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We consider the class of separable states which admit a decomposi-

tion
∑

i Ai ⊗ Bi with the Bi ’s having independent images. We give a

simple intrinsic characterization of this class of states. Given a den-

sity matrix in this class, we construct such a decomposition, which

can be chosen so that the Ai ’s are distinct with unit trace, and then

the decomposition is unique. We relate this to the facial structure of

the set of separable states.

The states investigated include a class that corresponds (under the

Choi–Jamiołkowski isomorphism) to the quantum channels called

quantum-classical and classical-quantum by Holevo.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A state onMm ⊗ Mn is separable if it is a convex combination of product states. States that are not

separable are said to be entangled and are of substantial interest in quantum information theory since

entanglement is at the heart of many applications. Some useful necessary conditions are known for

separability, e.g., the PPT condition, by which a separable state must have positive partial transpose

[15]. There also are some necessary and sufficient conditions, e.g. [10], which however are difficult to

apply. Thus it would be of great interest to find a practical test for separability, at least for a significant

class of states.

Closely related to this is thegoal offindingaprocedure todecompose interesting classesof separable

states into a convex combination of product states. Such a procedure would not only shed light on

separable states, but would provide a separability test for that class.
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Wewill identify stateswith their associated densitymatrix, and also consider unnormalized states,

which are then associated with positive semi-definite matrices. (We will abbreviate “positive semi-

definite" to simply “positive" hereafter.) Thus a density matrix T ∈ Mm ⊗ Mn is separable if it admits

a representation

T =
p∑

γ=1

Aγ ⊗ Bγ , (1)

where each Aγ and Bγ is positive. Such a density matrix T represents a mixed state on a bipartite

quantum system composed of two subsystems, the A-system and the B-system, associated with Mm

andMn respectively.

In our previous paper [2], the authors studied separable stateswith such a representationwith each

Aγ and Bγ rank one, with the requirement that B1, . . . , Bp be projections onto linearly independent

vectors. This class of states turns out to be same as the set of separable states T with the property

that T and the marginal state trA T (obtained by tracing out over the A-system) have the same rank, cf.

Lemma 15. The equivalence of these two formulations was established for states on M2 ⊗ Mn in [14],

and then in complete generality in [11, Lemma 6, and proof of Theorem 1], where it was also shown

that for states satisfying this rank requirement, the PPT condition is equivalent to separability. (An

alternate proof of the equivalence of these rank and independence conditionswas given in [17, Lemma

13].) In [11] the authors also gave a procedure for decomposing such states into a convex sum of pure

product states, based on an inductive argument for finding a certain kind of product basis, and then

a reduction to a block matrix whose blocks are normal and commute. In this paper we also make use

of a reduction to this type of matrix. The existence of special families of commuting normal matrices

played an important role in the investigation of separability in [18] as well.

The currentpaper investigates separable states forwhich there isno rank restriction, but admittinga

representation (1) in which B1, . . . , Bp have independent images. We call such states B-independent,

and give an intrinsic way to determine if a state falls in this category (Theorem 6). An interesting

subcategory of such states are those with a representation (1) in which B1, . . . , Bp have orthogonal

images; we call such states B-orthogonal.

Both categories of states were previously studied in the paper [5]. In that paper the terms “classical

with respect to Bob" and “generalized classical with respect to Bob" are used for what we have called

B-orthogonal andB-independent. Those authors give a test for a state to be classicalwith respect toBob,

equivalent to that in parts (i) and (ii) of Theorem 4 of this paper. They also give a test for generalized

classicality, involving a semidefinite programming algorithm. Part of our Theorem 6 gives a different

(and simpler) test for B-independence.

Let T be a B-independent state. We show that without knowing an explicit decomposition to begin

with, there is a canonical way to locally filter T to yield a state T̃ which admits a representation (1) in

which B1, . . . , Bp are orthogonal. (Of course, there is nothing special about the B-system compared to

the A-system, and all results in this paper are validwith the roles of the A and B systems interchanged.)

This is then used to give a canonical form for T , and to find a decomposition of T of the form

(1), cf. Theorem 6. This decomposition can be chosen so that A1, . . . , Ap are distinct and have unit

trace, and in that case the representation is unique. It is then simple to decompose further to get a

representation of T as a convex combination of pure product states (i.e., of density matrices where

each is the projection onto the span of a product vector), and we describe when this decomposition

is unique (Theorem 14.) Finally, we show in Theorem 11 that if a state has a representation (1) with

the images of the Aγ disjoint and the images of the Bγ independent, then the face of the space S of

separable states that is generated by this state is the direct convex sum of separable state spaces of

lower dimension.

The density matrices investigated here are closely related to interesting classes of completely pos-

itive maps. A completely positive map � : Mm → Mn is entanglement breaking if (I ⊗ �)(�) is

separable for all positive �, cf. [12,16]. The Choi–Jamiołkowski isomorphism [6,13] is a linear isomor-

phism under which completely positive maps correspond to positive matrices. Under this correspon-

dence, entanglement breaking maps correspond to separable matrices, so the results of this paper on
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convex decompositions of a class of separable states then can be transferred to give information about

decompositions and identification of the corresponding class of entanglement breaking maps.

In particular, there are two important classes of entanglement breaking maps (quantum-classical

channels and classical-quantum channels) that have Choi matrices in the class of separable states

investigated in the current paper. These classes were originally singled out by Holevo [9], and further

investigated as special cases of entanglement breakingmaps by Horodecki, Shor, and Ruskai in [12,16].

These are shown in Theorem 8 to be special cases of the classes of A-orthogonal and B-orthogonal

densitymatrices,whichplay akey role in the current paper. Theorem4andTheorem8 together provide

an intrinsic way to identify such quantum channels without knowing an explicit Kraus decomposition

ahead of time, as well as giving a procedure to find a Kraus decomposition of the appropriate form.

