Maximal value of the zeroth-order Randić index

Ljiljana Pavlović
Faculty of Science, University of Kragujevac, 34000 Kragujavec, Yugoslavia

Received 5 July 2000; received in revised form 27 April 2001; accepted 10 December 2001

Abstract

Let $G(n, m)$ be a connected graph without loops and multiple edges which has n vertices and m edges. We find the graphs on which the zeroth-order connectivity index, equal to the sum of degrees of vertices of $G(n, m)$ raised to the power $-\frac{1}{2}$, attains maximum. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 05C35
Keywords: Extremal graph; Zeroth-order connectivity index

1. Introduction

Let $G(n, m)$ be a connected graph without loops and multiple edges which has n vertices and m edges. Denote by u its vertex and by δ_{u} the degree of the vertex u, that is the number of edges of which u is an endpoint. Denote further by ($u v$) the edge whose endpoints are the vertices u and v. In 1975 Randić proposed a topological index, suitable for measuring the extent of branching of the carbon-atom skeleton of saturated hydrocarbons. The Randić index defined in [9] is: $\chi=\sum_{(u v)}\left(\delta_{u} \delta_{v}\right)^{-1 / 2}$, where the summation goes over all edges of G. Randić himself demonstrated [9] that his index is well correlated with a variety of physico-chemical properties of alcanes. χ became one of the most popular molecular descriptors to which two books are devoted $[6,8]$. The general Randić index w_{α} is $w_{\alpha}=\sum_{(u v)}\left(\delta_{u} \delta_{v}\right)^{\alpha}$, where the summation goes over all edges of G. The zeroth-order Randić index ${ }^{0} \chi$ defined by Kier and Hall $[7,8]$ is

$$
{ }^{0} \chi=\sum_{(u)}\left(\delta_{u}\right)^{-1 / 2},
$$

[^0]

Fig. 1. Extremal graph $G(12,23), n_{1}=5, n_{3}=1, n_{5}=3, n_{6}=2, n_{11}=1$
where the summation goes over all vertices of G. Kier and Hall gave a general scheme based on the Randic index to calculate also zeroth-order ${ }^{0} \chi$ and higher-order connectivity indices ${ }^{m} \chi$. For example, the second order connectivity index is: ${ }^{2} \chi=$ $\sum_{(u v w)}\left(\delta_{u} \delta_{v} \delta_{w}\right)^{-1 / 2}$, where the summation goes over all paths of length 2 . Initially, the Randić connectivity index was studied only by chemists [7,8], but recently it attracted the attention also of mathematicians [1,2,4,5]. In [3] the general Randić index has been studied for $\alpha=-1$, that is the former index proposed by Randić. One of the most obvious mathematical questions to be asked in connection with ${ }^{m} \chi$ is which graphs (from a given class) have maximum and minimum ${ }^{m} \chi$ values [1]. These questions are interesting for chemists too, because there is a connection between connectivity indices and some physico-chemical properties for "chemical graphs". The solution of such problems turned out to be difficult, and only a few partial results have been achieved so far.

Denote by n_{i} the number of vertices of degree i. Then: ${ }^{0} \chi=n_{1} / \sqrt{1}+n_{2} / \sqrt{2}+\cdots+$ $n_{n-1} / \sqrt{n-1}$. The function ${ }^{0} \chi$ attains maximum on the following connected graphs. For $m=n-1$, it is a star graph, then we add a new edge (for $m=n$) between two vertices of degree 1 and get a clique of 3 vertices. Adding one more edge (for $m=n+1$) between one vertex out of the clique and some vertices in the clique increases the degree of this vertex by 1 until it is joined to all those of the clique. We get a clique of 4 vertices $(m=n+2)$ and we continue to add edges in this manner until we arrive at the complete graph (Fig. 1). Denote by $G^{*}=G^{*}(n, m)$ the graph on which ${ }^{0} \chi$ attains maximum.

Theorem. Let $G(n, m)$ be a connected graph without loops and multiple edges with n vertices and m edges. If $m=n+k(k-3) / 2+p$, where $2 \leqslant k \leqslant n-1$ and $0 \leqslant p \leqslant k-2$, then

$$
\begin{align*}
{ }^{0} \chi(G(n, m)) & \leqslant{ }^{0} \chi\left(G^{*}\right) \\
& =\frac{n-k-1}{\sqrt{1}}+\frac{1}{\sqrt{p+1}}+\frac{k-1-p}{\sqrt{k-1}}+\frac{p}{\sqrt{k}}+\frac{1}{\sqrt{n-1}} . \tag{1}
\end{align*}
$$

It means that the extremal graph above described, must have $n_{1}=n-k-1, n_{p+1}=1$, $n_{k-1}=k-1-p, n_{k}=p$ and $n_{n-1}=1$.

