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Maximal value of the zeroth-order Randi&c index
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Abstract

Let G(n; m) be a connected graph without loops and multiple edges which has n vertices and
m edges. We 0nd the graphs on which the zeroth-order connectivity index, equal to the sum of
degrees of vertices of G(n; m) raised to the power − 1

2 , attains maximum.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let G(n; m) be a connected graph without loops and multiple edges which has n
vertices and m edges. Denote by u its vertex and by �u the degree of the vertex u,
that is the number of edges of which u is an endpoint. Denote further by (uv) the
edge whose endpoints are the vertices u and v. In 1975 Randi&c proposed a topological
index, suitable for measuring the extent of branching of the carbon-atom skeleton of
saturated hydrocarbons. The Randi&c index de0ned in [9] is: �=

∑
(uv) (�u�v)

−1=2, where
the summation goes over all edges of G. Randi&c himself demonstrated [9] that his index
is well correlated with a variety of physico-chemical properties of alcanes. � became
one of the most popular molecular descriptors to which two books are devoted [6,8].
The general Randi&c index w� is w� =

∑
(uv) (�u�v)

�, where the summation goes over
all edges of G. The zeroth-order Randi&c index 0� de0ned by Kier and Hall [7,8] is

0� =
∑
(u)

(�u)−1=2;
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Fig. 1. Extremal graph G(12; 23), n1 = 5; n3 = 1; n5 = 3; n6 = 2; n11 = 1.

where the summation goes over all vertices of G. Kier and Hall gave a general
scheme based on the Randi&c index to calculate also zeroth-order 0� and higher-order
connectivity indices m�. For example, the second order connectivity index is: 2� =∑

(uvw) (�u�v�w)
−1=2, where the summation goes over all paths of length 2. Initially,

the Randi&c connectivity index was studied only by chemists [7,8], but recently it at-
tracted the attention also of mathematicians [1,2,4,5]. In [3] the general Randi&c index
has been studied for �=−1, that is the former index proposed by Randi&c. One of the
most obvious mathematical questions to be asked in connection with m� is which graphs
(from a given class) have maximum and minimum m� values [1]. These questions are
interesting for chemists too, because there is a connection between connectivity indices
and some physico-chemical properties for “chemical graphs”. The solution of such
problems turned out to be diLcult, and only a few partial results have been achieved
so far.
Denote by ni the number of vertices of degree i. Then: 0�= n1=

√
1+ n2=

√
2+ · · ·+

nn−1=
√
n− 1. The function 0� attains maximum on the following connected graphs. For

m=n−1, it is a star graph, then we add a new edge (for m=n) between two vertices
of degree 1 and get a clique of 3 vertices. Adding one more edge (for m = n + 1)
between one vertex out of the clique and some vertices in the clique increases the
degree of this vertex by 1 until it is joined to all those of the clique. We get a clique
of 4 vertices (m= n+2) and we continue to add edges in this manner until we arrive
at the complete graph (Fig. 1). Denote by G∗=G∗(n; m) the graph on which 0� attains
maximum.
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Theorem. Let G(n; m) be a connected graph without loops and multiple edges with n
vertices and m edges. If m=n+k(k−3)=2+p; where 26 k6 n−1 and 06p6 k−2;
then

0�(G(n; m))6 0�(G∗)

=
n− k − 1√

1
+

1√
p+ 1

+
k − 1− p√
k − 1

+
p√
k
+

1√
n− 1

: (1)

It means that the extremal graph above described, must have n1=n−k−1, np+1=1,
nk−1 = k − 1− p, nk = p and nn−1 = 1.
The theorem describes the solution of the following problem (P):

max
n1√
1
+
n2√
2
+
n3√
3
+ · · ·+ nn−1√

n− 1

under two graph constraints:

n1 + n2 + n3 + · · ·+ nn−1 = n; (A)

n1 + 2n2 + 3n3 + · · ·+ (n− 1)nn−1 = 2m: (B) (B)

It is not diLcult to prove the theorem for trees.

Lemma 1. If m= n− 1; the function 0� attains maximum on the star graph.

