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a b s t r a c t

A large variety of product-form solutions for continuous-time Markovian models can be
derived by checking a set of structural properties of the underlying stochastic processes
and a condition on their reversed rates. In previous work (Marin and Vigliotti (2010) [9])
we have shown how to derive a large class of product-form solutions using a different
formulation of the Reversed Compound Agent Theorem (GRCAT). We continue this line
of work by showing that it is possible to exploit this result to approximate the steady-state
distribution of non-product-form model interactions by means of product-form ones.

Crown Copyright© 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Stochasticmodelswith underlying Continuous TimeMarkovChains (CTMCs) arewidely applied for the analysis of natural
or artificial systems. Specifically, the steady-state analysis plays a pivotal role in theperformance engineering of software and
hardware architectures in computer science. Since most systems consist of a set of interacting components, the state-space
of the whole model tends to be very large, and the well-known standard techniques for the computation of the steady-state
probabilities are no longer feasible. Models with product-form solutions overcome this problem since the computation of
the steady-state probabilities can be independently performed for each component [1–4]. As models of real systems might
not always admit a product-form solution, we address the problem of approximating general models by means of product-
formones. Several other authors have addressed the same problem (see, e.g., [5–7]), yet the technique proposed in this paper
is completely novel and relies on the recent formulation of the Reversed Compound Agent Theorem (GRCAT) [8,9]. Roughly
speaking, GRCAT provides sufficient conditions (on the rates and on the structure of the state-space of the stochasticmodels)
to guarantee the product-form solution.

The result is formulated in terms of cooperating LabelledMarkov Automata (LMA). Cooperating automata can be thought
of as labelled graphs, which can be composed together with respect to a set of labels to obtain bigger models. The aim of this
formalism is to specify complex CTMCs starting from simpler ones. GRCAT states sufficient conditions on the cooperation
among CTMCs to achieve product-form solutions.

If a model is not in product-form, then it does not satisfy GRCAT conditions. In this paper we define two novel algorithms
to transform any pairwise cooperating model into an approximated one that satisfies GRCAT conditions, and enjoys a
product-form solution. One of the strengths of our method relies on modularity, i.e., the modifications required to obtain
the product-form solution for an LMA model may be applied to each component in isolation. For instance, let us consider a
two-node tandem network consisting of queues Q1 and Q2 and let the second queue have infinite capacity. The application
of the proposed algorithms modifies the models to Q̃1 and Q̃2 so that Q1 and Q̃1 share the same steady-state distribution,
while Q̃2 steady-state distribution is an approximation of that of Q2.
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To test the results of the approximation techniques proposed in this paper, we consider four case studies consisting of
networks that are not in product-form. For each of them, we derive an approximatedmodel in product-form by applying the
algorithms devised in this work. Then, we compare some significant performance indices computed in the original and in
the approximatedmodel. The first example considers a tandem of queues: M/M/1 queue and a./M/1 queuewith finite buffer
size. The second and the third case studies model tandem of queues with customer arrivals generated by a homogeneous
Poisson process. In the second example, the first queue has a Coxian service time distribution with two stages: arrivals
occurring when the second stage is busy are discarded. The scheduling discipline is First Come First Served (FCFS). In the
third example, the first queue has still a Coxian service time distribution but the service discipline is Last Come First Served
with pre-emption (LCFS). Notice that, no resume policy is assumed, hence the queue is not quasi-reversible (in particular it
is different from that presented in [2]). The fourth example consists of a network of three queues: two exponential queues
competing for the service of a third one. In the competition, some customers get destroyed.

1.1. Related work

Although the technique adopted in this paper is novel, the problem of deriving product-form approximations for non-
product-form Markovian models has already been addressed in literature. A similar work has been carried out by van Dijk
in [5] wheremodels without product-form solutions are approximated bymodifying their structure to achieve local balance.
In the theory of queueing networks, it is well-known that if for each station it holds that for each state the rate out due to a
customer departure equals the rate in due to a customer arrival, then the network has product-form [4]. While local balance
is applicable to queueing networks only, our method could be applied to a wider class of Markovian models thanks to the
generality of GRCAT.