The theorem describes the solution of the following problem (P):

$$
\max \frac{n_{1}}{\sqrt{1}}+\frac{n_{2}}{\sqrt{2}}+\frac{n_{3}}{\sqrt{3}}+\cdots+\frac{n_{n-1}}{\sqrt{n-1}}
$$

under two graph constraints:

$$
\begin{align*}
& n_{1}+n_{2}+n_{3}+\cdots+n_{n-1}=n \tag{A}\\
& n_{1}+2 n_{2}+3 n_{3}+\cdots+(n-1) n_{n-1}=2 m \tag{B}
\end{align*}
$$

It is not difficult to prove the theorem for trees.
Lemma 1. If $m=n-1$, the function ${ }^{0} \chi$ attains maximum on the star graph.
Proof. When $m=n-1$, then $k=2$ and $p=0$. We find n_{1} and n_{n-1} from constraints (A) and (B)

$$
\begin{aligned}
& n_{1}=n-1-\left(1-\frac{1}{n-2}\right) n_{2}-\left(1-\frac{2}{n-2}\right) n_{3}-\cdots-\left(1-\frac{n-3}{n-2}\right) n_{n-2} \\
& n_{n-1}=1-\frac{n_{2}}{n-2}-\frac{2 n_{3}}{n-2}-\frac{3 n_{4}}{n-2}-\cdots-\frac{(n-3) n_{n-2}}{n-2}
\end{aligned}
$$

After their substitution in ${ }^{0} \chi$, this function becomes

$$
{ }^{0} \chi=n-1+\frac{1}{\sqrt{n-1}}+\sum_{j=2}^{n-2}\left(\frac{1}{\sqrt{j}}-\frac{n-1-j}{n-2}-\frac{j-1}{(n-2) \sqrt{n-1}}\right) n_{j} .
$$

Since (see Lemma 2): $(n-2) / \sqrt{j} \leqslant(n-1-j) / \sqrt{1}+(j-1) / \sqrt{n-1}$ for $1 \leqslant j \leqslant n-1$, we conclude that ${ }^{0} \chi$ attains maximum for $n_{j}=0, j=2,3, \ldots, n-2$. Then: $n_{1}=n-$ $1, n_{2}=n_{3}=\cdots=n_{n-2}=0, n_{n-1}=1$ and $\max _{m=n-1}{ }^{0} \chi=n-1+1 / \sqrt{n-1}$.

Lemma 2. Let r, s, and t be real numbers such that: $0<r \leqslant s \leqslant t$. Then

$$
\frac{t-r}{\sqrt{s}} \leqslant \frac{t-s}{\sqrt{r}}+\frac{s-r}{\sqrt{t}}
$$

and the equality holds only for $s=r$ and t.

Proof. If $s=r$ or $s=t$, it is obvious that equality holds. Denote by $f(s)=(t-s) / \sqrt{r}+$ $(s-r) / \sqrt{t}-(t-r) / \sqrt{s}$. Then $\partial^{2} f / \partial s^{2}=-\frac{3}{4}(t-r) s^{-5 / 2}<0$ and the upper inequality follows because the function f is strictly concave.

Corollary 1. For real number s, such that $s>1$, holds:

$$
\frac{2}{\sqrt{s}}<\frac{1}{\sqrt{s-1}}+\frac{1}{\sqrt{s+1}}
$$

If we want to find extremal graphs for other values of m we cannot use the same method because the solutions do not correspond to graphs.

The proof of the following lemma is easy and is omitted.
Lemma 3. If $n_{1} \neq 0$ in $G(n, m)$, then $n_{n-1} \leqslant 1$. If $n_{1}=n_{2}=\cdots=n_{i-1}=0$ and $n_{i} \neq 0$ then $n_{n-1} \leqslant i$.

Lemma 4. If $n_{n-1}=1$ and $n_{1}=l(l \geqslant 2)$ in $G(n, m)$, then $n_{n-l}=n_{n-l+1}=\cdots=n_{n-3}=$ $n_{n-2}=0$.

Proof. Consider a vertex of degree $k(k>1)$. Since l vertices of degree 1 are adjacent to the vertex of degree $n-1$, this vertex can be adjacent to the most $n-1-l$ other vertices. It means that $k \leqslant n-l-1$.

When $n_{n-1}=1$ and $n_{1}=l$, instead of problem (P) we can consider the following problem (P^{l}):

$$
\max \frac{l}{\sqrt{1}}+\frac{n_{2}}{\sqrt{2}}+\frac{n_{3}}{\sqrt{3}}+\cdots+\frac{n_{n-l-1}}{\sqrt{n-l-1}}+\frac{1}{\sqrt{n-1}}
$$

under the constraints:

$$
\begin{align*}
& n_{2}+n_{3}+n_{4}+\cdots+n_{n-l-1}=n-1-l, \tag{1}\\
& n_{2}+2 n_{3}+3 n_{4}+\cdots+(n-l-2) n_{n-l-1}=2(m-n+1) . \tag{1}
\end{align*}
$$