We would like to thank the referee for pointing out several careless errors in a previous draft, and

for suggesting a shorter proof of Lemma 1.

2. A class of separable density matrices

Definition. Subspaces V1, . . . , Vp of a vector space are independent if their sum is a direct sum. This

is equivalent to the implication

p∑
γ=1

xγ = 0 with xγ ∈ Vγ for 1 ≤ γ ≤ p �⇒ all xγ = 0.

We now define the central class of separable density matrices that we will investigate. Later in

Theorem 6 we will give an intrinsic characterization of this class.

Definition. A density matrix T ∈ Mm ⊗ Mn is B-independent if T admits a decomposition

T =
p∑

γ=1

Aγ ⊗ Bγ , (2)

where 0 ≤ Aγ , Bγ for 1 ≤ γ ≤ p, with the images of B1, . . . , Bp independent.

Example. Let x1, . . . , xp ∈ C
m and y1, . . . , yp ∈ C

n be unit vectors, with y1, . . . , yp linearly inde-

pendent, and 0 < λ1, . . . , λp with
∑

γ λγ = 1. Let T be the convex combination

T =
p∑

γ=1

λγ Pxγ ⊗ Pyγ , (3)

where for a unit vector z, Pz denotes the projection onto Cz. Then T is B-independent. The uniqueness

of such decompositions, and the facial structure of faces of the separable state space generated by

such states, were investigated by the current authors in [2]. As was discussed in the introduction, such

states played an important role in [11] and also appeared in [17].

We will return to the subject of B-independent states after developing some necessary results.

3. One sided local filtering

Definition. A linear map � : Md → Md is a filter if there is a positive A ∈ Md such that �(X) = AXA.

(We do not require that A be invertible.) A map � : Mm ⊗ Mn → Mm ⊗ Mn is a local filter if there are

positive A, B such that �(X) = (A ⊗ B)X(A ⊗ B).
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Applications of filtering, e.g., to distillation of entanglement, date back at least to [3,4,7]. It is well

known that we can apply a local filter to any densitymatrix to arrange for one or the other partial trace

to be a projection, as we now describe.

Definition. If A ≥ 0, then A# denotes the Penrose pseudo-inverse of A, i.e., the unique positive matrix

which is zero on (im A)⊥ and satisfies A#A = AA# = PA, where PA is the projection onto the image of

A. If a spectral decomposition of A is A = ∑
i λiPi with all λi > 0, then A# = ∑

i λ
−1
i Pi.

Definition. We write trB and trA for the partial trace maps on Mm ⊗ Mn, and if T ∈ Mm ⊗ Mn then

we write TB = trA T and TA = trB T .

Definition. Let 0 ≤ T ∈ Mm ⊗ Mn. Then we denote by T̃ the matrix

T̃ = (I ⊗ ((TB)
#)1/2)T(I ⊗ ((TB)

#)1/2). (4)

Weviewthepair (T̃, TB)aspartitioning informationaboutT into a stateTB that contains information

about T on the subsystem B, and another part T̃ which contains information about T relating to the

system A as well as the interaction between A and B systems.

We will show later in this section that T can be recovered from the pair (T̃, TB). First, we discuss

various facts about partial traces and filters which we need.

Definition. {Eij} are the standard matrix units of Mm. For any matrix T ∈ Mm ⊗ Mn, we denote by

{Tij | 1 ≤ i, j ≤ m} the unique matrices in Mn such that

T = ∑
ij

Eij ⊗ Tij.

If T = ∑
ij Eij ⊗ Tij ∈ Mm ⊗ Mn, then by definition

trA T = ∑
i

Tii and trB T = ∑
ij

tr(Tij)Eij. (5)

It is well-known that the partial trace maps are positive maps. We now show that they are also

faithful, i.e., if T ≥ 0 and either partial trace of T is zero, then T is zero. (We expect the following is

well-known, but we have included it here for lack of an explicit reference.)

Lemma 1. The partial trace maps are faithful.

Proof. Let 0 ≤ T = ∑
ij Eij ⊗ Tij ∈ Mm ⊗ Mn. We first show

T = 0 ⇐⇒ Tii = 0 for 1 ≤ i ≤ m. (6)

If T = 0, then clearly all Tij = 0, so in particular all Tii = 0. Conversely, suppose all Tii are zero. Then T

is an mn × mn positive semidefinite matrix whose diagonal entries are all zero. Each 2 × 2 principle

submatrix is positive semidefinite with zeros on the diagonal, so must be the zeromatrix. Thus T = 0.

Nowwe are ready to prove faithfulness of the partial traces. By (5), if trB(T) = 0, then in particular

tr(Tii) = 0 for each i. Since 0 ≤ T , then 0 ≤ Tii for each i, so tr(Tii) = 0 implies Tii = 0 for all i and

thus T = 0.

On the other hand, trA(T) = 0 implies
∑

i Tii = 0, and by positivity of each Tii, we again have

Tii = 0 for each i, and thus T = 0. �

We next review some useful facts about projections and images. (For additional background, cf. [1,

Chapter 3].) If A = A∗ and P is a projection, then

im A ⊂ im P ⇐⇒ PAP = A. (7)
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(Indeed, if im A ⊂ im P, then PA = A, so taking adjoints and using A∗ = A gives A = AP. Then

PAP = P(AP) = PA = A. The converse implication is clear.)

If E ∈ Mr is a projection, then we write E′ = I − E, where I is the identity in Mr . Note that for E a

projection inMm, (E ⊗ I)′ = (I ⊗ I) − (E ⊗ I) = E′ ⊗ I. For any projection R and positive operator T

we have

RTR = T ⇐⇒ R′TR′ = 0, (8)

cf., e.g., [1, Lemma 2.20].