Algorithms for approximating steady-state distributions have been investigated by Buchholz in [10,7]. Cooperating
CTMCs [7] aremodelled using the Kronecker representation. Buchholz’s approximation algorithms are based on a numerical
minimisation technique. The author proposes a method to find the marginal steady-state distributions of the components
whose product minimises the vector of residuals of the global balance equation system. The main disadvantage of this
method is the ‘lack of control’ over theminimisation function. In otherwords, once the approximated product-form solution
is found, the modeller does not know how the system has been modified or whether these modifications are feasible. By
contrast, our technique does not only find the approximated steady-state distribution, but also gives a concrete description
of the perturbations needed on each component of the system, to have product-form.

The rest of the paper is organised as follows in Section 2 we revise the theoretical background; in Section 3 we describe
our approximation methods, and in Section 4 we show applications of our methods to some concrete examples. Finally,
Section 5 presents some final remarks.

2. Theoretical background

In this section we provide a brief description of LMAs and GRCAT. The presentation aims to make the paper readable,
but it cannot be exhaustive due to lack of space. Any reader interested in a formal and detailed treatment of the LMAs and
GRCAT should look at [8,9]. We have also included an Appendix for readability.

2.1. Labelled Markov Automata (LMAs)

First, we introduce LMAs and recall the main definition, then we briefly review the conditions for the product-form
solution.

Definition 1. A Markov automaton is a tupleM = ⟨S, Act,→⟩ such that:

1. S is the denumerable set of states (state-space) with s1, s2, . . . , sn, . . . ranging over it,
2. Act is the set of action labels (or simply labels) with a, b, . . . ranging over it,
3. → is the transition relation between states defined as follows:

→: S × Act × (R+ ∪ Var)× S,

where R+ is the set of positive real numbers and Var is the set of variable names such that if a ∈ Act then xa ∈ Var.

For readability, wewrite (s1, a, λ, s′1) ∈→ as s1
a,λ
−→ s′1. We define two setsA(M) andP (M), active actions labels and passive

actions labels, such that for every a ∈ Act if s
a,λ
−→ s′, with λ ∈ R+, then a ∈ A(M), and if s

a,xa
−→ s′, with xa ∈ Var, then

a ∈ P (M).
We shall also use the word label instead of action label.

Labels are meaningful to specify the cooperations among Markov automata as they denote how the transitions
synchronise. Informally, we can say that transitions in LMAs are divided into active and passive. Active transitions are those
with an associated delay, i.e., the rate is a positive real number. Passive transitions are those whose delays are undefined, i.e.,
the rate is a variable. Passive and active transitions determine which labels are active and which ones are passive.
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Two automata M1 and M2 cooperate on a set of labels L. A transition labelled a ∈ L must be active with respect to an
automaton and passive with respect to the other (e.g., a ∈ A(M1) ∩ P (M2)). Intuitively, transitions labelled a ∈ L can be
performed by the synchronising automata only simultaneously. The automata taking part in the cooperation change their
state: the passive automaton is forced to move at the rate of the active one. In LMAs all the transitions with a specified rate
are carried out according to an exponentially distributed random delay.

In this work, we assume that for every automaton M the set of active and passive labels are disjoint. In other words, a
label a ∈ Act either appears always with an associated rate in M (a ∈ A(M)), or with a variable xa (a ∈ P (M)). Moreover,
we exclude the possibility of two passive transitions with the same label outgoing from the same state. When an LMAP (M)
is such that P (M) = ∅, then we say that M is closed, otherwise we say that it is open. The process underlying a closed LMA
is a CTMC whose set of states is the same as that of the automaton and the transition rate from state s to s′ is given by the
sum of the rates of all the labelled transitions of the automaton from s to s′, i.e.:

q(s −→ s′) =


(a,λ):s
a,λ
−→s′

s≠s′

λ.