2. The main part of the proof

The proof of the theorem is based on mathematical induction. It is easy to check that the theorem is true for $n=5$ and $4 \leqslant m \leqslant 10$. We will suppose that the theorem is true for every graph $G(i, j)$, where $5 \leqslant i \leqslant n-1$ and $i-1 \leqslant j \leqslant\binom{ i}{2}$. We have to prove the theorem for graphs $G(n, m)$, where $n-1 \leqslant m \leqslant\binom{ n}{2}$. The case $m=n-1$ is done and the cases $m=\binom{n}{2}$ and $\binom{n}{2}-1$ will not be considered because they correspond to unique graphs. Since $m=n+k(k-3) / 2+p$, where $2 \leqslant k \leqslant n-1$ and $0 \leqslant p \leqslant k-2$, we need to consider two cases: (1) $k=n-1$ and (2) $2 \leqslant k \leqslant n-2$. At first, we will prove the theorem for $k=n-1$.

Case 1: $k=n-1$.

Lemma 5. Inequality (1) holds for the graphs $G(n, m), m=n+k(k-3) / 2+p$, where $k=n-1$ and $0 \leqslant p \leqslant n-3$.

Proof. The number of edges is $m=\left(n^{2}-3 n+4+2 p\right) / 2=(n-1)(n-2) / 2+p+1$, where $0 \leqslant p \leqslant n-3$. If $p \geqslant 1$, then $n_{1}=n_{2}=n_{3}=\cdots=n_{p}=0$ and $n_{p+1} \geqslant 0$. Contrary to this, if $G(n, m)$ would have one vertex of degree p (or less), by deleting one vertex of degree p we get the graph $G^{\prime}(n-1, m-p)$ (not necessarily connected), which has more edges than the complete graph on $n-1$ vertices. The fact that $n_{p+1} \geqslant 0$ means: $n_{p+1} \neq 0$ or $n_{p+1}=0, n_{p+2} \neq 0$ or $n_{p+1}=n_{p+2}=0, n_{p+3} \neq 0$ and so on. Denote by P_{p}^{p+j+1} the problem for given p when $n_{1}=n_{2}=\cdots=n_{p}=n_{p+1}=n_{p+2}=\cdots=n_{p+j}=0, n_{p+j+1} \neq 0$ and by ${ }^{0} \chi_{p}^{p+j+1}$ the optimal value of ${ }^{0} \chi$ for the problem P_{p}^{p+j+1}. The optimal value of ${ }^{0} \chi$ for given p is ${ }^{0} \chi_{p}=\max _{0 \leqslant j \leqslant n-p-4}{ }^{0} \chi_{p}^{p+j+1}$. When we have $n_{p+j+1} \neq 0$, then $n_{n-1} \leqslant p+j+1$ (Lemma 3).

Let us solve the problem $P_{p}^{p+j+1}, 0 \leqslant p \leqslant n-4,0 \leqslant j \leqslant n-p-4$. (When $p=n-3$, we have only one graph, that is the complete graph without one edge.)

$$
\max \frac{n_{p+j+1}}{\sqrt{p+j+1}}+\frac{n_{p+j+2}}{\sqrt{p+j+2}}+\frac{n_{p+j+3}}{\sqrt{p+j+3}}+\cdots+\frac{n_{n-1}}{\sqrt{n-1}}
$$

under the constraints:

$$
\begin{aligned}
& n_{p+j+1}+n_{p+j+2}+n_{p+j+3}+\cdots+n_{n-1}=n \\
& (p+j+1) n_{p+j+1}+(p+j+2) n_{p+j+2}+\cdots+(n-1) n_{n-1}=n^{2}-3 n+4+2 p \\
& n_{n-1}=p+j+1-\xi
\end{aligned}
$$

Let us solve the system of the latter three equalities in n_{n-1}, n_{n-2} and n_{p+j+1}

$$
\begin{aligned}
n_{n-2}= & \frac{n^{2}-n(2 p+2 j+5)+p^{2}+2 p j+5 p+j^{2}+3 j++6}{n-p-j-3}-\frac{n_{p+j+2}}{n-p-j-3} \\
& -\frac{2 n_{p+j+3}}{n-p-j-3}-\frac{3 n_{p+j+4}}{n-p-j-3} \\
& -\cdots-\frac{(n-p-j-4) n_{n-3}}{n-p-j-3}-\frac{(n-p-j-2) \xi}{n-p-j-3}, \\
n_{p+j+1}= & \frac{n-p+j-3}{n-p-j-3}-\left(1-\frac{1}{n-p-j-3}\right) n_{p+j+2} \\
& -\left(1-\frac{2}{n-p-j-3}\right) n_{p+j+3}-\left(1-\frac{3}{n-p-j-3}\right) n_{p+j+4} \\
& -\cdots-\left(1-\frac{n-p-j-4}{n-p-j-3}\right) n_{n-3}+\left(1-\frac{n-p-j-2}{n-p-j-3}\right) \xi .
\end{aligned}
$$

