suppose the contrary, that is, that such graph G* does exist. A vertex u of
degree r is joined with all vertices wy,wy,...,w, of maximum degree n — 1. The graph
G* except vertices u,wj,wa,...,w, contains still n — » — 1 vertices. These n —r — 1
vertices themselves do not form the complete graph. If they do form the complete
graph, then the number of edges in G* would be

n—r—1 r n?—3n+2
m= +r(n—r)+ =—+r
2 2 2

In this case G* would have r edges more, contrary to our supposition (m < (n> —
3n+2)/2). It means that we can introduce at least » — 1 edges between these n —r — 1
vertices. Denote by G’ a graph obtained from G* when we delete » — 1 edges between
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vertex u and vertices wy, ws,...,w, and introduce new r — 1 edges between r — 1 pairs
of vertices: v; ( degree j;) and v] (degree ji), v2 (j2) and vh (j}),...,0r—1 (jr—1) and
0.1 (Ji—1)- Then

11 =1 r—1 1 1
UV U= -t A T e T
g . .t 1. .
VitHL T VRt ViR T
P S R DR
Vir—i+ 1 Vit i+ 1 Ui
1 1 1
>1—\/17—|-2(r—1)[ r+1_\/F]

because 1/y/j + 1 —1/4/] is increasing function. Now we will prove that: 1 — 1/\/r +
2(r — D[1/vVr+1—1/4/r] >0 for r = 2.

1 | N 20r — 1)
1_\/?+2(r_1)[\/r+1_\/?}_\/?[ﬁ+1] N ES TN

r—1 1 2
= — >0
vr {\/;-F1 \/m[\/ﬁr\/m]}
because r + 1(v/r + 1++/r) > 2/r+2, namely /r(r +1) > 2\/r+1—r for r = 2.
O]

Finally, after considering all cases we proved the theorem. The extremal graph in
the theorem is unique because inequality (8) is strict for j #0.
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