Abstract

We give upper and lower bounds to the number $u_{n-1}(Q_n)$ of edges that one can remove from a hypercube without altering its diameter, namely:

$$\left(n - 2 \right)2^{n-1} - \left(\binom{n}{\lfloor n/2 \rfloor} \right) + 2 \leq u_{n-1}(Q_n) \leq \left(n - 2 \right)2^{n-1} + 1 - \left(\frac{2^n - 1}{2n - 1} \right).$$

1. Introduction

The n-dimensional hypercube Q_n is used as a topology for connecting 2^n processors, each processor is labeled by a bit-string of length n. Two processors are linked if their binary labels differ by only one bit. We will often use the terms nodes for processors and edges for communication links.

In [2], Bermond, Delorme, and Quisquater presented some strategies for constructing large interconnection networks for a given set of parameters as the maximum degree, the diameter, and so on. The problem of removing as many edges as possible from a hypercube without changing its diameter can be considered as a problem of construction of a graph G of small size and given diameter n, with the extra constraint that G must be a subgraph of the hypercube Q_n. Using the same notation as in [4], let $u_{n-1}(Q_n)$ be the maximum number of edges of the hypercube whose removal maintains the diameter n.

* Corresponding author.
1 Fellowship of Algerian Government.
In what follows, we give a lower bound by constructing a spanning subgraph of Q_n with diameter n and size $2^n + \binom{n}{\lfloor n/2 \rfloor} - 2$. In Section 3, we give an upper bound to $\mu_n^{-1}(Q_n)$.

The following lower bound was found independently by Graham and Harary [4] and ourselves [3].

2. A spanning subgraph of Q_n of diameter n and small size

The construction consists in joining two trees whose roots are the two nodes 0^n and 1^n ($0^n = 00\ldots0$ and $1^n = 11\ldots1$) in the following way:

Consider nodes of weight i (the weight of a node is the number of 1's in its binary label), each of them can be adjacent only to those of weight $i - 1$ and $i + 1$. Therefore, we can say that nodes of weight i constitute the "level" i which will be denoted by L_i.

Lemma 2.1. For any $0 < i < \lfloor n/2 \rfloor$, the bipartite graph G_i induced by $L_i \cup L_{i+1}$ contains a matching which saturates all nodes of L_i.

Proof. Note first that $|L_i| \leq |L_{i+1}|$ for any $0 < i < \lfloor n/2 \rfloor$. On the other hand, $\min_{x \in L_i} d_{G_i}(x) \geq \max_{x \in L_{i+1}} d_{G_i}(x)$. Indeed, $\forall x \in L_i$, $d_{G_i}(x) = n - i$ and $\forall x \in L_{i+1}$, $d_{G_i}(x) = i + 1$.

Using a corollary of the theorem of König-Hall (see the book of Berge [1, pp.132–133]), the lemma is proved. □

The same property holds if we replace L_i by L_{n-i} and L_{i+1} by L_{n-i-1}.

Now, consider two trees of depth $\lfloor n/2 \rfloor$ rooted at 0^n and 1^n constructed as follows:

By Lemma 2.1, for any $0 \leq i < \lfloor n/2 \rfloor$ there exists a matching in the bipartite graph induced by $L_i \cup L_{i+1}$ which saturates all nodes of L_i. So for any $0 \leq i < \lfloor n/2 \rfloor$ consider such a matching. Connect then each node x of L_{i+1} not already attained by that matching to a single node of L_i adjacent to x in G_i. This leads to the construction of the tree rooted at 0^n. To construct the one rooted at 1^n, the same idea is used where L_i and L_{i+1} are respectively replaced by L_{n-i} and L_{n-i-1}.

Finally, if n is even we obtain two trees both of depth $n/2$ and meeting at level $n/2$, otherwise the two trees are of depth $\lceil n/2 \rceil$ and joined by a perfect matching of the bipartite graph induced by $L_{\lfloor n/2 \rfloor} \cup L_{\lceil n/2 \rceil}$. To construct such a perfect matching we can use the algorithm presented in [5, pp. 99–102].