After substituting n_{p+j+1}, n_{n-2} and n_{n-1} back into ${ }^{0} \chi$, we have

$$
\begin{aligned}
{ }^{0} \chi= & \frac{n-p+j-3}{(n-p-j-3) \sqrt{p+j+1}} \\
& +\frac{n^{2}-n(2 p+2 j+5)+p^{2}+2 p j+5 p+j^{2}+3 j+6}{(n-p-j-3) \sqrt{n-2}}+\frac{p+j+1}{\sqrt{n-1}} \\
& +\sum_{i=p+j+2}^{n-3} n_{i}\left(\frac{1}{\sqrt{i}}-\frac{n-i-2}{(n-p-j-3) \sqrt{p+j+1}}-\frac{i-p-j-1}{(n-p-j-3) \sqrt{n-2}}\right) \\
& +\xi\left(-\frac{1}{\sqrt{n-1}}-\frac{1}{(n-p-j-3) \sqrt{p+j+1}}+\frac{n-p-j-2}{(n-p-j-3) \sqrt{n-2}}\right) .
\end{aligned}
$$

Since (because of Lemma 2)

$$
\begin{aligned}
& \frac{n-p-j-3}{\sqrt{i}} \leqslant \frac{n-i-2}{\sqrt{p+j+1}}+\frac{i-p-j-1}{\sqrt{n-2}} \text { for } p+j+1 \leqslant i \leqslant n-2 \\
& \frac{n-p-j-2}{\sqrt{n-2}} \leqslant \frac{1}{\sqrt{p+j+1}}+\frac{n-p-j-3}{\sqrt{n-1}}
\end{aligned}
$$

The latter inequality is obtained for $i=n-2$ from the inequality

$$
\frac{n-p-j-2}{\sqrt{i}} \leqslant \frac{n-i-1}{\sqrt{p+j+1}}+\frac{i-p-j-1}{\sqrt{n-1}} \quad \text { for } p+j+1 \leqslant i \leqslant n-1
$$

It means that we will get the maximum value of ${ }^{0} \chi$ if we put: $n_{p+j+2}=n_{p+j+3}=\cdots=$ $n_{n-3}=\xi=0$ and

$$
\begin{aligned}
{ }^{0} \tilde{\chi}_{p}^{p+j+1}= & \frac{n-p+j-3}{(n-p-j-3) \sqrt{p+j+1}} \\
& +\frac{n^{2}-n(2 p+2 j+5)+p^{2}+2 p j+5 p+j^{2}+3 j+6}{(n-p-j-3) \sqrt{n-2}}+\frac{p+j+1}{\sqrt{n-1}}
\end{aligned}
$$

for $p=0,1, \ldots, n-4$ and $j=0,1, \ldots, n-p-4$. This solution does not correspond always to a graph (except for $j=0,{ }^{0} \tilde{\chi}_{p}^{p+1}={ }^{0} \chi_{p}^{p+1}$). We put symbol \sim for this solution, but the true graph solution ${ }^{0} \chi_{p}^{p+j+1}$ is less than or equal to ${ }^{0} \tilde{\chi}_{p}^{p+j+1}$.

Now we show that ${ }^{0} \chi_{p}^{p+1}$ is the maximum value of ${ }^{0} \chi$ for a given number p, that is, ${ }^{0} \chi_{p}^{p+1}=\max _{0 \leqslant j \leqslant n-p-4}{ }^{0} \chi_{p}^{p+j+1}$. Since ${ }^{0} \chi_{p}^{p+j+1} \leqslant{ }^{0} \tilde{\chi}_{p}^{p+j+1}$, it is sufficient to prove that $\chi_{p}^{p+1}=\max _{0 \leqslant j \leqslant n-p-4}{ }^{0} \tilde{\chi}_{p}^{p+j+1}$. We have to prove the following inequality:

$$
\begin{equation*}
{ }^{0} \tilde{\chi}_{p}^{p+j+1} \leqslant \frac{1}{\sqrt{p+1}}+\frac{n-p-2}{\sqrt{n-2}}+\frac{p+1}{\sqrt{n-1}} \tag{5}
\end{equation*}
$$

We transform inequality (5) (for $n-p-j-3 \neq 0$) to (6)

$$
\begin{equation*}
\frac{n-p-j-3}{\sqrt{p+1}}-\frac{n-p+j-3}{\sqrt{p+j+1}}+\frac{j(n-p-j-1)}{\sqrt{n-2}}-\frac{j(n-p-j-3)}{\sqrt{n-1}} \geqslant 0 \tag{6}
\end{equation*}
$$