Finally, we observe that if 0 ≤ A1, A2, . . . , Ap, then

im
∑
i

Ai = ∑
i

im Ai. (9)

Indeed, for 1 ≤ j ≤ p we have Aj ≤ ∑
i Ai so ker

∑
i Ai ⊂ ker Aj . Taking orthogonal complements

shows im Aj ⊂ im
∑

i Ai, which implies
∑

j im Aj ⊂ im
∑

i Ai. The opposite containment is evident, so

(9) follows.

The following result is clear for separable T , but requires a little more work for general T .

Lemma 2. If 0 ≤ T ∈ Mm⊗Mn, theminimal product subspace containing the image of T is im TA⊗ im TB.

In particular, if PB is the projection onto the image of TB, then (I ⊗ PB)T(I ⊗ PB) = T.

Proof. Let V ⊂ C
m and W ⊂ C

n be subspaces, and let the corresponding projections be P and Q .

Then by (7), im T ⊂ V ⊗ W iff (P ⊗ Q)T(P ⊗ Q) = T .

Note (P ⊗ Q)T(P ⊗ Q) = T is equivalent to the combination of (P ⊗ I)T(P ⊗ I) = T and (I ⊗
Q)T(I ⊗ Q) = T . Thus it suffices to show that

(P ⊗ I)T(P ⊗ I) = T ⇐⇒ im P ⊃ im(TA) (10)

together with the corresponding statement for TB. Since the proof of the statements for TA and TB are

essentially the same, we just will prove the statement for TA.

We will make use of the following identity valid for all T ∈ Mm ⊗ Mn and all X ∈ Mn:

trB(X ⊗ I)T(X ⊗ I) = X(trB T)X. (11)

Thus

(P ⊗ I)T(P ⊗ I) = T ⇐⇒ (P′ ⊗ I)(T)(P′ ⊗ I) = 0 by (8)

⇐⇒ trB((P
′ ⊗ I)T(P′ ⊗ I)) = 0 by Lemma 1

⇐⇒ P′(trB T)P′ = 0 by (11)

⇐⇒ P trB TP = trB T by (8)

⇐⇒ im P ⊃ im trB T = im(TA) by (7). (12)

This completes the proof of (10), and hence finishes the proof of the lemma. �

The next result relates properties of T and T̃ , and shows that T can be recovered from the pair

(T̃, TB).

Lemma 3. Let 0 ≤ T ∈ Mm ⊗ Mn and define T̃ as in (4). Then

T = (I ⊗ T
1/2
B )T̃(I ⊗ T

1/2
B ). (13)

T will be separable iff T̃ is separable, and trA T̃ = PB (where PB is the projection onto the image of TB).
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Proof. From the definition of T̃ , separability of T implies that of T̃ . For F = ((TB)
#)1/2 we have

trA T̃ = trA(I ⊗ F)T(I ⊗ F) = F(trA T)F = FTBF = PB.

Furthermore,

(I ⊗ T
1/2
B )T̃(I ⊗ T

1/2
B )

= (I ⊗ T
1/2
B )(I ⊗ ((TB)

#)1/2)T(I ⊗ T
1/2
B )(I ⊗ ((TB)

#)1/2)

= (I ⊗ PB)T(I ⊗ PB) (14)

This would prove (13) if we knew the range of T were contained in C
m ⊗ im PB. This follows from

Lemma 2. Finally (13) shows that separability of T̃ implies separability of T . �

4. B-orthogonal density matrices

In this section we describe a canonical form for a class of positive matrices which we call B-

orthogonal, and which is a subclass of the B-independent matrices. In the following section we will

apply these results to achieve a canonical representation for the full class of B-independent matrices.

Definition. Positive matrices in Mr are orthogonal if their images are orthogonal. A density matrix T

is B-orthogonal if it admits a representation

T =
p∑

γ=1

Aγ ⊗ Bγ (15)

with 0 ≤ Aγ , Bγ andwith the {Bγ }matrices orthogonal. Similarly we say T is A-orthogonal if it admits

a representation (15) with the {Aγ } matrices orthogonal.

The following gives a canonical form for B-orthogonal matrices, and a readily tested necessary and

sufficient condition for B-orthogonality.

Theorem 4. Let 0 ≤ T = ∑
ij Eij ⊗ Tij ∈ Mm ⊗ Mn. Then the following are equivalent.

(i) T is B-orthogonal.

(ii) All Tij are normal and mutually commute.

Furthermore, if T is B-orthogonal, then T admits a unique representation

T =
p∑

γ=1

Aγ ⊗ Qγ , (16)

with Q1, . . . ,Qp orthogonal projections, and A1, . . . , Ap distinct nonzero positive matrices.

The projections Q1, . . . ,Qp will be the projections onto the joint eigenspaces of {Tij} (excluding the joint
zero eigenspace), and will have sum PB (the projection onto the image of TB). The matrices Aγ are given by

Aγ = 1

tr Qγ

trB(I ⊗ Qγ )T(I ⊗ Qγ ). (17)

For any nonzero vector in imQγ , the associated eigenvalue of Tij will be (Aγ )ij .
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Proof. (i) �⇒ (ii). If (15) holds with B1, . . . , Bp orthogonal, then for each pair of indices i, j

Tij = trA((Eji ⊗ I)T) =
p∑

γ=1

tr(EjiAγ )Bγ . (18)

Since B1, . . . , Bp are orthogonal, then B1, . . . , Bp commute. It follows that the matrices {Tij | 1 ≤
i, j ≤ m} commute and are normal.

(ii) �⇒ (i) Conversely, suppose {Tij | 1 ≤ i, j ≤ m} commute and are normal. Define Q1, . . . ,Qp

to be the projections onto the joint eigenspaces (for non zero eigenvalues) of {Tij}. For each i, j write

Tij =
p∑

γ=1

λi,j
γ Qγ . (19)

Then

T = ∑
ij

Eij ⊗ Tij = ∑
ij

Eij ⊗
⎛⎝ p∑

γ=1

λi,j
γ Qγ

⎞⎠
=

p∑
γ=1

⎛⎝∑
ij

λi,j
γ Eij

⎞⎠ ⊗ Qγ . (20)

For each γ define Aγ = ∑
ij λ

i,j
γ Eij ∈ Mm. Then T = ∑

γ Aγ ⊗ Qγ . For each i, j, γ we have

λi,j
γ = (Aγ )ij . Thus by the definition of the joint eigenspaces of {Tij}, for γ1 �= γ2 we must have

Aγ1
�= Aγ2

, and hence A1, . . . , Ap are distinct. Now orthogonality of Q1 . . . ,Qp implies (17).

