Preferential binding of α-actinin to actin bundles

Enrico Grazi, Paola Cuneo, Ermes Magri and Christine Schwienbacher
Istituto di Chimica Biologica. Universita di Ferrara. Via Borsari 40, 44100 Ferrara, Italy

Received 24 September 1992; revised version received 4 November 1992
At $37^{\circ} \mathrm{C}$, the α-actinin-F-actin binding isotherm is anomalous. In 0.7% polyethylene glycol 6000 , concomitantly with the formation of actin bundles, the binding isotherm becomes hyparbolic ($K_{\text {uss. }}=11.3 \mu \mathrm{M}$). α-Actinin increases the rigidity of the networks formed by actin bundles in polyethylene glycol and by paracrystalline actin in $16 \mathrm{mM} \mathrm{MgCl}_{2}$ but not by F-actin. It is proposed that in the cell α-actinin functions are mostly carried on by interaction with actin bundes.
α-Actinin function; Preferential binding; Actin bundle

1. INTRODUCTION

α-Actinin is a 200 kDa protein that crosslinks actin filaments and inereases the rigidity of the actin gel. Both phenomena are quite complex and are not completely understood.

The binding isotherm of α-actinin with astin, as a function of actin concentration, is anomalous. The apparent association constant decreases with an increase in actin concentration [1,2]. This phenomenon was not recognized previously because the effect of actin concentration either was not tested [3-7] or was tested at relatively high actin concentrations [8].

The critical gelling concentration of α-actinin increases substantially with temperature [3], a phenomenon that led to questioning of the gelling activity of this protein in vivo [5]. It was found, however, that α-actinin is an efficient actin gelling protein, even at $37^{\circ} \mathrm{C}$, provided that either the concentration of actin is low (1.2$2.4 \mu \mathrm{M}$) [2] or the reaction mixture is supplemented with macromolecules at a concentration equivalent to that found in the cell sap [9].

We offer evidence here that the presence of a network of actin bundles, independent of the mechanism of its formation, is a prerequisite for α-actinin functioning in vivo.

2. MATERIALS AND METHODS

G-actin from rabbit musele was prepared according to Spudich and Wall [10] and further gel inlered through Sephadex G-150 [11]. α Actinin from chicken gizzard was prepared according to Feramisco and Burridge [12]. The absorption coefficients used were $A_{200}^{120}=6.2$ [13] for actin and $A 275=9.7[14]$ for α-actinin. Molar concentrations were

Correspondence address: E. Grazi, Istituto di Chimica Biologica, Universita di Ferrara, Via Borsari 40, 44100 Ferrara, Italy. Fax: (39) (532) 202723.
calculated on the basis of a molecular mass of 42 kDa for actin [15] and of 200 kDa for α-actinin [14]. Centrifugation was performed at $37^{\circ} \mathrm{C}$ in a TLI 100 rolor of the TL100 Beckman centrifuge.

Protein was determined by the Coomassie blue method [16] as modified by Stoscheck [17].
$\left[{ }^{3} \mathrm{H}\right] N$-Ethylmaleimide-labelled α-actinin was prepared and radioactivity determined as previously described [2].

The rigidity of the gele of actin was measured by the droplets method [18].

3. RESULTS

3.1. Effect of polyethylene glycol 6000 on the complex interactions of α-actinin with actin

It is known that, in the presence of polyethylene glycol (PEG) 6000, F-actin undergoes massive conversion into actin bundles [19]. At $12 \mu \mathrm{M}$ actin the boundary between filaments and bundles ranges between 6 and $7 \%(w / v)$ PEG. Addition of $0.2 \mu \mathrm{M} \alpha$-actinin to the system displaces the boundary toward a lower (4-6\%) PEG concentration. This shows that α-actinin favours actin burdiling (Fig. 1).

The amount of α-actinin co-sedimenting with F-actin is not influenced up to 3% PEG but increases at larger PEG concentrations. The increase is concomitant with the formation of actin bundles. Under these conditions (6.7% PEG), approximately the same amount of α-actinin is sedimented by centrifugation aither at $9,900 \times g$ (actin bundles are collected) or at $366,000 \times g$ (actin bundles plus actin filaments are collected). Thus, at this PEG concentration, α-actinin is bound almost exclusively to actin bundles (Fig. 2).