We introduce the abbreviations: $A=\sqrt{p+1}, B=\sqrt{p+j+1}, C=\sqrt{n-1}$ and $D=$ $\sqrt{n-2}$ in order to facilitate writing. After this, inequality (6) becomes

$$
\begin{equation*}
j\left\{\frac{n-p-j-3}{A B[A+B]}-\frac{n-p-j-3}{C B[C+B]}+\frac{n-p-j-1}{C D[C+D]}-\frac{n-p-j-1}{C B[C+B]}\right\} \geqslant 0 \tag{7}
\end{equation*}
$$

which is transformed into

$$
\begin{gather*}
\frac{j(n-p-j-3)}{B C(B+C)}\left\{\frac{(n-p-2)(A+B+C)}{A(A+B)(A+C)}\right. \\
\left.-\frac{(n-p-j-1)(B+C+D)}{D(B+D)(C+D)}\right\} \geqslant 0 . \tag{8}
\end{gather*}
$$

This inequality holds for $j=0,1, \ldots, n-p-4$ and for $p=0,1, \ldots, n-4$ because $n-p-2 \geqslant n-p-j-1$ for $j \geqslant 1$ (for $j=0$ in (8) holds equality) and

$$
\begin{equation*}
\frac{A+B+C}{A(A+B)(A+C)}>\frac{B+C+D}{D(B+D)(C+D)} \tag{9}
\end{equation*}
$$

Since $A<D$, follows: $1 /(A+B)>1 /(B+D)$ and $1 /(A+C)>1 /(C+D)$, and (9) becomes $(A+B+C) / A>(B+C+D) / D$. The last inequality is true again because $A<D$.

We proved that the maximum value of ${ }^{0} \chi$ for a given number p is ${ }^{0} \chi_{p}^{p+1}$

$$
{ }^{0} \chi_{p}^{p+1}=\frac{1}{\sqrt{p+1}}+\frac{n-p-2}{\sqrt{n-2}}+\frac{p+1}{\sqrt{n-1}}
$$

for $p=0,1, \ldots, n-4$. This value is attained on a graph which has $n_{n-1}=p+1, n_{n-2}=$ $n-p-2$ and $n_{p+1}=1$.

Case 2: $2 \leqslant k \leqslant n-2$.
Now we will consider the graphs $G(n, m)$, where $m=n+k(k-3) / 2+p$ and $2 \leqslant k \leqslant n-2$ and $0 \leqslant p \leqslant k-2$. We will prove that G^{*} has at least one vertex of degree $n-1$.

Lemma 6. Let $n-t(t \geqslant 2)$ be the maximum degree and l be the minimum degree of the vertices in G^{*}. Then every vertex of the minimum degree l must be adjacent to every vertex of the maximum degree $n-t$.

Proof. Suppose the opposite, namely, that there exists a vertex u of degree l which is not adjacent to a vertex w of the maximum degree. Denote by G^{\prime} a graph obtained from G^{*} by deleting an edge between vertex u and some vertex v of degree $j(l \leqslant j \leqslant n-t)$ and joining the vertices u and w with a new edge. Then

$$
\begin{aligned}
{ }^{0} \chi\left(G^{\prime}\right)-{ }^{0} \chi\left(G^{*}\right) & =\frac{1}{\sqrt{n-t+1}}-\frac{1}{\sqrt{n-t}}+\frac{1}{\sqrt{j-1}}-\frac{1}{\sqrt{j}} \\
& \geqslant \frac{1}{\sqrt{n-t+1}}-\frac{1}{\sqrt{n-t}}+\frac{1}{\sqrt{n-t-1}}-\frac{1}{\sqrt{n-t}}>0
\end{aligned}
$$

because the function $1 / \sqrt{j-1}-1 / \sqrt{j}$ is decreasing and because of Corollary 1 .

Lemma 7. The minimum degree of vertices in G^{*} which has the maximum degree $n-t, t \geqslant 2$ is 1 .

Proof. Suppose the opposite, namely, that the minimum degree of vertices in G^{*} is $l, l \geqslant 2$. A vertex u of degree l is adjacent to one vertex of the maximum degree and to other vertex v. Denote by G^{\prime} a graph obtained from G^{*} when we delete the edge between vertices u and v and introduce a new edge between vertex v and a vertex w of degree $j(l \leqslant j \leqslant n-t)$. We can always do this because the degree k of $v: k \leqslant n-t<n-1$ and there exists at least one vertex w which is not adjacent to vertex v. Then

$$
\begin{aligned}
{ }^{0} \chi\left(G^{\prime}\right)-{ }^{0} \chi\left(G^{*}\right) & =\frac{1}{\sqrt{l-1}}-\frac{1}{\sqrt{l}}+\frac{1}{\sqrt{j+1}}-\frac{1}{\sqrt{j}} \\
& \geqslant \frac{1}{\sqrt{l-1}}-\frac{1}{\sqrt{l}}+\frac{1}{\sqrt{l+1}}-\frac{1}{\sqrt{l}}>0
\end{aligned}
$$