We also write q(s
a
−→ s′) =


λ:s

a,λ
−→s′

λ for the rate respect to a label a. Before presenting the theorem on which our
approximation methods are based, we need to define an operation on an automaton which we call closure. Informally, the
closure specifies the rates of the passive transitions of an open automaton M. Suppose that P (M) = {a1, . . . , aN}, then we
write:

Mc
= M{xa1 ← Ka1 , . . . , xaN ← KaN }, Ki ∈ R+

to refer to automaton M in which each transition labelled ai ∈ P (M) becomes active with rate Kai . Note that, in Mc all
the transitions sharing the same label, and that were passive in M have the same rate, and that Mc has an well-defined
underlying CTMC and hence the steady-state analysis can be carried out.

Remark 1. • Having derived the CTMC from an LMA, we will refer directly to the properties of the LMA, meaning the
properties of the underlying CTMC.
• If Q is the generator matrix of the underlying CTMC of automatonM, then we write π(M) for invariant measuremeaning

that π(M)Q = 0; when clear from the context, we simply write π instead of π(M) and denote the component associated
with state s by π(s). If


s∈S π(s) = 1 and π(s) > 0 for all s, then the CTMC is ergodic and π is the unique steady-state

distribution ofM [11].

2.2. Product-form solutions

In this section, we informally introduce GRCAT as proved in [9]. In what follows, we implicitly assume that the models
for which we consider the steady-state distributions are ergodic.

According to [9], two interacting automataM1⊕L M2 are in product-form if:
1. Condition 1: a is a passive label, a ∈ P (Ml) with l = 1, 2, then for every state s of the automaton Ml there exists exactly

one transition labelled a outgoing from s.
2. Condition 2: There exists the set of rates {Ka1 , . . . , Kan}with {a1, . . . , an} = Lwhich satisfies the following equations:

∀sk ∈ Sl,∀ai ∈ A(Ml),


sj∈Sl

q(sj
ai
−→ sk)πl(sj)

πl(sk)
= Kai (1)

with l = 1, 2 and πl the steady-state solution ofMc
l = {xa ← Ka, ∀a ∈ P (Ml)}.

The following remark discusses the implication of GRCAT sufficient conditions for the product-form.

Remark 2 (GRCAT Conditions). Observe that the GRCAT imposes two conditions: one on the passive and one on the active
transitions. The former is just structural, and hence easy to check. The latter is more complicated since it requires that for
every active transition, and for every state of an automaton, Eq. (1) must be satisfied. Testing this condition may require the
solution of non-linear systems of equations because, in general, neither of the two automata could be closed. Nevertheless,
we can observe that if a ∈ A(M) then each state ofMmust have at least one incoming transition labelled a. Finally, we point
out that for a ∈ A(M) we can interpret Ka as the reversed incoming flow in all the states in S ofMc as noted in [3].

In the rest of the paper, we shall investigate models that violate one or more of the conditions specified above.

3. Product-form approximations

In this section, we illustrate an algorithmic technique to approximate a non-product-formmodel by means of a product-
form one.

We consider the caseswhere one ormore of the conditions stated in Section 2.2 are not satisfied in the cooperating LMAs.
Conditions of GRCAT cannot be satisfied in two ways:
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1. For some synchronising label a ∈ P (Mi) with i = 1, 2 there exists a subset of states of the state space Si from which
there are no outgoing passive transitions labelled a. This means that Condition 1 of GRCAT is not satisfied.

2. There exists a label a ∈ A(Mi) with i = 1, 2 such that the reversed incoming flow is not constant for transitions labelled
a and for all the states, i.e., Eq. (1) of Condition 2 is not satisfied.