The α-actinin- F-actin binding isotherm is anomalous both in the absence $[1,2]$ and in the presence of 3% PEG (Fig. 3). Under both these conditions actin is filamentous. The binding isotherm becomes hyperbolic concomitant with the formation of actin bundles (6.7% PEG). Double reciprocal plot analysis shows that a sin-

(POLYETHYLENE GLYCOL1 (\%.w/v)
Fig. I. In polyethylene glycol 6000α-actinin promotes actin bunding. The mixtures contained \mathbf{F}-actin ($12 \mu \mathrm{M}$ as monomer), 0.5 mM ATP. $2 \mathrm{mM} \mathrm{MgCl}, 0.1 \mathrm{M} \mathrm{KCl}, 1 \mathrm{mM}$ dithiothreitol, $10 \mathrm{mM} \mathrm{Tris-HCl}$, PEG $6000(\mathrm{w} / \mathrm{V})$ as indicated in the figure, with (O) or without (\odot) $0.2 \mu \mathrm{M}$ $\left[{ }^{3} \mathrm{H}\right] N$-ethylmaleimide-labelled α-actinin (specific activity $12,000 \mathrm{dpm} /$ nmol), pH 7.5. After 60 min of incubation at $37^{\circ} \mathrm{C}$ the mixtures were centrifuged for 10 min at $9,900 \times g$ to sediment actin bundles, and the supernatant solutions were assed for protein.
gle dissociation constant ($K_{\text {diss. }}=11.3 \mu \mathrm{M}$) accounts for the binding of $0.185 \mu \mathrm{M}$ out of the total $0.2 \mu \mathrm{M} \alpha$ actinin (Fig. 3b).

3.2. The interaction of α-actinin with paracrystalline actin in 16 mM MgCl 2

In the presence of $0.2 \mu \mathrm{M} \alpha$-actinin (total concentration) and of $48 \mu \mathrm{M}$ actin, more α-actinin is bound to paracrystalline actin in $16 \mathrm{mM} \mathrm{MgCl}_{2}(0.091 \mu \mathrm{M}$, Fig. 4) than to filamentous actin in 2 mM MgCl 2 plus 0.1 M $\mathrm{KCl}(0.026 \mu \mathrm{M}$, Fig. 3). The binding of α-actinin to

Fig. 2. Binding of α-actinin to F-actin in polyethylene glycol 6000. Experimental conditions were as deseribed in Fig. 1. After 60 min of incubation at $37^{\circ} \mathrm{C}$, the mixtures were centrifuged for 10 min either at $9,900 \times g(\Delta)$ or at $356,000 \times s(\Delta)$. The pellets were then assayed for labelled α-actinin.

Fig. 3. Binding of α-actinin to F-actin in polyethylene glycol Gorn, as a function of actin concentration. (a) Actin concentration was as indicated in the figure; PEG was cither $3 \%(\Delta)$ or 6.7% (0.0). Other conditions were as described in Fig. 1. After 60 min of incubation at $37^{\circ} \mathrm{C}$, the mixtures were entrifuged for 10 min either at $9,900 \times \mathrm{g}$ () or at $366,000 \times g(0, \Delta)$. The pellets were then assayed for labelled α-actinin. (b) Double reciprocal plot of the binding of α-actinin to F-actin,
paracrystalline actin, however, is not described by a simple hyperbolic function (Fig. 4).

The rigidity of the system ($7.1 \mu \mathrm{M}$ actin as monomer) increases from 2.6 to $6.7 \mathrm{dyn} / \mathrm{cm}^{2}$ in the transition from

Fig. 4. Double reciprocal plot of the binding of α-actinin to actin paracrystals in 16 mM MgCl . The mixtures contained F-actin as indicated in the figure, $0.2 \mu \mathrm{M}\left[{ }^{3} \mathrm{H}\right] N$-ethylmaleimide-labelled α-actinin (specitic acivity 12,0000 dipm/nmoi), 0.5 miví is TP, iú miní $\mathrm{MgCl}_{2}, 1 \mathrm{mM}$ dithiothreitol, 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$. After 60 min ol incubation at $37^{\circ} \mathrm{C}$, the mixtures were eentrifuged for 10 min at $366,000 \times \mathrm{s}$. The pellets were then assayed for labelled α-actinin.

Fig. S. Estimate of the effect of increasiug α-actinin concentrations on the rigidity of the network formed by paracrystalline actin. The mixtures contained F-actin ($7.1 \mu \mathrm{M}$ as monomer), 0.5 mM ATP, 1 mM dithiothreitol, 10 mM Tris- HCl and either $16 \mathrm{mM} \mathrm{MgCl} \mathrm{m}_{2}$ (or 2 mM MgCl_{2} plus $0.1 \mathrm{M} \mathrm{KCl}(0)$. α-Actinin concentration was as indicated in the figure. After 60 min of incubation at $37^{\circ} \mathrm{C}$ and pH 7.5 , rigidity measurements were performed. Δ density represents the difference between the density at which the droplets remained stationary in the complete system and in the salt solution wilhoul protein.