Finally, we prove uniqueness. Suppose that we are given any representation (16) of T where {Qγ }
are orthogonal projections and {Aγ } distinct nonzero positive matrices. Then for 1 ≤ i, j ≤ m,

Tij = trA(Eji ⊗ I)T = ∑
γ

tr(EjiAγ )Qγ .

Then the image of each Qγ consists of eigenvectors for Tij for the eigenvalues tr(EjiAγ ), and by dis-

tinctness of A1, . . . , Ap for γ1 �= γ2 there is some pair of indices i, j such that tr(EjiAγ1
) �= tr(EjiAγ2

),
so the Qγ are precisely the projections onto the joint eigenspaces. �

Remark. The condition (ii) is equivalent to the existence of an orthonormal basis of joint eigenvectors

for {Tij}, as is well known.

5. A canonical form for B-independent matrices

The following describes how to map positive matrices with independent images to orthogonal

projections by filtering with a positive matrix. We say an Hermitianmatrix A ∈ Mn lives on a subspace

H of C
n if im A ⊂ H (or equivalently, if A = 0 on H⊥).

Lemma 5. Let X1, . . . , Xp be positive matrices in Mn with im X1, . . . , im Xp independent, and let P be the

projection on the image of
∑

i Xi. Then

A =
(( ∑

i

Xi

)#)1/2

is the unique positive matrix living on im P such that {AXiA | 1 ≤ i ≤ p} are orthogonal projections with

sum P.
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Proof. Let A = ((
∑

i Xi)
#)1/2, and define Yi = AXiA for 1 ≤ i ≤ p. Then

∑
i

Yi = ∑
i

AXiA = A

⎛⎝∑
i

Xi

⎞⎠ A = P,

where P is the projection onto the image of
∑

i Xi. By assumption, im X1, . . . , im Xp are independent.

Since for each i, A is invertible on im P ⊃ im Xi, and im Yi ⊂ A(im Xi), then Y1, . . . , Yp have indepen-

dent images. Now for 1 ≤ j ≤ p,

Yj = PYj = ∑
i

YiYj,

and then independence of the Y ’s implies YiYj = 0 for i �= j, and Y2
j = Yj , so Y1, . . . , Yp are orthogonal

projections with sum P.

Finally, to prove uniqueness, suppose that 0 ≤ A0, with A0 living on im P and with {A0XiA0 | 1 ≤
i ≤ p} projections with sum P. Then im A0 ⊂ im P, and

A0

( ∑
i

Xi

)
A0 = P, (21)

so im A0 = im P. Multiplying (21) by A#
0 on left and right of each side gives

∑
i Xi = (A#

0 )
2, so

A0 = ((
∑

i Xi)
#)1/2. �

Theorem 6. Let 0 ≤ T ∈ Mm ⊗ Mn. The following are equivalent.

(i) T is B-independent.

(ii) T̃ is B-orthogonal.

(iii) All T̃ij are normal and mutually commute.

If T is B-independent then T admits a unique decomposition

T =
p∑

γ=1

Aγ ⊗ Bγ (22)

with 0 ≤ Aγ , Bγ , tr Aγ = 1, A1, . . . , Ap distinct, and B1, . . . , Bp independent.

Let Q1, . . . ,Qp be the projections corresponding to the joint eigenspaces of {T̃ij} excluding the subspace
corresponding to the zero eigenvalue. Then the unique decomposition (22) is given by

Bγ = (TB)
1/2Qγ (TB)

1/2 (23)

and

Aγ = 1

tr Qγ

trB(I ⊗ Qγ )T̃(I ⊗ Qγ ), (24)

and the sum of the projections Qγ will be PB (the projection onto the image of TB). For any nonzero vector

in imQγ , the associated eigenvalue of T̃ij will be (Aγ )ij .
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Proof. If T is B-independent, then by definition there are positive matrices A1, . . . , Ap and positive

matrices B1, . . . , Bp with independent images such that

T =
p∑

γ=1

Aγ ⊗ Bγ . (25)

If necessary, we absorb scalar factors into the Bγ so that tr Aγ = 1 for all γ , and we combine terms if

necessary so that A1, . . . , Ap are distinct.

Now by the definition (4) of T̃ ,

T̃ =
p∑

γ=1

Aγ ⊗ ((TB)
#)1/2Bγ ((TB)

#)1/2 =
p∑

γ=1

Aγ ⊗ Qγ , (26)

where

Qγ = ((TB)
#)1/2Bγ ((TB)

#)1/2. (27)

By Lemma 5, since TB = ∑
γ Bγ , then Q1, . . . ,Qp are orthogonal projections with sum the projection

onto the image of
∑

γ Bγ , and hence
∑

γ Qγ = PB. Thus T̃ is B-orthogonal. Furthermore, by the

uniqueness statement of Theorem 4, Qγ and Aγ must be as described in that theorem (with T̃ in place

of T). By (27), since each Bγ has range contained in the range of TB, thenmultiplying (27) on both sides

by T
1/2
B gives (23), and (24) follows either from (26) or from Theorem 4. Thus we have shown that if T

is B-independent, then T admits a unique representation as specified in the theorem.