Proof. When m= n− 1; then k = 2 and p= 0. We 0nd n1 and nn−1 from constraints
(A) and (B)

n1 = n− 1−
(
1− 1

n− 2

)
n2 −

(
1− 2

n− 2

)
n3 − · · · −

(
1− n− 3

n− 2

)
nn−2;

nn−1 = 1− n2
n− 2

− 2n3
n− 2

− 3n4
n− 2

− · · · − (n− 3)nn−2

n− 2
:

After their substitution in 0�, this function becomes

0� = n− 1 +
1√
n− 1

+
n−2∑
j=2

(
1√
j
− n− 1− j

n− 2
− j − 1

(n− 2)
√
n− 1

)
nj:

Since (see Lemma 2): (n−2)=
√
j6 (n−1−j)=√1+(j−1)=

√
n− 1 for 16 j6 n−1,

we conclude that 0� attains maximum for nj = 0, j = 2; 3; : : : ; n − 2. Then: n1 = n −
1; n2 = n3 = · · ·= nn−2 = 0; nn−1 = 1 and maxm=n−1

0� = n− 1 + 1=
√
n− 1.

Lemma 2. Let r; s; and t be real numbers such that: 0¡r6 s6 t. Then
t − r√
s
6
t − s√
r

+
s− r√
t

and the equality holds only for s= r and t.
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Proof. If s= r or s= t; it is obvious that equality holds. Denote by f(s)=(t− s)=√r+
(s− r)=√t − (t − r)=√s. Then @2f=@s2 =− 3

4 (t − r)s−5=2¡ 0 and the upper inequality
follows because the function f is strictly concave.

Corollary 1. For real number s; such that s¿ 1; holds:

2√
s
¡

1√
s− 1

+
1√
s+ 1

:

If we want to 0nd extremal graphs for other values of m we cannot use the same
method because the solutions do not correspond to graphs.
The proof of the following lemma is easy and is omitted.

Lemma 3. If n1 �=0 in G(n; m); then nn−16 1. If n1 = n2 = · · ·= ni−1 = 0 and ni �=0
then nn−16 i.

Lemma 4. If nn−1 =1 and n1 = l (l¿ 2) in G(n; m); then nn−l=nn−l+1 = · · ·=nn−3 =
nn−2 = 0.

Proof. Consider a vertex of degree k (k ¿ 1). Since l vertices of degree 1 are adjacent
to the vertex of degree n− 1; this vertex can be adjacent to the most n− 1− l other
vertices. It means that k6 n− l− 1.

When nn−1 = 1 and n1 = l, instead of problem (P) we can consider the following
problem (Pl):

max
l√
1
+
n2√
2
+
n3√
3
+ · · ·+ nn−l−1√

n− l− 1
+

1√
n− 1

under the constraints:

n2 + n3 + n4 + · · ·+ nn−l−1 = n− 1− l; (Al)

n2 + 2n3 + 3n4 + · · ·+ (n− l− 2)nn−l−1 = 2(m− n+ 1): (Bl)

2. The main part of the proof

The proof of the theorem is based on mathematical induction. It is easy to check
that the theorem is true for n= 5 and 46m6 10. We will suppose that the theorem
is true for every graph G(i; j), where 56 i6 n− 1 and i − 16 j6 ( i2 ). We have to
prove the theorem for graphs G(n; m), where n− 16m6 ( n2 ). The case m= n− 1 is
done and the cases m=( n2 ) and ( n2 )−1 will not be considered because they correspond
to unique graphs. Since m=n+k(k−3)=2+p, where 26 k6 n−1 and 06p6 k−2,
we need to consider two cases: (1) k = n− 1 and (2) 26 k6 n− 2. At 0rst, we will
prove the theorem for k = n− 1.

Case 1: k = n− 1.
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Lemma 5. Inequality (1) holds for the graphs G(n; m); m= n+ k(k− 3)=2+p; where
k = n− 1 and 06p6 n− 3.