F-actin to paracrystalline actin. The rigidity is further increased to $24.3 \mathrm{dyn} / \mathrm{cm}^{2}$ when paracrystalline actin is supplemented with $0.05 \mu \mathrm{M} \alpha$-actinin (Fig. 5).

4. DISCUSSION

In 6.7% PEG 6000 , the binding of α-actinin to actin bundles is described by a single dissociation constant of $11.3 \mu \mathrm{M}$. This contrasts with the anomalous behaviour displayed by F -actin and characterized by the apparent decrease of the binding constant to α-actinin, as a function of the increase of F -actin concentration.

The parallel arrays of actin filaments, formed either in 6.7% PEG 6000 or in $16 \mathrm{mM} \mathrm{MgCl}_{2}$, bind α-actinin tighter than does F-actin. This is in keeping with the observation that, in the cell, α-actinin is mostly associated with actin fibers [20,21]. It is likely that the arrays of filaments offer an ordered matrix of actin, which favours by bidentate binding of α-actinin. The crosslinking by α-actinin prevents the filaments from sliding in actin bundles. As a result, since the network of actin bundles is largely anastomosed, the rigidity of
the system is increased by α-actinin, even at $37^{\circ} \mathrm{C}$. In F-actin, at least at $37^{\circ} \mathrm{C}$, the monodentate binding of α-actinin prevails. This is indicated by the total lack of effect of α-actinin on the rigidity of the network formed by F-actin.

These observations support the view that, in the cell, α-actinin functions are mostly carried on by interaction with actin bundles.

Acknowledgements: This work was supported by grants of MURST 40% and 60%.

REFERENCES

[1] Grazi, E., Trombetta, G. and Guidoboni, M. (1990) Biochem, Int. 21, 633-640.
[2] Grazi, E., Trombetta, G. and Guidoboni, M. (1991) J. Muscle Res. Cell Motil. 12, 579-584.
[3] Goll, D.E., Suzuati, A., Temple, J. and Holmes, G.R. (1972) J. Mol. Biol. 67, 469-488.
[4] Jockusch, B.M. and Isenberg, G. (1981) Proc. Nat. Acad. Sci. USA 78, 3005-3009.
[5] Bennett, J.P., Scolt-Zaner, K. atu-Stosset, T.P. (1984) Biochemistry 23, 5081-5086.
[6] Ohtaki, T., Tsukita, S., Mimura, N., Tsukita, S. and Asano, A. (1985) Eur. J. Biochem. 153, 609-620.
[7] Landon, F., Gache, Y., Touitou, H. and Olomucki, A. (1985) Eur. J. Biochem. 153, 231-237.
[8] Sato, M. Schwarz, W.H, and Pollard, T.D. (1987) Nature 325, 828-830.
[9] Grazi, E., Trombetta, G., Magri, E. and Cuneo, P. (1990) FEBS Lelt. 272, 149-151.
[10] Spudich, J.A. and Watt, S. (1971) J. Biol. Chem. 246, $4866-4871$.
[11] McLean-Flechter, S. and Pollard, T.D. (1980) Biochem. Biophys. Res. Commun. 96, 18-27.
[12] Feramisco, J.R. and Burridge, K. (1980) J. Biol. Chem. 255, 1194-1199.
[13] Gordon, D.J., Yang. Y.Z. and Korn, E.D. (1976) J. Biol. Chem. 251, 7474-7479.
[14] Suzuki, A., Goll, D.E., Singh, I., Allen, R.E., Robson, R.M. and Stromer, M.H. (1976) J. Biol. Chem. 251, 6860-6870,
[15] Collins, J.H. and Elainga, M. (1975) J. Biol. Chem. 250, 59155920.
[16] Bradford, M.M. (1976) Anal. Biochem. 72, 248-254.
[17] Stoscheck, C.M. (1990) Anal. Biochem. 184, 111-116.
[18] Grazi, E., Magri, E., Cuneo, P. and Cataldi, A. (1991) FEBS Lett. 295, 163-166.
[19] Suzuki, A., Yamazaki, M. and Ito, T. (1989) Biochemistry 28, 6513-6518.
[20] Lazarides, E. (1976) J. Cell Biol. 68, 202-219.
[21] Bretscher. A. and Weber, K. (1978) J. Cell Biol. 79, 839-845.