To show that B-orthogonality of T̃ implies B-independence of T , we apply Theorem 4 again. We

have the representation

T̃ = ∑
γ

Aγ ⊗ Qγ ,

where Aγ and Qγ are defined as in Theorem 4with T̃ in place of T . Note that the image of each Qγ will

be contained in the image of T̃B, and T̃B = PB by Lemma 3. Define B1, . . . , Bp by (23). Orthogonality of

the Qγ implies that their images are independent. By definition, (TB)
1/2 is invertible on the range of

TB, and im Bγ ⊂ (TB)
1/2(imQγ ), so B1, . . . , Bp have independent images and are positive. By Eq. (13)

of Lemma 3,

T = (I ⊗ T
1/2
B )T̃(I ⊗ T

1/2
B ) = ∑

Aγ ⊗ Bγ ,

so T is B-independent.

Finally, equivalence of (ii) and (iii) follows from Theorem 4. �

6. Connections with QC and CQ quantum channels

We will show in this section that the quantum channels known as classical-quantum channels

and quantum-classical channels correspond under the Choi–Jamiołkowski isomorphism to density

matrices that are in the classes of matrices we have called A-orthogonal or B-orthogonal respectively.

The remainder of this paper is independent of this section.

Definition. Let � : Mm → Mn be a quantum channel (i.e., a completely positive trace preserving

map). If it is possible to choose 0 ≤ F1, . . . , Fq ∈ Mm, 0 ≤ R1, . . . , Rq, and tr Rk = 1 for all k such that

�(X) =
q∑

k=1

tr(FkX)Rk, (28)
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such a representation is called aHolevo form for�. (Note that since� is assumed to be trace preserving,

we must have
∑

k Fk = I.)

The following notion is due to Holevo [9], and was further investigated in [12] in the context of

entanglement breaking maps.

Definition. A quantum channel � : Mm → Mn is a classical-quantum (CQ) channel if � admits a

Holevo form (28) with F1, . . . , Fq rank one projections (necessarily with sum Im since � is a quantum

channel). Similarly, one says � is a quantum-classical (QC) channel if � admits a Holevo form with

R1, . . . , Rq rank one projections with sum In.

Definition. If � : Mm → Mn is a linear map, the associated Choi matrix is the matrix in Mm ⊗ Mn

defined by

C� = ∑
ij

Eij ⊗ �(Eij),

where {Eij} are the standard matrix units of Mm.

It was shown by Choi [6] that � is completely positive iff C� is positive semi-definite. Note that �

will be trace preserving iff tr �(Eij) = δij , or equivalently, iff trB C� = I.

Lemma 7. Let F1, . . . , Fq ∈ Mm and R1, . . . , Rq ∈ Mn. Define � : Mm → Mn by

�(X) = ∑
k

tr(FkX)Rk.

Then the corresponding Choi matrix is

C� = ∑
k

Ftk ⊗ Rk. (29)

Proof. This follows from [19, Theorem 2 and Lemma 5], or directly from the definition of the Choi

matrix:

C� = ∑
ij

Eij ⊗ �(Eij) = ∑
ij

Eij ⊗
∑
k

tr(EijFk)Rk

= ∑
k

⎛⎝∑
ij

tr(EijFk)Eij

⎞⎠ ⊗ Rk

= ∑
k

⎛⎝∑
ij

tr(EjiF
t
k)Eij

⎞⎠ ⊗ Rk

= ∑
k

Ftk ⊗ Rk,

where the final equality follows from the fact that the matrix units {Eij} are an orthonormal basis for

Mm with respect to the Hilbert-Schmidt inner product. �

Theorem 8. Let 0 ≤ T ∈ Mm ⊗ Mn.

(i) T is the Choi matrix for a QC channel iff T is B-orthogonal with trB T = I.

(ii) T is the Choi matrix for a CQ channel iff T is A-orthogonal with trB T = I.



E. Alfsen, F. Shultz / Linear Algebra and its Applications 437 (2012) 2613–2629 2623

Proof. (i) Let � : Mm → Mn be a QC channel with Choi matrix T . By definition, there is a Holevo

representation (28) with R1, . . . , Rn rank one projections with sum In. By Lemma 7 the Choi matrix

for � is

T =
n∑

k=1

Ftk ⊗ Rk.

Since
∑

i Ri = In, then R1, . . . , Rn are orthogonal, so T is B-orthogonal. Since � is a quantum channel,

then trB T = I.

Conversely, suppose T is B-orthogonal with trB T = I and rank trA T = n. Since T ≥ 0, then �

is completely positive, and since trB T = I, then T is trace preserving, so T is a quantum channel. By

definition of B-orthogonality, we can write

T =
p∑

k=1

Ak ⊗ Bk

with 0 ≤ A1, . . . , Ap and 0 ≤ B1, . . . , Bp with B1, . . . , Bp orthogonal. Via its spectral decomposition,

we replace eachBj by a linear combinationof orthogonal rankoneprojections, and absorb scalar factors

into the Aj ’s. Then we can write

T =
q∑

j=1

Ftk ⊗ Rk (30)

with R1, . . . , Rq orthogonal rank one projections. Clearly q ≤ n. If q < n, we can define Fq+1, . . . , Fn
to be zero, and choose rank one projections Rq+1, . . . , Rn so that

∑
i Ri = In. Thus � admits a Holevo

form (30) in which R1, . . . , Rn are rank one projections with sum In, so � is a QC channel.

The proof of the characterization of CQ channels is similar. �

7. Faces of the separable state space

A face of a convex set C is a convex subset F such that if A and B are points in C and a convex

combination tA + (1 − t)B with 0 < t < 1 is in F , then A and B are in F . The intersection of faces is

always a face, so for each point A ∈ C there is a smallest face of C containing A, denoted faceC A.

