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At 37°C. the a-actinin-F-actin binding isotherm is anomalous. In 6.7% polyethylene glycol GOOO, concomitantly with the formation of actin bundles, 
the binding isotherm becomes hyperbolic (K,i,I. = Il.3 PM), a-Actinin increases the rigidity of the networks formed by actin bundles in polyethylcnc 
glycol and by paracrystnlline actin in 16 mM MgCI? but not by F-actin. It is proposed that in the cell a-actinin functions are mostly carried on 

by interaction with actin bundles. 

a-Actinin function: Preferential binding; Actin bundle 

1. INTRODUCTlON 

a-Actinin is a 200 kDa protein that crosslinks actin 
filaments and increases the rigidity of the actin gel. Both 
phenomena are quite complex and are not completely 
understood. 

The binding isotherm of a-actinin with a-ctin, as a 
function of actin concentration, is anomalous. The ap- 
parent association constant decreases with an increase 
in actin concentration [ 1,2]. This phenomenon was not 
recognized previously because the effect of actin con- 
centration either was not tested [3-71 or was tested at 
relatively high nctin concentrations [S]. 

The critical gelling concentration of a-actinin in- 
creases substantially with temperature [3], a phenome- 
non that led to questioning of the gelling activity of this 
protein in vivo [S]. it was found, however, that a-actinin 
is an efficient actin gelling protein, even at 37OC, pro- 
vided that either the concentration of actin is low (1.2- 
2.4 PM) [2] or the reaction mixture is supplemented with 
macromolecules at a concentration equivalent to that 
found in the cell sap [9]. 

We offer evidence here that the presence of a network 
of actin bundles, independent of the mechanism of its 
formation, is a prerequisite for a-actinin functioning in 
vivo. 

2. MATERIALS AND METHODS 

G-actin from rabbit muscle was prepared according to Spudich and 
Watt [IO] and further gel filtered through Scphadex G-150 [II]. a- 
Actinin from chicken gizzard was prepared according to Feramisco 
and Burridge [l2]. The absorption coefficients used were A:% - 6.2 [ 131 
for actin and t1:: = 9.7 [I41 for a-actinin. Molar concentrations were 
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calculated on the basis of n molecular mass of 42 kDa for octin [IS] 
and of 200 kDa for 8-actinin 1141. Centrifugation was performed at 
37°C in a TLIOO rotor of the TLIOO Beckman centrifuge. 

Protein was detcrminbd by the Coomassic blue method [IG] as 
modified by Stoscheck [17]. 

[“M]N-Ethylmaleimide&tbellcd o-actinin was prepared and rddioac- 
tivity determined as previously described [2]. 

The rigidity of the g:!s of actin was mcasurcd by the droplets 
method [IS]. 

3. RESULTS 

3.1. Effeect of pol~wthyle~~e &cd 6000 on the camplex 
interactions of a-actthin with actirl 

It is known that, in the presence of polyethylene gly- 
col (PEG) 6000, F-actin undergoes massive conversion 
into actin bundles [19]. At 12 ,uM actin the boundary 
between filaments and bundles ranges between 6 and 
7% (w/v) PEG. Addition of 0.2 PM a-actinin to the 
system displaces the boundary toward a lower (4-G%) 
PEG concentration. This shows that a-actinin favours 
actin bundling (Fig. 1). 

The amount of a-actinin co-sedimenting with F-actin 
is not influenced up to 3% PEG but increases at larger 
PEG concentrations. The increase is concomitant with 
the formation of actin bundles. Under these conditions 
(6.7% PEG), approximately the same amount of a-ac- 
tinin is sedimented by centrifugation either at 9,900 x g 
(actin bundles are collected) or at 36&000 xg (actin 
bundles plus actin filaments are collected). Thus, at this 
PEG concentration, a-actinin is bound almost exclu- 
sively to actin bundles (Fig. 2). 

The a-actinin-F-actin binding isotherm is anomalous 
both in the absence [1,2] and in the presence of 3% PEG 
(Fig. 3). Under both these conditions actin is filamen- 
tous. The binding isotherm becomes hyperbolic con- 
comitant with the formation of actin bundles (6.7% 
PEG). Double reciprocal plot analysis shows that a sin- 
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Fig. I, In polyethylene glycol GO00 a-actinin promotes actin bundling. 
The mixtures contained F-actin (12 ,uM as monomer), 0.5 mM ATP. 
2 nM Mf$&, 0.1 M KCI, 1 mM dithiothrcitol, 10 mM Tris-HCI. PEG 
GO00 (w/v) as indicated in thr: figure, with (0) or without (0) 0.2 PM 
[‘H]N-ethylmalcimidc-lab&d a-actinin (spechic activity 12,000 dpml 
nmol), pH 7.5. Aflcr 60 min of incubation at 37’C the mixtures were 
centrift@ for 10 min at 9,900 x g to sediment actin bundles, and the 

supcrnatant solutions were as& for protein. 

gle dissociation constant (KdiSS, = 11.3 ,KM) accounts for 
the binding of 0.185 ,uM out of the total 0.2 ,uM a- 
actinin (Fig. 3b). 