because the function $1 / \sqrt{j+1}-1 / \sqrt{j}$ is increasing and because of Corollary 1 .
Lemma 8. The extremal graph G^{*} must have at least one vertex of degree $n-1$.
Proof. Suppose the contrary, that is, that the maximum degree of the vertices is $n-t$ $(t \geqslant 2)$. As we showed, all vertices of degree 1 must be adjacent to one vertex w of degree $n-t$. Denote by G^{\prime} a graph obtained from G^{*} when we delete one vertex of degree 1. The graph $G^{\prime}\left(n^{\prime}, m^{\prime}\right)$ has $n^{\prime}=n-1$ vertices and $m^{\prime}=m-1$ edges (for $k \leqslant n-2$) and for it inductive hypothesis holds

$$
{ }^{0} \chi\left(G^{\prime}\right) \leqslant \frac{n-1-k-1}{\sqrt{1}}+\frac{1}{\sqrt{p+1}}+\frac{k-1-p}{\sqrt{k-1}}+\frac{p}{\sqrt{k}}+\frac{1}{\sqrt{n-2}}
$$

and

$$
\begin{aligned}
{ }^{0} \chi\left(G^{*}\right)= & { }^{0} \chi\left(G^{\prime}\right)+\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{n-t}}-\frac{1}{\sqrt{n-t-1}} \\
\leqslant & \frac{n-1-k}{\sqrt{1}}+\frac{1}{\sqrt{p+1}}+\frac{k-1-p}{\sqrt{k-1}}+\frac{p}{\sqrt{k}} \\
& +\frac{1}{\sqrt{n-2}}+\frac{1}{\sqrt{n-t}}-\frac{1}{\sqrt{n-t-1}} \\
< & \frac{n-1-k}{\sqrt{1}}+\frac{1}{\sqrt{p+1}}+\frac{k-1-p}{\sqrt{k-1}}+\frac{p}{\sqrt{k}}+\frac{1}{\sqrt{n-1}}
\end{aligned}
$$

because $1 / \sqrt{n-2}-1 / \sqrt{n-1}<1 / \sqrt{n-t-1}-1 / \sqrt{n-t}$. It means that : ${ }^{0} \chi\left(G^{*}\right)<(n-$ $1-k) / \sqrt{1}+1 / \sqrt{p+1}+(k-1-p) / \sqrt{k-1}+p / \sqrt{k}+1 / \sqrt{n-1}$, which is impossible. ${ }^{0} \chi$ attains this value on a graph which has $n_{1}=n-k-1, n_{p+1}=1, n_{k-1}=k-p-1, n_{k}=p$ and $n_{n-1}=1$.

Subcase 2a: $2 \leqslant k \leqslant n-2, n_{1} \neq 0$.

First, we consider the extremal graphs which have $n_{1} \neq 0$. Then $n_{n-1}=1$ (Lemmas 3 and 8) and all vertices of degree 1 must be adjacent to this unique vertex of degree $n-1$.

Lemma 9. Inequality (1) holds for all graphs $G(n, m), n_{n-1}=1, n_{1}=l,(l \geqslant 1)$ and for $2 \leqslant k \leqslant n-2$.

Proof. Inequality (1) will be valid for all graphs $G(n, m), n_{n-1}=1$ and $n_{1}=l$, if the following inequality holds:

$$
\begin{align*}
& \frac{n_{2}}{\sqrt{2}}+\frac{n_{3}}{\sqrt{3}}+\cdots+\frac{n_{n-l-1}}{\sqrt{n-l-1}} \\
& \quad \leqslant \frac{n-k-1-l}{\sqrt{1}}+\frac{1}{\sqrt{p+1}}+\frac{k-1-p}{\sqrt{k-1}}+\frac{p}{\sqrt{k}} \tag{2}
\end{align*}
$$

under constraints: $\left(\mathrm{A}^{1}\right)$ and $\left(\mathrm{B}^{1}\right)$. We first prove (2) for $l \geqslant 2$. Consider a graph $G^{\prime}(n-$ $1, m-1)$, which is obtained from $G(n, m)$, when we delete one vertex of degree 1 . The graph $G^{\prime}(n-1, m-1)$ has $n_{1}^{\prime}=l-1$ and one vertex of degree $n-2$ (because the other vertices can have degree at the most $n-1-l$), and we can use Lemma 4. Namely, when $n_{1}^{\prime}=l-1$, then $n_{n-l}^{\prime}=n_{n-l+1}^{\prime}=\cdots=n_{n-3}^{\prime}=0$ (because $n-1-(l-1)=n-l$) and the same constraints: (A^{1}) and (B^{1}) hold. Since $G^{\prime}(n-1, m-1)$ has $n-1$ vertices and $n-1+k(k-3) / 2+p$ edges, it satisfies the inductive hypothesis. Holds

$$
\begin{align*}
& \frac{n_{2}}{\sqrt{2}}+\frac{n_{3}}{\sqrt{3}}+\cdots+\frac{n_{n-l-1}}{\sqrt{n-l-1}} \\
& \quad \leqslant \frac{n-1-k-1-(l-1)}{\sqrt{1}}+\frac{1}{\sqrt{p+1}}+\frac{k-1-p}{\sqrt{k-1}}+\frac{p}{\sqrt{k}}
\end{align*}
$$

for every $2 \leqslant k \leqslant n-2$ and $0 \leqslant p \leqslant k-2$. We omitted the symbol', but all denotations pertain to G^{\prime}. Inequality (2^{\prime}) is just inequality (2), which is now proved because the constraints are the same.