In what follows, we use M̃ to denote automaton M modified in order to satisfy the GRCAT product-form conditions.
Analogously, we adopt the notation π̃l and K̃a to denote respectively the steady-state probability distribution and the
constant reversed incoming flow due to an active label a in the approximate automaton. Moreover, for sake of compactness
we write Ai, Pi instead of A(Mi) and P (Mi). In the following two sections we introduce the main results of this work, i.e.,
the algorithms for perturbation of cooperatingmodels tomeet GRCAT product-form conditions. For clarity, we illustrate our
approach on pairs of models with one synchronising label. Generalisation to synchronisation with multiple labels or with a
finite number of synchronising automata should not add any technical difficulty.

3.1. Missing passive outgoing transitions

We consider the case in which an automaton does not satisfy Condition 1 of GRCAT. Let us consider M1⊕{a}M2, with
a ∈ A1 ∩P2, whereM2 does not satisfy Condition 1 of GRCAT, i.e. in each state of the automaton there must be an outgoing
passive transition. Then, let S2 be the state-space ofM2 and we define the set of all the states swithout an outgoing passive
transition labelled a:

S¬a2 = {s ∈ S2 : ∀s′ ∈ S2, (s, a, xa, s′) ∉ →2}.

We aim to obtain the joint-model M̃1⊕{a} M̃2 such that:

π̃(M̃1⊕{a} M̃2) ≈ π(M1⊕{a}M2).

M̃2 differs fromM2 because for all s ∈ S¬a2 a self-looppassive transitionwith label a is added.Hence, M̃2 satisfies Condition
1 of GRCAT.

IfM1 satisfies Condition 2 for label a, thenM1⊕{a} M̃2 is in product-form. Yet, the approximationM1⊕{a} M̃2 can be quite
inaccurate, as transitions labelled a are observed inM1⊕{a} M̃2 more frequently than inM1⊕{a}M2. In fact, the introduction
of self-loop transitions in M̃2 is key in allowingM1 to perform all active transitions labelled a.

To improve the accuracy of the approximation we propose to modify alsoM1 to M̃1 by the system of equations below:
q̃1(s

a
−→ s′) = q1(s

a
−→ s′)


s′∉S¬a2

π̃2(s′) for all transitions labelled a

K̃a =


sj∈S1

q̃1(sj
a
−→ sk)π̃1(sj)

 /π̃1(sk) for all sk ∈ S1,

(2)

where π̃1 and π̃2 are the steady-state distributions of M̃1 and M̃c
2 = M̃2{a ← K̃a}, respectively. The solution of the system

of Eqs. (2) may be a hard task and numerical approaches may be required. However, in many relevant cases the described
technique may be applied straightforwardly. For example, for reversible models, i.e., whenM1 satisfies the condition:

∀s, s′ ∈ S1 q(s′, s)π1(s′) = π1(s)q(s, s′) (3)

K̃a can be derived from the analysis ofM1 which yields M̃c
2 = M̃2{xa ← Ka}. Note that Ka, differently from K̃a, can be derived

solely from Eq. (3) which refers to the rates ofM1. In any case, once Ka has been determined, it becomes possible to compute
π c
2 (M̃

c
2), i.e., the steady-state distribution of M̃c

2. Finally, we modify M̃1 by replacing all the rates of the transitions s
a
−→ s′

with q̃1(s
a
−→ s′) according to the first equation of (2). Changes in the rates of the active transitions in M̃1 follow the idea that

if the self-loops are added to states with low equilibrium probability, then q̃1(s
a
−→ s′) ≃ q1(s

a
−→ s′). The bigger is the value

of ϵ = q1(s
a
−→ s′)− q̃1(s

a
−→ s′), the worse is the approximation.

In general, if M1⊕L M2 we defined M̃i = ⟨Si, Act, →̃i⟩with i = 1, 2 as

→̃1 =→1 \


a∈L

{s
a,λ
−→ s′ : s ∈ S1}


∪


a∈L

{s
a,q̃1(s

a
−→s′)

−−−−−−→ s′ : s ∈ S1}



→̃2 =→2 ∪


a∈L

{s
a,x
−→ s : s ∈ S¬a2 }


.