We let K (or Kd) denote the convex set of states on Md, i.e., the density matrices, and S (or Smn)

denotes the convex set of separable states on Mm ⊗ Mn. There is a canonical 1-1 correspondence

between subspaces ofCd and faces of the state space Kd. IfH is a subspace ofCd and P is the projection

onto H, then the associated face of Kd is

FP = {A ∈ Kd | im A ⊂ im P} = {A ∈ Kd | im A ⊂ H}. (31)

This correspondence of subspaces of C
d and faces of Kd follows from, e.g., [1, Eq. (3.14)], which says

that

FP = {A ∈ Kd | A = PAP}.
By (7) this is equivalent to (31). (Eq. (3.14) of [1] is stated in terms of positive linear functionals ρ onMd

associated with the density matrices A inMd via ρ(X) = tr(AX), but it translates easily to (31) above.)

From this it follows that faces of the state space of Mm ⊗ Mn are themselves “mini state-spaces",

i.e., are affinely isomorphic to some Kp for p ≤ mn. The extreme points of K are precisely the pure

states Px , where Px denotes the projection onto the span of the unit vector x.

We recall for use below that the separable state space S is compact, as is any face (since faces of

closed finite dimensional convex sets are always closed.) The extreme points of S are precisely the pure

product states Px⊗y.
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We now prove that certain faces of the separable state space are themselves “mini separable state

spaces", i.e., are affinely isomorphic to the separable state space Spq ofMp⊗Mq for some p ≤ m, q ≤ n.

Notation. IfV,W are subspaces ofCm,Cn respectivelywith dim V = p, dimW = q, then Sep(V⊗W)
denotes the separable states inMm ⊗Mn that live on V ⊗W (i.e., whose image is contained in V ⊗W).

Note Sep(V ⊗ W) is affinely isomorphic to the separable state space Spq.

We will make frequent use of the following implication for subspaces V ⊂ C
m,W ⊂ C

n:

for x ∈ C
m, y ∈ C

n, 0 �= x ⊗ y ∈ V ⊗ W �⇒ x ∈ V and y ∈ W,

which follows immediately by expanding bases of V and W to bases of C
m and C

n and expressing x

and y in terms of these bases. (Alternatively, cf. [8, Eq. (1.7)].

Lemma 9. Let A ∈ Mm, B ∈ Mn be density matrices. Then

faceS(A ⊗ B) = Sep(im A ⊗ im B).

Proof. Note that both sides are compact convex sets, and hence are the convex hull of their extreme

points. The extreme points of both sides will be pure product states, so we can restrict consideration

to such states.

Suppose Px⊗y ∈ faceS(A ⊗ B). This is contained in faceK(A ⊗ B), which consists of the density

matrices whose images are contained in im(A ⊗ B) = im A ⊗ im B. Thus x ∈ im A and y ∈ im B, so

Px⊗y ∈ Sep(im A ⊗ im B). Thus we shown

faceS(A ⊗ B) ⊂ Sep(im A ⊗ im B).

For the opposite inclusion, suppose Px⊗y is any extreme point of Sep(im A ⊗ im B). Then x ⊗ y ∈
im A ⊗ im B implies that x ∈ im A and y ∈ im B. Hence Px is in faceK(A) and Py ∈ faceK(B), so there

exists a scalar λ > 0 such that λPx ≤ A and λPy ≤ B. Then

A ⊗ B = [(A − λPx) + λPx] ⊗ [(B − λPy) + λPy]
Expanding the right sides gives four separable (unnormalized) states, and hence

Px ⊗ Py = Px⊗y ∈ faceS(A ⊗ B).

Thus

Sep(im A ⊗ im B) ⊂ faceS(A ⊗ B),

which completes the proof of the lemma. �

Lemma 10. Let V1, . . . , Vq be subspaces of C
m and W1,W2, . . . ,Wq independent subspaces of C

n. If

0 �= x ⊗ y ∈ C
m ⊗ C

n, let J = {γ | x ∈ Vγ }. Then

x ⊗ y ∈
q∑

γ=1

Vγ ⊗ Wγ (32)

iff J is nonempty and y ∈ ∑
γ∈J Wγ .

Proof. Assume (32) holds. Then

x ⊗ y ∈
q∑

γ=1

Vγ ⊗ Wγ ⊂
⎛⎝∑

γ

Vγ

⎞⎠ ⊗
⎛⎝∑

γ

Wγ

⎞⎠
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so x ∈ ∑
γ Vγ and y ∈ ∑

γ Wγ . Thus without loss of generality we may assume
∑

γ Vγ = C
m and∑

γ Wγ = C
n.

Let P1, . . . , Pq be the (non-self-adjoint) projection maps corresponding to the linear direct sum

decomposition C
n = W1 ⊕ · · · ⊕ Wq. Then for 1 ≤ β ≤ q

x ⊗ Pβy = (I ⊗ Pβ)(x ⊗ y) ∈ Vβ ⊗ Wβ. (33)

If we choose β so that Pβy �= 0, then x ∈ Vβ , so J is not empty. Then for γ /∈ J, we have x /∈ Vγ , so by

(33), Pγ y = 0. It follows that y ∈ ∑
γ∈J Wγ .

Conversely, suppose J is nonempty and y ∈ ∑
γ∈J Wγ , say y = ∑

γ∈J yγ . Then

x ⊗ y = ∑
γ∈J

x ⊗ yγ ∈
q∑

γ=1

Vγ ⊗ Wγ . �

We say the convex hull of a collection of convex sets {Cα} is a direct convex sum if each point x in the

convex hull has a unique convex decomposition x = ∑
α λαxα with xα ∈ Cα . In the theorem below,

co
⊕

denotes the direct convex sum.

Theorem 11. Let T = ∑
γ Aγ ⊗ Bγ be a density matrix in Mm ⊗Mn. Assume that A1, . . . , Ap are density

matrices with pairwise disjoint ranges, and that B1, . . . , Bp are positivematrices with independent images.

Then the face of the separable state space S generated by T is the direct convex sum

faceS T = co

p⊕
γ=1

faceS(Aγ ⊗ Bγ ). (34)

Proof. We first show that the convex hull on the right side of (34) is a direct convex sum. First note

that by the assumption that the images of the Bγ are independent, it follows that the subspaces

im Aγ ⊗im Bγ are independent. (Indeed, combining product bases of im A1⊗im B1, . . . , im Ap⊗im Bp
gives a basis of

∑
γ im Aγ ⊗ im Bγ , from which the independence claim follows.)