Now we show that inequality (2) holds for $l=1$, that is, when the graph G^{\prime} has no vertex of degree one. Since $n_{n-2} \geqslant 1$ in the graph $G^{\prime}(n-1, m-1)$, we can introduce the following substitution: $n_{n-2}=1+n_{n-2}^{\prime}$. By the inductive hypothesis for the graph G^{\prime} holds

$$
\begin{align*}
& \frac{n_{2}}{\sqrt{2}}+\frac{n_{3}}{\sqrt{3}}+\cdots+\frac{n_{n-2}}{\sqrt{n-2}} \\
& \quad \leqslant \frac{n-1-k-1}{\sqrt{1}}+\frac{1}{\sqrt{p+1}}+\frac{k-1-p}{\sqrt{k-1}}+\frac{p}{\sqrt{k}}+\frac{1}{\sqrt{n-2}} \tag{3}
\end{align*}
$$

under the costraints

$$
\begin{align*}
& n_{2}+n_{3}+\cdots+n_{n-2}=n-1, \\
& 2 n_{2}+3 n_{3}+\cdots+(n-2) n_{n-2}=2(m-1) . \tag{4}
\end{align*}
$$

After this substitution inequality (3) and system of equalities (4) becomes (3^{\prime}) and (4'). Namely, it holds

$$
\begin{align*}
& \frac{n_{2}}{\sqrt{2}}+\frac{n_{3}}{\sqrt{3}}+\cdots+\frac{n_{n-3}}{\sqrt{n-3}}+\frac{n_{n-2}^{\prime}}{\sqrt{n-2}} \\
& \quad \leqslant \frac{n-1-k-1}{\sqrt{1}}+\frac{1}{\sqrt{p+1}}+\frac{k-1-p}{\sqrt{k-1}}+\frac{p}{\sqrt{k}}
\end{align*}
$$

under the costraints

$$
\begin{align*}
& n_{2}+n_{3}+\cdots+n_{n-3}+n_{n-2}^{\prime}=n-2, \\
& n_{2}+2 n_{3}+\cdots+(n-4) n_{n-3}+(n-3) n_{n-2}^{\prime}=2(m-n+1) .
\end{align*}
$$

Equalities $\left(4^{\prime}\right)$ are just the constraints: $\left(\mathrm{A}^{1}\right)$, $\left(\mathrm{B}^{1}\right)$ and inequality $\left(3^{\prime}\right)$ is inequality (2) for $l=1$.

Subcase 2b: $2 \leqslant k \leqslant n-2, n_{1}=0$.
We will now consider the case when $n_{1}=0$. The proofs of the next two Lemmas 10 and 11 are similar to those of Lemmas 6 and 7 and are omitted.

Lemma 10. Let $n_{1}=n_{2}=\cdots=n_{r-1}=0, n_{r} \neq 0(r \geqslant 2)$ in the extremal graph G^{*} and $n-1 \geqslant n-t_{1} \geqslant n-t_{2} \geqslant \cdots \geqslant n-t_{r-1}$ be the first r maximum degrees of vertices. Then every vertex of degree r must be adjacent to every vertex of these maximum degrees.

Lemma 11. If in $G^{*}, n_{1}=n_{2}=\cdots=n_{r-1}=0$ and $n_{r} \neq 0$, then the extremal graph G^{*} has r vertices of degree $n-1$.

Earlier we proved the theorem for $k=n-1$, namely when the number of edges $m \geqslant\left(n^{2}-3 n+4\right) / 2$. It remains to prove the theorem when $m<\left(n^{2}-3 n+4\right) / 2$.

Lemma 12. If $m \leqslant\left(n^{2}-3 n+2\right) / 2$ then the extremal graph G^{*}, such that: $n_{1}=n_{2}=$ $\cdots=n_{r-1}=0$ and $n_{r} \neq 0(r \geqslant 2)$, does not exist.