Proof. The number of edges is m= (n2 − 3n+ 4+ 2p)=2 = (n− 1)(n− 2)=2 + p+ 1;
where 06p6 n−3. If p¿ 1; then n1 =n2 =n3 = · · ·=np=0 and np+1¿ 0. Contrary
to this; if G(n; m) would have one vertex of degree p (or less); by deleting one vertex
of degree p we get the graph G′(n−1; m−p) ( not necessarily connected); which has
more edges than the complete graph on n− 1 vertices. The fact that np+1¿ 0 means:
np+1 �=0 or np+1=0; np+2 �=0 or np+1=np+2=0; np+3 �=0 and so on. Denote by Pp+j+1

p

the problem for given p when n1=n2=· · ·=np=np+1=np+2=· · ·=np+j=0; np+j+1 �=0
and by 0�p+j+1

p the optimal value of 0� for the problem Pp+j+1
p . The optimal value

of 0� for given p is 0�p = max06j6n−p−4
0�p+j+1
p . When we have np+j+1 �=0; then

nn−16p+ j + 1 (Lemma 3).
Let us solve the problem Pp+j+1

p , 06p6 n−4; 06 j6 n−p−4. (When p=n−3,
we have only one graph, that is the complete graph without one edge.)

max
np+j+1√
p+ j + 1

+
np+j+2√
p+ j + 2

+
np+j+3√
p+ j + 3

+ · · ·+ nn−1√
n− 1

under the constraints:

np+j+1 + np+j+2 + np+j+3 + · · ·+ nn−1 = n;

(p+ j + 1)np+j+1 + (p+ j + 2)np+j+2 + · · ·+ (n− 1)nn−1 = n2 − 3n+ 4 + 2p;

nn−1 = p+ j + 1− �:
Let us solve the system of the latter three equalities in nn−1; nn−2 and np+j+1

nn−2 =
n2 − n(2p+ 2j + 5) + p2 + 2pj + 5p+ j2 + 3j ++6

n− p− j − 3
− np+j+2

n− p− j − 3

− 2np+j+3

n− p− j − 3
− 3np+j+4

n− p− j − 3

− · · · − (n− p− j − 4)nn−3

n− p− j − 3
− (n− p− j − 2)�

n− p− j − 3
;

np+j+1 =
n− p+ j − 3
n− p− j − 3

−
(
1− 1

n− p− j − 3

)
np+j+2

−
(
1− 2

n− p− j − 3

)
np+j+3 −

(
1− 3

n− p− j − 3

)
np+j+4

− · · · −
(
1− n− p− j − 4

n− p− j − 3

)
nn−3 +

(
1− n− p− j − 2

n− p− j − 3

)
�:
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After substituting np+j+1; nn−2 and nn−1 back into 0�, we have

0�=
n− p+ j − 3

(n− p− j − 3)
√
p+ j + 1

+
n2 − n(2p+ 2j + 5) + p2 + 2pj + 5p+ j2 + 3j + 6

(n− p− j − 3)
√
n− 2

+
p+ j + 1√
n− 1

+
n−3∑

i=p+j+2

ni

(
1√
i
− n− i − 2

(n− p− j − 3)
√
p+ j + 1

− i − p− j − 1
(n− p− j − 3)

√
n− 2

)

+ �
(
− 1√

n− 1
− 1

(n− p− j − 3)
√
p+ j + 1

+
n− p− j − 2

(n− p− j − 3)
√
n− 2

)
:

Since (because of Lemma 2)
n− p− j − 3√

i
6

n− i − 2√
p+ j + 1

+
i − p− j − 1√

n− 2
for p+ j + 16 i6 n− 2;

n− p− j − 2√
n− 2

6
1√

p+ j + 1
+
n− p− j − 3√

n− 1
:

The latter inequality is obtained for i = n− 2 from the inequality
n− p− j − 2√

i
6

n− i − 1√
p+ j + 1

+
i − p− j − 1√

n− 1
for p+ j + 16 i6 n− 1:

It means that we will get the maximum value of 0� if we put: np+j+2 = np+j+3 = · · ·=
nn−3 = �= 0 and

0�̃p+j+1
p =

n− p+ j − 3
(n− p− j − 3)

√
p+ j + 1

+
n2 − n(2p+ 2j + 5) + p2 + 2pj + 5p+ j2 + 3j + 6

(n− p− j − 3)
√
n− 2

+
p+ j + 1√
n− 1

for p = 0; 1; : : : ; n − 4 and j = 0; 1; : : : ; n − p − 4. This solution does not correspond
always to a graph (except for j=0, 0�̃p+1

p =0�p+1
p ). We put symbol ∼ for this solution,

but the true graph solution 0�p+j+1
p is less than or equal to 0�̃p+j+1

p .