Now suppose Cγ ,Dγ ∈ faceS(Aγ ⊗ Bγ ) for 1 ≤ γ ≤ p, and that∑
γ

Cγ = ∑
γ

Dγ . (35)

Then for any ξ ∈ C
m ⊗ C

n∑
γ

Cγ ξ = ∑
γ

Dγ ξ.

Since

faceS(Aγ ⊗ Bγ ) ⊂ faceK(Aγ ⊗ Bγ ) = {E ∈ K | im E ⊂ im(Aγ ⊗ Bγ )},
then for each γ , Cγ ξ and Dγ ξ are in im(Aγ ⊗ Bγ ) = im Aγ ⊗ im Bγ . Hence by independence of the

subspaces im Aγ ⊗ im Bγ , wemust have Cγ ξ = Dγ ξ for each γ and each vector ξ . Therefore Cγ = Dγ

for all γ , showing that the convex hull is indeed a direct convex sum.

Next we prove the equality in (34). Suppose Px⊗y is in the left side. Since the face that the state Px⊗y

generates in S is contained in the face this state generates in K , then x ⊗ y is contained in the image

of
∑

γ Aγ ⊗ Bγ , which is
∑

γ im Aγ ⊗ im Bγ (cf. (9)). Since by assumption A1, . . . , Ap are disjoint, the

set J in Lemma 10 is a singleton set, so there is some β such that x ∈ im Aβ and y ∈ im Bβ . Then by

Lemma 9, Px⊗y ∈ faceS(Aβ ⊗ Bβ), which shows the left side of (34) is contained in the right.
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The extreme points of the right side are each contained in some faceS(Aβ ⊗ Bβ), and since Aβ ⊗ Bβ

is one of the summands on the left, then

faceS(Aβ ⊗ Bβ) ⊂ faceS

⎛⎝∑
γ

Aγ ⊗ Bγ

⎞⎠ ,

which completes the proof of (34). �

Lemma 12. If x is a unit vector in C
m and B is a density matrix in Mn, then

faceS(Px ⊗ B) = faceKmn
(Px ⊗ B) = Px ⊗ faceKn B. (36)

Proof. By Lemma 9,

faceS(Px ⊗ B) = Sep(im Px ⊗ im B) = Sep(Cx ⊗ im B).

Since every vector in Cx ⊗ im B is a product vector, every density matrix whose image is contained in

Cx ⊗ im B is separable, as can be seen from its spectral decomposition. Thus by (31)

Sep(im Px ⊗ im B) = {E ∈ Kmn | im E ⊂ im(Px ⊗ B)} = faceKmn
(Px ⊗ B),

so the first equality of (36) follows.

Now we prove the second equality of (36). If T = Px ⊗ Awith A ∈ faceKn B, then

im T = im(Px ⊗ im A) ⊂ im(Px ⊗ B)

implies that T ∈ faceKmn
(Px ⊗ B), so we have shown

Px ⊗ faceKn B ⊂ faceKmn
(Px ⊗ B).

To prove the reverse inclusion, let T ∈ faceKmn
(Px ⊗ B). Then im T ⊂ Cx ⊗ im B. We will prove there

exists A ∈ faceKn B such that T = Px ⊗ A, which will complete the proof of the lemma.

Since im T ⊂ Cx⊗im B, for each y ∈ C
n there exists a uniquew ∈ im B such that T(x⊗y) = x⊗w.

Define A ∈ Mn by x ⊗ Ay = T(x ⊗ y) for y ∈ C
n, and observe that im A ⊂ im B.

For z ∈ C
m, if z = x or z ⊥ xwe have T(z⊗ y) = (Px ⊗A)(z⊗ y). It follows that T = Px ⊗A. Since

T is a density matrix, it follows that A also is a density matrix. Since im A ⊂ im B, then A ∈ faceKn B.

Thus T ∈ Px ⊗ faceKn B. �

In Theorem 11, the faces of the separable state space are expressed in terms of other (smaller)

separable state spaces. In somecircumstances, theseareactually state spacesof the fullmatrix algebras,

as we now show. (This generalizes [2, Theorem 4].)

Theorem 13. Let T = ∑p
γ=1 Aγ ⊗ Bγ be a density matrix in Mm ⊗Mn. Assume that A1, . . . , Ap are rank

one density matrices, and that B1, . . . , Bp are positive matrices with independent images. Then there are

unit vectors x1, . . . xq in C
m, with Px1 , . . . , Pxq distinct, and independent density matrices C1, . . . , Cq in

Mn, such that T admits the convex decomposition

T =
q∑

ν=1

λνPxν ⊗ Cν . (37)

This decomposition is unique, and the face of S generated by each Pxν ⊗ Cν is also a face of Kmn, so that

faceS T = co

q⊕
ν=1

faceKmn
(Pxν ⊗ Cν) = co

q⊕
ν=1

(Pxν ⊗ faceKn Cν). (38)
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Proof. By assumption, each Aγ is a positive scalar multiple of a projection Pxγ , where xγ is a unit

vector in C
m. Absorbing this scalar into Bγ , we write the given decomposition in the form

T =
p∑

γ=1

Pxγ ⊗ B̃γ .

Now we collect together terms where the first factors Pxγ coincide. In precise terms, we define an

equivalence relation on the indices {1, . . . , p} by γ ∼ κ if Cxγ = Cxκ , or equivalently if Pxγ = Pxκ .

Let J be the set of equivalence classes, and for each equivalence class ν ∈ J choose a representative

γ ∈ ν and define x̃ν = xγ . Then

T = ∑
ν∈J

P̃xν ⊗ C′
ν,

where C′
ν = ∑

γ∈ν B̃γ . Define q = |J|; numbering themembers of J in sequence gives a decomposition

of the form specified in the theorem.