3.2. Tlw iweractiorz of a-actinin with parucrystalline 
aeth in I6 mM MgCi2 

In the presence of 0.2 yM a-actinin (total concentra- 
tion) and of 48 ,uM actin, more c+actinin is bound to 
paracrystalline actin in 16 mM MgCIz (0.091 yM, Fig. 
4) than to filamentous actin in 2 mM MgQ plus 0.1 M 
KC1 (0.026 ,uM, Fig. 3). The binding of a-actinin to 
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Fig. 2. Binding of or-actinin to F-nctin in polyethylene glycol 6000. 
Eapcrimentnl conditions were as described in Fig. I, AfIcr 60 min of 
incubation at 37OC. the mixtures were centrifuged for 10 min either 
at 9,900 x g (A) or at 35G,OOO x g (A). The pcllcts were then assayed 

for labelled a-actinin. 
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PiB. 3. Binding of or-nctinin to F-actin in polyclhylcne dycol GPO. as 
a function of actin concentration. (a) Actin concentration was as 
indicated in the figure; PEG was cithcr 3% (A) or 6.7% (0.0). O!her 
conditions were as described in Fig. I. After 60 min of incubation at 
37’C, the mixtures were ccntrifuugd for 10 min cithcr at 9,900 x g (@j 
or at 3GG,OOO x g (0. A). The pellets were then assayed for labcllU.i 
a-actinin. (b) Double reciprocal plot of the binding of a-actinin lo 

F-actiu. 

pararrystailine actin, however, is not described by a 
simple hyperbolic function (Fig. 4). 

The rigidity of the system (7.1 ,uM actin as monomer) 
increases from 2.6 to 6.7 dynkm’ in the transition from 
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FiB. 4. Double reciprocal plot of the binding of a-actinin to actin 
paracrystals in 16 mM M@&. The mixtures conuincd F-actin as 
indicated in the figure, 0.2 PM ~“H]N-ethylmaleimidc-labcllcd a-ac- 
tinin (spccilic activity 12,000 dpminmoij, 0.5 mivi ATT. i6 mM 

M@&, I mM dithiothrcitol, 10 mM Tris-HCI, pH 7.5. After 60 min 
of incubation at 37°C. the mixtures wcrc ccntrifu&?d for 10 min al 

366,000 x g. The pellets were then assayed for labclled a-actinin. 
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Fig. 5. Estimate of the effect of increasiug a-actinin concentrations on 
the rigidity of the network formed by paracrystalline actin. The mix- 
tures contained F-nctin (7.1 PM as monomer), 0.5 rnM ATP, I mM 
dithiothrcitol. IO mM Tris-HCI and either 16 mM M&l2 (O or 2 mM 
MgCIz plus 0.1 M KC1 (0). a-Actinin concentration was as indicated 
in the figure. After GO min of incubation at 37°C and pH 7.5, rigidity 
measurements were performed. d density rcprcscnts the difference 
between the density at which the droplets remained stationary in the 

complete system and in the salt solution without protein. 

F-actin to paracrystalline actin. The rigidity is further 
increased to 24.3 dyn/cm? when paracrystalline actin is 
supplemented with 0.05 PM a-actinin (Fig. 5). 

4. DISCUSSION 

In 6.7% PEG 6000, the binding of a-actinin to actin 
bundles is described by a single dissociation constant of 
I 1.3 PM. This contrasts with the anomalous behaviour 
displayed by F-actin and characterized by the apparent 
decrease of the binding constant to cr.-actinin, as a func- 
tion of the increase of F-actin concentration. 

The parallel arrays of actin filaments, formed either 
in 6.7% PEG GO00 or in 16 mM MgCI,, bind a-actinin 
tighter than does F-actin. This is in keeping with the 
observation that, in the cell, a-actinin is mostly associ- 
ated with actin fibers [20,213. It is likely that the arrays 
of filaments offer an ordered matrix of actin, which 
favours by bidentate binding of a-actinin. The 
crosslinking by #-actinin prevents the filaments from 
sliding in actin bundles. As a result, since the network 
of actin bundles is largely anastomosed, the rigidity of 

the system is increased by cc-actinin, even at 37°C. In 
F-actin, at least at 37’C, the monodentate binding of 
cc-actinin prevails. This is indicated by the total lack of 
effect of a-actinin on the rigidity of the network formed 
by F-actin. 

These observations support the view that, in the cell, 
a-actinin functions are mostly carried on by interaction 
with actin bundles. 
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