Let G be the resulting spanning subgraph of Q_n.

Lemma 2.2. G is of diameter n and of size $2^n + \binom{n}{\lfloor n/2 \rfloor} - 2$.

Proof. Let u, v be any pair of nodes of G, and let $w(u)$ and $w(v)$ be the weights of u and v respectively. It suffices to observe that there exist paths in G of length $w(u)$, $n - w(u)$, $w(v)$ and $n - w(v)$ joining respectively u to 0^n, u to 1^n, v to 0^n and v to 1^n.

Therefore, \(u \) and \(v \) are on a cycle of \(G \) (perhaps not elementary) of length \(2n \) and the distance between \(u \) and \(v \) is at most \(n \).

To compute the size of \(G \) it suffices to note that the total number of edges in \(G \) is the sum of the sizes of two trees if \(n \) is even, namely: \(2 \sum_{i=1}^{n/2} \binom{n}{i} \); otherwise it is the sum of the sizes of two trees and the size of the perfect matching: \(2 \sum_{i=1}^{\lfloor n/2 \rfloor} \binom{n}{i} + \binom{n}{\lfloor n/2 \rfloor} \) which yields the required result. \(\square \)

Theorem 2.3. The maximum number of edges of \(Q_n \) whose removal leaves the diameter unchanged is bounded by:

\[
un^-(Q_n) \geq (n-2)2^{n-1} - \binom{n}{\lfloor n/2 \rfloor} + 2.
\]

Proof. We have constructed a spanning subgraph of \(Q_n \) of diameter \(n \) and of size \(2^n + \binom{n}{\lfloor n/2 \rfloor} - 2 \), and \(Q_n \) has \(n2^{n-1} \) edges. The difference of these sizes gives the wanted bound. \(\square \)

3. An upper bound to \(un^-(Q_n) \)

Lemma 3.1. Let \(G \) be a spanning subgraph of \(Q_n \) of diameter \(n \). Then every edge \(e \) of \(G \) is in a cycle of length at most \(2n \).

Proof. Let \(l(P) \) be the length of a path \(P \) of \(G \) and let \(e = \{a, b\} \) be an edge of \(G \). Denote by \(a' \) (respectively \(b' \)) the antipodal node of \(a \) (respectively \(b \)) that is the node at distance \(n \) of \(a \) (respectively \(b \)) in \(Q_n \).

\(G \) is bipartite since it is a subgraph of the bipartite graph \(Q_n \). Therefore, in \(G \), the lengths of a path between \(a \) and \(b' \), and a path between \(b \) and \(b' \) are always of different parities.

Let \(P(a, b') \) be a shortest path between \(a \) and \(b' \) in \(G \) and \(P(b, b') \) a shortest path between \(b \) and \(b' \) in \(G \). We have: \(l(P(b, b')) = n \) since \(G \) is of diameter \(n \) and the distance in \(Q_n \) between \(b \) and \(b' \) is \(n \).

On the other hand, as \(l(P(a, b')) \) has a parity different from that of \(l(P(b, b')) \) and as \(G \) is of diameter \(n \) we have \(l(P(a, b')) = n - 1 \) (if \(l(P(a, b')) < n - 1 \) there would exist a path between \(b \) and \(b' \) via \(a \) of length less than \(n \)). Moreover, \(P(a, b') \) does not contain \(e \) for the same reason.

In the same way, if \(P(b, a') \) is a shortest path between \(b \) and \(a' \) in \(G \), \(l(P(b, a')) = n - 1 \) and \(P(b, a') \) does not contain \(e \).

Now, let us organize the vertices of \(G \) according to their distances to \(a \) and \(b \).

Let us call \(M_i(a) \), for \(0 \leq i \leq n \), the set of vertices at distance \(i \) from \(a \) and then let us define similarly \(M_i(b) \), for \(0 \leq i \leq n \). We notice that \(M_i(b) \subset M_{i+1}(a) \cup M_{i-1}(a) \), \(0 < i < n \), by the usual parity argument and triangular inequality. Then let \(L_i(a) \) be \(M_i(a) \cap M_{i+1}(b) \) and \(L_i(b) = M_i(b) \cap M_{i+1}(a) \), for \(0 \leq i < n \).
We have \(V(G) = \bigcup_{i=0}^{n-1} L_i(a) \cup \bigcup_{i=0}^{n-1} L_i(b) \). In particular, we see \(L_0(a) = \{a\}, L_{n-1}(b) = \{b'\} \) and \(b' \in L_{n-1}(a) \).