Since the images of the P̃xν are disjoint, the final statement of the theorem follows from Theorem

11 and Lemma 12. �

8. Decompositions into pure product states

If T is B-independent, Theorem 6 provides a canonical way to decompose T . Thenwith the notation

of Theorem 6, we can decompose each Aγ and Bγ further via the spectral theorem into linear combi-

nations of rank one projections, and this gives a representation of T as a convex combination of pure

product states. The next result describes when this decomposition into pure product states is unique,

generalizing the uniqueness result in [2, Corollary 5].

Theorem 14. If T ∈ Mm ⊗ Mn is a B-independent density matrix, then there is a unique decomposition

of T as a convex combination of pure product states iff in the canonical decomposition (22) of Theorem 6,

each Aγ and each Bγ has rank one. Thus the decomposition of T into pure product states is unique iff T can

be written as a convex combination

T =
p∑

γ=1

λγ Pxγ ⊗ Pyγ

with unit vectors y1, . . . , yp that are linearly independent, and unit vectors x1, . . . , xp such that Px1 , . . . ,
Pxp are distinct.

Proof. Suppose that T is B-independent and admits a unique decomposition as a convex combination

of pure product states. Let T = ∑
γ Aγ ⊗Bγ be the canonical decomposition of T given in Theorem6. If

anyAβ does not have rank one, then there are infinitelymanyways towriteAβ as a convex combination

of pure states, which when combined with any decomposition into rank one projections for the other

Aγ and each Bγ gives infinitelymany decompositions of T into pure product states. The same argument

applies if any Bγ does not have rank one. Hence if T admits a unique convex decomposition into pure

product states, each Aγ and Bγ must have rank one.

Conversely, assume that T can be written as a convex combination

T = ∑
γ

λγ Pxγ ⊗ Pyγ

with {Pxγ }distinct andwith {yγ } independent. Thisdecomposition satisfies thehypothesesof Theorem

13, and thus faceS(T) will be the direct convex sum of the singleton faces {Pxγ ⊗ Pyγ }. Now suppose

that we are given any other convex decomposition into pure product states

T = ∑
ν

tνPzν ⊗ Pwν ,
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where we are not making any assumption about independence of {Pwν } or distinctness of {Pzν }. Then
each Pzν ⊗ Pwν is in faceS T and is an extreme point of the separable state space S. By the definition of

a direct convex sum, we conclude that each Pzν ⊗ Pwν must coincide with some Pxγ ⊗ Pyγ . Thus the

convex decomposition of T into pure product states is unique. �

Remark. One might suspect that for the uniqueness conclusion in Theorem 14, it would suffice for

the joint eigenspaces of the (T̃)ij to be one dimensional, but this is not correct, as can be seen by

considering A ⊗ Py where rank A > 1.

9. The marginal rank condition

In this section we specialize previous results to an important class of separable states.

Definition. A densitymatrix T ∈ Mm ⊗Mn satisfies themarginal rank condition if rank T = max(rank
TA, rank TB), which reduces to rank T = rank TB if m ≤ n, which we will assume in the sequel.

We will see that such matrices, if separable, are B-independent. The following lemma for states on

Mm⊗Mn appeared form = 2 in [14], and for generalm, n in [11, Lemma6, and proof of Theorem1]. An

alternate shorter proof for generalm, n can be found in [17, Lemma 13]. It shows that separable density

matrices satisfying the marginal rank condition are the same as those that admit a representation (1)

with each Aγ and Bγ of rank one, and with B1, . . . , Bp independent.

Lemma 15. Let T be separable. Then T admits a decomposition T = ∑p
i=1 λiPxi⊗yi with y1, . . . , yp

independent iff rank T = rank TB.

We now show that Theorem 6 gives a practical way to check whether a particular matrix satisfying

themarginal rank condition is separable. Theorem 6 then also provides a way to find an explicit repre-

sentation of T as a convex combination of tensor products of positivematrices. (For testing separability,

the PPT test also suffices, cf. [11].)

Theorem 16. Let T ∈ Mm ⊗ Mn with rank T = rank TB. Define T̃ as in (4). Then T is separable iff the

matrices (T̃)ij are normal and commute.

Proof. Assume T hasmarginal rank. If T is separable then by Lemma 15, T is B-independent, and hence

by Theorem 6, the matrices (T̃)ij are normal and commute. Conversely, if these matrices are normal

and commute, then by Theorem 6 T is B-independent, and hence separable. �

Corollary 17. If T is separable of marginal rank, then T admits a unique decomposition

T =
p∑

γ=1

Pxγ ⊗ Bγ ,

with B1, . . . , Bp positive matrices with independent images, and x1, . . . , xp unit vectors with Px1 , . . . , Pxp
distinct.

Proof. By Theorem 6, there is a unique decomposition

T = ∑
γ

Aγ ⊗ Bγ ,

where each Aγ is positive with trace 1, A1, . . . , Ap are distinct, and B1, . . . , Bp are positive and have

independent images. By the marginal rank condition,

rank T = ∑
γ

rank Aγ rank Bγ = rank TB = ∑
γ

rank Bγ
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which implies that rank Aγ = 1 for all γ . Thus there are unit vectors xγ such that Aγ = Pxγ . Distinct-

ness of A1, . . . , Ap implies that Px1 , . . . , Pxp distinct. �

Remark. Uniqueness of the decomposition in Corollary 17was first proved in [2, Section IV]. Corollary

17 provides an alternate proof, and Theorem 6 provides an explicit way to find that decomposition.

10. Summary

We have defined a class of separable states (B-independent states) which generalizes the separable

stateswhose rankequals theirmarginal rank.Wehavedescribed an intrinsicway to checkmembership

in this class, and for such states we have given a procedure leading to a unique canonical separable

decomposition into product states.
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