The pseudo-code algorithm to transform M1⊕L M2 into the approximation M̃1⊕L M̃2 is depicted in Algorithm 1. The
algorithm assumes that the reversed rate of the active transitions is independent of their forward rate. If this condition
is not satisfied, steps from 2 to 11 should be replaced by the numerical solution of system of Eqs. (2).
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Algorithm 1 The pseudo-code to transformM1 ⊕L M2 into M̃1 ⊕L M̃2

1: Start with: M1 = ⟨S1, Act1,→1⟩ such that ∀s, s′ ∈ S1
q(s′,s)π2(s′)

π2(s)
= q(s, s′), M2 = ⟨S2, Act2,→2⟩,M1 ⊕{a1...aN } M2 is

irreducible and {a1 . . . aN} ∈ A1 ∩ P2;
2: Calculate π1(M1) and Kai ;
3: // Calculate →̃2
4: for all i = 1 . . .N do
5: Calculate S

¬ai
2 ;

6: Set→2=→2 ∪ {s
ai,x
−→ s : s ∈ S

¬ai
2 };

7: end for
// Calculate Mc

8: for all i = 1 . . .N do
9: CalculateMc

2 = M2{xai ← Kai};
10: end for
11: Calculate π c

2 (M
c
2);

12: for all s ∈ S1 do
13: Set q̃1(s

a
−→ s′) =


1−


s2∈S¬a2

π c
2 (s2)


q1(s

a
−→ s′);

14: end for
// Calculate →̃1;

15: for all i = 1 . . .N do

16: Set→1=→1 \{s
ai,λ
−−→ s′ : s ∈ S1} ∪ {s

ai,q̃1(s
ai
−→s′)

−−−−−−→ s′ : s ∈ S1};
17: end for
18: return M̃1 = ⟨S1, Act1,→1⟩, M̃2 = ⟨S2, Act2,→2⟩ and M̃1 ⊕{a1...aN } M̃2.

3.2. Different reversed incoming flow into states

In this section, we propose a method to approximate models in which Condition 2 is not satisfied, i.e., when the reversed
incoming flow of an active label is not constant for all the states.

Consider two LMAsM1 andM2 synchronising only on label a, with a ∈ A1 ∩P2. Let S1 be the state-space ofM1, then we
define for all s ∈ S1:

Ka(s) =

s′∈S1

π1(s′)
π1(s)

q1(s′
a
−→ s). (4)

Eq. (4) is the total reverse flow into state s with respect to a transition labelled a. If Ka(s) is independent of s, then GRCAT
Condition 2 would be satisfied, otherwise we define:

K̃a =

s∈S1

Ka(s)π1(s) =

s∈S1


s′∈S1

π1(s′)q1(s′
a
−→ s). (5)

We can see K̃a as the weighted average reversed flux incoming to the states of M1 due to transitions labelled a. We aim at
obtaining M̃1 in a way such that π̃1 = π1. Let us define the following sets:

• S
a,<K̃a
1 = {s ∈ S1 : Ka(s) < K̃a}, i.e., the set of states ofM1 whose incoming reversed flux due to active transitions labelled

a is lower than the average;

• S
a,>K̃a
1 = {s ∈ S1 : Ka(s) > K̃a}, i.e., the set of states ofM1 whose incoming reversed flux due to active transitions labelled

a is higher that the average;

• S
a,=K̃a
1 = {s ∈ S1 : Ka(s) = K̃a}, i.e., the set of states ofM1 whose incoming reversed flux due to active transitions labelled

a is exactly K̃a.

We now derive M̃1 fromM1 by modifying the rates in the following way for each state s ∈ S:

• (s ∈ S
a,<K̃a
1 ): Add a self-loop transition labelled awith rate q̃1(s

a
−→ s) = K̃a − Ka(s).