The shortest path in \(G \) from \(a' \) to \(b' \) contains an edge between \(\alpha \in L_d(a) \) and \(\beta \in L_d(b) \) for some \(d \leq n - 1 \); the edge \(\{\alpha, \beta\} \), the shortest paths between \(\alpha \) and \(a \) and between \(\beta \) and \(b \), and the edge \(\{a, b\} \) constitute a cycle of length \(2d + 2 \leq 2n \).

\[\text{Lemma 3.2.} \quad \text{Let } G \text{ be a connected multigraph. If every edge of } G \text{ is in a cycle of length at most } l \text{ then } G \text{ has at least } |V(G)| - 1 + \left\lfloor \frac{|V(G)| - 1}{l - 1} \right\rfloor \text{ edges.} \]

\[\text{Proof.} \quad \text{We prove by induction on the order of } G \text{ that if } G \text{ verifies the hypothesis of the lemma then } (l - 1)|E(G)| \geq l(|V(G)| - 1). \]

If \(|V(G)| = 1\) the property is obvious.

Now, assume that the property is satisfied for all the multigraphs of order less than \(n \) and which verify the hypothesis of the lemma, and let \(G \) be a multigraph of order \(n \) which verifies the hypothesis of the lemma. Consider the multigraph \(G_1 \) obtained from \(G \) by contracting a shortest cycle of \(G \). \(G_1 \) is connected and also verifies that every edge is in a cycle of length at most \(l \).

Note that if \(|V(G)| > 1\) we can always obtain such a multigraph \(G_1 \). If we denote by \(l_1 \) the length of a shortest cycle of \(G \), we have \(|V(G)| = |V(G_1)| + l_1 - 1\) and \(|E(G)| = |E(G_1)| + l_1\) which implies that:

\[(l - 1)|E(G)| - l(|V(G)| - 1) = (l - 1)|E(G_1)| - l(|V(G_1)| - 1) + l - l_1. \]

Now, since \(|V(G_1)| < |V(G)|\), \((l - 1)|E(G_1)| - l(|V(G_1)| - 1) \geq 0 \) and by noting that \(l_1 \leq l \) it is easy to see that the property holds for \(G \).

Finally, \((l - 1)|E(G)| \geq l(|V(G)| - 1) \) implies that:

\[(l - 1)|E(G)| \geq (l - 1)(|V(G)| - 1) + (|V(G)| - 1) \]

and thus

\[|E(G)| \geq |V(G)| - 1 + \left\lfloor \frac{|V(G)| - 1}{l - 1} \right\rfloor. \quad \square \]

\[\text{Theorem 3.3.} \quad \text{The maximum number of edges of } Q_n \text{ whose removal does not alter the diameter is bounded by:} \]

\[u_n^-(Q_n) \leq (n - 2)2^{n-1} + 1 - \left\lceil \frac{2^n - 1}{2n - 1} \right\rceil. \]

\[\text{Proof.} \quad \text{Any spanning subgraph } G \text{ of } Q_n \text{ of diameter } n \text{ verifies the hypothesis of Lemma 3.2 with } l = 2n \text{ (see Lemma 3.1), therefore } |E(G)| \geq 2^n - 1 + \left\lceil \frac{2^n - 1}{2n - 1} \right\rceil \text{ and then it is easy to see that the theorem holds.} \quad \square \]

We conclude by giving the interval containing \(u_n^-(Q_n) \) for some values of \(n \):
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
n & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
un^-(Q_n) \leq & 0 & 3 & 14 & 45 & 123 & 311 & 752 \\
un^-(Q_n) \geq & 0 & 3 & 12 & 40 & 110 & 287 & 700 \\
\hline
\end{tabular}

References