Now we show that 0�p+1
p is the maximum value of 0� for a given number p, that

is, 0�p+1
p = max06j6n−p−4

0�p+j+1
p . Since 0�p+j+1

p 6 0�̃p+j+1
p , it is suLcient to prove

that �p+1
p =max06j6n−p−4

0�̃p+j+1
p . We have to prove the following inequality:

0�̃ p+j+1
p 6

1√
p+ 1

+
n− p− 2√
n− 2

+
p+ 1√
n− 1

: (5)

We transform inequality (5) (for n− p− j − 3 �=0) to (6)

n− p− j − 3√
p+ 1

− n− p+ j − 3√
p+ j + 1

+
j(n− p− j − 1)√

n− 2
− j(n− p− j − 3)√

n− 1
¿ 0:

(6)
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We introduce the abbreviations: A=
√
p+ 1; B =

√
p+ j + 1; C =

√
n− 1 and D =√

n− 2 in order to facilitate writing. After this, inequality (6) becomes

j
{
n− p− j − 3
AB[A+ B]

− n− p− j − 3
CB[C + B]

+
n− p− j − 1
CD[C + D]

− n− p− j − 1
CB[C + B]

}
¿ 0 (7)

which is transformed into

j(n− p− j − 3)
BC(B+ C)

{
(n− p− 2)(A+ B+ C)
A(A+ B)(A+ C)

− (n− p− j − 1)(B+ C + D)
D(B+ D)(C + D)

}
¿ 0: (8)

This inequality holds for j = 0; 1; : : : ; n − p − 4 and for p = 0; 1; : : : ; n − 4 because
n− p− 2¿ n− p− j − 1 for j¿ 1 (for j = 0 in (8) holds equality) and

A+ B+ C
A(A+ B)(A+ C)

¿
B+ C + D

D(B+ D)(C + D)
: (9)

Since A¡D, follows: 1=(A + B)¿ 1=(B + D) and 1=(A + C)¿ 1=(C + D), and (9)
becomes (A + B + C)=A¿ (B + C + D)=D. The last inequality is true again because
A¡D.
We proved that the maximum value of 0� for a given number p is 0�p+1

p

0�p+1
p =

1√
p+ 1

+
n− p− 2√
n− 2

+
p+ 1√
n− 1

for p=0; 1; : : : ; n−4. This value is attained on a graph which has nn−1=p+1; nn−2=
n− p− 2 and np+1 = 1.

Case 2: 26 k6 n− 2.
Now we will consider the graphs G(n; m), where m = n + k(k − 3)=2 + p and

26 k6 n − 2 and 06p6 k − 2. We will prove that G∗ has at least one vertex of
degree n− 1.

Lemma 6. Let n − t (t¿ 2) be the maximum degree and l be the minimum degree
of the vertices in G∗. Then every vertex of the minimum degree l must be adjacent
to every vertex of the maximum degree n− t.

Proof. Suppose the opposite; namely; that there exists a vertex u of degree l which is
not adjacent to a vertex w of the maximum degree. Denote by G′ a graph obtained from
G∗ by deleting an edge between vertex u and some vertex v of degree j (l6 j6 n− t)
and joining the vertices u and w with a new edge. Then

0�(G′)− 0�(G∗) =
1√

n− t + 1
− 1√

n− t +
1√
j − 1

− 1√
j

¿
1√

n− t + 1
− 1√

n− t +
1√

n− t − 1
− 1√

n− t ¿ 0

because the function 1=
√
j − 1− 1=

√
j is decreasing and because of Corollary 1.
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Lemma 7. The minimum degree of vertices in G∗ which has the maximum degree
n− t; t¿ 2 is 1.

Proof. Suppose the opposite; namely; that the minimum degree of vertices in G∗ is
l; l¿ 2. A vertex u of degree l is adjacent to one vertex of the maximum degree
and to other vertex v. Denote by G′ a graph obtained from G∗ when we delete the
edge between vertices u and v and introduce a new edge between vertex v and a
vertex w of degree j (l6 j6 n− t). We can always do this because the degree k of
v: k6 n − t ¡n − 1 and there exists at least one vertex w which is not adjacent to
vertex v. Then

0�(G′)− 0�(G∗) =
1√
l− 1

− 1√
l
+

1√
j + 1

− 1√
j

¿
1√
l− 1

− 1√
l
+

1√
l+ 1

− 1√
l
¿ 0

because the function 1=
√
j + 1− 1=

√
j is increasing and because of Corollary 1.