Proof. Suppose the contrary, that is, that such graph G^{*} does exist. A vertex u of degree r is joined with all vertices $w_{1}, w_{2}, \ldots, w_{r}$ of maximum degree $n-1$. The graph G^{*} except vertices $u, w_{1}, w_{2}, \ldots, w_{r}$ contains still $n-r-1$ vertices. These $n-r-1$ vertices themselves do not form the complete graph. If they do form the complete graph, then the number of edges in G^{*} would be

$$
m=\binom{n-r-1}{2}+r(n-r)+\binom{r}{2}=\frac{n^{2}-3 n+2}{2}+r .
$$

In this case G^{*} would have r edges more, contrary to our supposition ($m \leqslant\left(n^{2}-\right.$ $3 n+2) / 2$). It means that we can introduce at least $r-1$ edges between these $n-r-1$ vertices. Denote by G^{\prime} a graph obtained from G^{*} when we delete $r-1$ edges between
vertex u and vertices $w_{2}, w_{3}, \ldots, w_{r}$ and introduce new $r-1$ edges between $r-1$ pairs of vertices: $v_{1}\left(\right.$ degree $\left.j_{1}\right)$ and $v_{1}^{\prime}\left(\right.$ degree $\left.j_{1}^{\prime}\right), v_{2}\left(j_{2}\right)$ and $v_{2}^{\prime}\left(j_{2}^{\prime}\right), \ldots, v_{r-1}\left(j_{r-1}\right)$ and $v_{r-1}^{\prime}\left(j_{r-1}^{\prime}\right)$. Then

$$
\begin{aligned}
{ }^{0} \chi\left(G^{\prime}\right)-{ }^{0} \chi\left(G^{*}\right)= & \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{r}}+\frac{r-1}{\sqrt{n-2}}-\frac{r-1}{\sqrt{n-1}}+\frac{1}{\sqrt{j_{1}+1}}-\frac{1}{\sqrt{j_{1}}} \\
& +\frac{1}{\sqrt{j_{1}^{\prime}+1}}-\frac{1}{\sqrt{j_{1}^{\prime}}}+\frac{1}{\sqrt{j_{2}+1}}-\frac{1}{\sqrt{j_{2}}}+\frac{1}{\sqrt{j_{2}^{\prime}+1}}-\frac{1}{\sqrt{j_{2}^{\prime}}}+\cdots \\
& +\frac{1}{\sqrt{j_{r-1}+1}}-\frac{1}{\sqrt{j_{r-1}}}+\frac{1}{\sqrt{j_{r-1}^{\prime}+1}}-\frac{1}{\sqrt{j_{r-1}^{\prime}}} \\
& >1-\frac{1}{\sqrt{r}}+2(r-1)\left[\frac{1}{\sqrt{r+1}}-\frac{1}{\sqrt{r}}\right]
\end{aligned}
$$

because $1 / \sqrt{j+1}-1 / \sqrt{j}$ is increasing function. Now we will prove that: $1-1 / \sqrt{r}+$ $2(r-1)[1 / \sqrt{r+1}-1 / \sqrt{r}]>0$ for $r \geqslant 2$.

$$
\begin{aligned}
1- & \frac{1}{\sqrt{r}}+2(r-1)\left[\frac{1}{\sqrt{r+1}}-\frac{1}{\sqrt{r}}\right]=\frac{r-1}{\sqrt{r}[\sqrt{r}+1]}-\frac{2(r-1)}{\sqrt{r} \sqrt{r+1}[\sqrt{r}+\sqrt{r+1}]} \\
& =\frac{r-1}{\sqrt{r}}\left\{\frac{1}{\sqrt{r}+1}-\frac{2}{\sqrt{r+1}[\sqrt{r}+\sqrt{r+1}]}\right\}>0
\end{aligned}
$$

because $\sqrt{r+1}(\sqrt{r+1}+\sqrt{r})>2 \sqrt{r}+2$, namely $\sqrt{r(r+1)}>2 \sqrt{r}+1-r$ for $r \geqslant 2$.

Finally, after considering all cases we proved the theorem. The extremal graph in the theorem is unique because inequality (8) is strict for $j \neq 0$.

Acknowledgements

I wish to thank Professor Pierre Hansen for his helpful advices.

References

[1] B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998) 225-233.
[2] G. Caporossi, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs IV: chemical trees with extremal connectivity index Comput. Chem. 23 (1999) 469-477.
[3] L.H. Clark, J.W. Moon, On the general Randić index for certain families of trees, Ars Combin. 54 (2000) 223-235.
[4] I. Gutman, O. Miljković, G. Caporossi, P. Hansen, Alkanes with small and large Randić connectivity indices, Chem. Phys. Lett. 306 (1999) 366-372.
[5] I. Gutman, Lj. Pavlović, O. Miljković, On graphs with extremal connectivity indices, Bull. l'Acad. Serbe Sci. Arts 25 (2000) 1-14.
[6] L.B. Kier, L.H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
[7] L.B. Kier, L.H. Hall, The nature of structure-activity relationships and their relation to molecular connectivity, European J. Med. Chem. 12 (1977b) 307-312.
[8] L.B. Kier, L.H. Hall, Molecular Connectivity in Structure-Activity Analysis, Research Studies Press, Wiley, Chichester, UK, 1986.
[9] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975) 6609-6615.

[^0]: E-mail address: pavlovic@knez.uis.kg.ac.yu (L. Pavlović).