Lemma 8. The extremal graph G∗ must have at least one vertex of degree n− 1.

Proof. Suppose the contrary; that is; that the maximum degree of the vertices is n− t
(t¿ 2). As we showed; all vertices of degree 1 must be adjacent to one vertex w of
degree n − t. Denote by G′ a graph obtained from G∗ when we delete one vertex
of degree 1. The graph G′(n′; m′) has n′ = n − 1 vertices and m′ = m − 1 edges (for
k6 n− 2) and for it inductive hypothesis holds

0�(G′)6
n− 1− k − 1√

1
+

1√
p+ 1

+
k − 1− p√
k − 1

+
p√
k
+

1√
n− 2

and

0�(G∗) = 0�(G′) +
1√
1
+

1√
n− t −

1√
n− t − 1

6
n− 1− k√

1
+

1√
p+ 1

+
k − 1− p√
k − 1

+
p√
k

+
1√
n− 2

+
1√
n− t −

1√
n− t − 1

¡
n− 1− k√

1
+

1√
p+ 1

+
k − 1− p√
k − 1

+
p√
k
+

1√
n− 1

because 1=
√
n− 2−1=

√
n− 1¡ 1=

√
n− t − 1−1=

√
n− t. It means that : 0�(G∗)¡ (n−

1−k)=√1+1=
√
p+ 1+(k−1−p)=√k − 1+p=

√
k+1=

√
n− 1; which is impossible. 0�

attains this value on a graph which has n1=n−k−1; np+1=1; nk−1=k−p−1; nk=p
and nn−1 = 1.

Subcase 2a: 26 k6 n− 2, n1 �=0.
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First, we consider the extremal graphs which have n1 �=0. Then nn−1 = 1 (Lemmas
3 and 8) and all vertices of degree 1 must be adjacent to this unique vertex of degree
n− 1.

Lemma 9. Inequality (1) holds for all graphs G(n; m); nn−1 = 1; n1 = l; (l¿ 1) and
for 26 k6 n− 2.

Proof. Inequality (1) will be valid for all graphs G(n; m); nn−1 = 1 and n1 = l; if the
following inequality holds:

n2√
2
+
n3√
3
+ · · ·+ nn−l−1√

n− l− 1

6
n− k − 1− l√

1
+

1√
p+ 1

+
k − 1− p√
k − 1

+
p√
k

(2)

under constraints: (Al) and (Bl). We 0rst prove (2) for l¿ 2. Consider a graph G′(n−
1; m−1); which is obtained from G(n; m); when we delete one vertex of degree 1. The
graph G′(n−1; m−1) has n′1 = l−1 and one vertex of degree n−2 (because the other
vertices can have degree at the most n − 1 − l); and we can use Lemma 4. Namely;
when n′1 = l− 1; then n′n−l = n

′
n−l+1 = · · ·= n′n−3 = 0 (because n− 1− (l− 1) = n− l)

and the same constraints: (Al) and (Bl) hold. Since G′(n− 1; m− 1) has n− 1 vertices
and n− 1 + k(k − 3)=2 + p edges; it satis0es the inductive hypothesis. Holds

n2√
2
+
n3√
3
+ · · ·+ nn−l−1√

n− l− 1

6
n− 1− k − 1− (l− 1)√

1
+

1√
p+ 1

+
k − 1− p√
k − 1

+
p√
k

(2′)

for every 26 k6 n−2 and 06p6 k−2. We omitted the symbol′; but all denotations
pertain to G′. Inequality (2′) is just inequality (2); which is now proved because the
constraints are the same.
Now we show that inequality (2) holds for l=1, that is, when the graph G′ has no

vertex of degree one. Since nn−2¿ 1 in the graph G′(n− 1; m− 1), we can introduce
the following substitution: nn−2 = 1 + n′n−2. By the inductive hypothesis for the graph
G′ holds

n2√
2
+
n3√
3
+ · · ·+ nn−2√

n− 2

6
n− 1− k − 1√

1
+

1√
p+ 1

+
k − 1− p√
k − 1

+
p√
k
+

1√
n− 2

(3)

under the costraints

n2 + n3 + · · ·+ nn−2 = n− 1;

2n2 + 3n3 + · · ·+ (n− 2)nn−2 = 2(m− 1): (4)
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After this substitution inequality (3) and system of equalities (4) becomes (3′) and
(4′). Namely, it holds

n2√
2
+
n3√
3
+ · · ·+ nn−3√

n− 3
+

n′n−2√
n− 2

6
n− 1− k − 1√

1
+

1√
p+ 1

+
k − 1− p√
k − 1

+
p√
k

(3′)

under the costraints

n2 + n3 + · · ·+ nn−3 + n′n−2 = n− 2;

n2 + 2n3 + · · ·+ (n− 4)nn−3 + (n− 3)n′n−2 = 2(m− n+ 1): (4′)

Equalities (4′) are just the constraints: (A1), (B1) and inequality (3′) is inequality
(2) for l= 1.

Subcase 2b: 26 k6 n− 2, n1 = 0.
We will now consider the case when n1 = 0. The proofs of the next two Lemmas

10 and 11 are similar to those of Lemmas 6 and 7 and are omitted.

Lemma 10. Let n1 =n2 = · · ·=nr−1 =0; nr �=0 (r¿ 2) in the extremal graph G∗ and
n − 1¿ n − t1¿ n − t2¿ · · ·¿ n − tr−1 be the 8rst r maximum degrees of vertices.
Then every vertex of degree r must be adjacent to every vertex of these maximum
degrees.

Lemma 11. If in G∗; n1 = n2 = · · ·= nr−1 =0 and nr �=0; then the extremal graph G∗

has r vertices of degree n− 1.

Earlier we proved the theorem for k = n − 1, namely when the number of edges
m¿ (n2 − 3n+ 4)=2. It remains to prove the theorem when m¡ (n2 − 3n+ 4)=2.

Lemma 12. If m6 (n2 − 3n+2)=2 then the extremal graph G∗; such that: n1 = n2 =
· · ·= nr−1 = 0 and nr �=0 (r¿ 2); does not exist.

Proof. Suppose the contrary; that is; that such graph G∗ does exist. A vertex u of
degree r is joined with all vertices w1; w2; : : : ; wr of maximum degree n−1. The graph
G∗ except vertices u; w1; w2; : : : ; wr contains still n − r − 1 vertices. These n − r − 1
vertices themselves do not form the complete graph. If they do form the complete
graph; then the number of edges in G∗ would be

m=

(
n− r − 1

2

)
+ r(n− r) +

(
r

2

)
=
n2 − 3n+ 2

2
+ r:

In this case G∗ would have r edges more, contrary to our supposition (m6 (n2 −
3n+2)=2). It means that we can introduce at least r−1 edges between these n− r−1
vertices. Denote by G′ a graph obtained from G∗ when we delete r−1 edges between
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vertex u and vertices w2; w3; : : : ; wr and introduce new r− 1 edges between r− 1 pairs
of vertices: v1 ( degree j1) and v′1 (degree j′1), v2 (j2) and v′2 (j′2),. . . ,vr−1 (jr−1) and
v′r−1 (j′r−1). Then

0�(G′)− 0�(G∗) =
1√
1
− 1√

r
+

r − 1√
n− 2

− r − 1√
n− 1

+
1√
j1 + 1

− 1√
j1

+
1√
j′1 +1

− 1√
j′1

+
1√
j2 +1

− 1√
j2

+
1√
j′2 +1

− 1√
j′2

+ · · ·

+
1√

jr−1 + 1
− 1√

jr−1
+

1√
j′r−1 + 1

− 1√
j′r−1

¿ 1− 1√
r
+ 2(r − 1)

[
1√
r + 1

− 1√
r

]

because 1=
√
j + 1− 1=

√
j is increasing function. Now we will prove that: 1− 1=

√
r +

2(r − 1)[1=
√
r + 1− 1=

√
r]¿ 0 for r¿ 2.

1− 1√
r
+ 2(r − 1)

[
1√
r + 1

− 1√
r

]
=

r − 1√
r[
√
r + 1]

− 2(r − 1)√
r
√
r + 1[

√
r +

√
r + 1]

=
r − 1√
r

{
1√
r + 1

− 2√
r + 1[

√
r +

√
r + 1]

}
¿ 0

because
√
r + 1(

√
r + 1+

√
r)¿ 2

√
r+2, namely

√
r(r + 1)¿ 2

√
r+1− r for r¿ 2.

Finally, after considering all cases we proved the theorem. The extremal graph in
the theorem is unique because inequality (8) is strict for j �=0.
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