• (s ∈ S
a,>K̃a
1 ): Rate q1(s′

a
−→ s) is replaced by

q̃1(s′
a
−→ s) =

K̃a

Ka(s)
q(s′

a
−→ s). (6)



A. Marin, M.G. Vigliotti / Computers and Mathematics with Applications 64 (2012) 3852–3868 3857

Intuitively, Eq. (6)means that the reversed incoming flow to state s is reduced to K̃a by slowing down all the synchronising
transitions labelled a with the same proportion K̃a/Ka(s). To keep the same steady-state distribution, a new non-
synchronising transition s′

c
−→ swith c ≠ a is added. The new rate is described by the following expression:

q⋆
1(s
′ c
−→ s) = q1(s′

a
−→ s)− q̃1(s′

a
−→ s). (7)

• (s ∈ S
a,=K̃a
1 ): The rates of the transition in the subset of states S

a,=K̃a
1 remain the same.

Note that the steady-state probabilities of the chain underlying M̃1 are identical to those ofM1. However, the key idea of the
previous modifications is to make the sum of the reversed rates incoming to each state of M̃1 constant, in order to satisfy
Eq. (1). Informally, this is achieved by augmenting the sum by self-loops when the states have an incoming reversed flow
which is lower than expected. Conversely, when the reversed flow of the incoming transitions is higher than K̃a, the desired
value is achievedby splitting the transitions into a synchronising one and anon-synchronising one. The rates are opportunely
assigned so that the sum of the forward rates remains unchanged. In general, if M1⊕L M2, such that ∀a ∈ L it holds that
a ∈ A1 ∩ P2 we defined M̃1 = ⟨S1Act, →̃1⟩

→̃1 = →1 ∪


a∈L

{s
a,r1
−−→ s : s ∈ S

a,<K̃a
1 }


\


a∈L

{s′
a,λ
−→ s : s ∈ S

a,>K̃a
1 }



∪


a∈L

{s′
a,r2
−−→ s : s ∈ S

a,>K̃a
1 }


∪ {s

c,r3
−−→ s′ : s ∈ S

a,>K̃a
1 , c ∉ L} (8)

where r1 = K̃a − Ka(s), r2 = q̃1(s′
a
−→ s), r3 = q⋆

1(s
′

c
−→ s).

As explained earlier, this transformation does not change the steady-state probabilities of M1, as the following
proposition states.

Proposition 1. Let Q̃ and Q be the two generator matrices of the two automata M̃ = ⟨S1, Act, →̃⟩ and M = ⟨S1, Act,→⟩,
where →̃ has been derived as described in Eq. (8). Then Q̃ = Q.

Proof. For s ∈ S1 and s′ ≠ s, the entries of the non-diagonal elements of the generator matrix of M̃ are the following:

q̃(s −→ s′) =

a∈Act

q(s
a
−→ s′)1[s′ ∈ S

a,<K̃a
1 ∨ s ∈ S

a=K̃a
1 ] +


a∈Act

q̃(s
a
−→ s′)1[s′ ∈ S

s∈Sa>K̃a
1

1 ]

+


a∈Act

q⋆(s
a
−→ s′)1[s′ ∈ S

a>K̃a
1 ]

where 1[·] is the indicator function. By Eq. (7) we derive:

q̃(s −→ s′) =

a∈Act

q(s
a
−→ s′)1[s′ ∈ S

a,<K̃a
1 ∨ s ∈ S

a=K̃a
1 ] +


a∈Act

q̃(s
a
−→ s′)1[s′ ∈ S

s∈Sa>K̃a
1

1 ]

+


a∈Act

(q(s′
a
−→ s)− q̃(s′

a
−→ s))1[s′ ∈ S

a>K̃a
1 ].

The result follows by observing that the subsets S
a,<K̃a
1 , S

a=K̃a
1 , S

a>K̃a
1 form a partition of the state space S1. �

The pseudo-code algorithm to transformM1⊕L M2 into the approximation M1⊕L M̃2 is depicted in Algorithm 2.

4. Applications

In this section, we investigate stochastic models consisting of two or three components whose interaction is known not
to yield a product-form stationary distribution.

4.1. Simple network with blocking

Westudy an examplewhere it is possible to apply Algorithm1. Let us consider the tandemof queues depicted by Fig. 1(A).
Customers arrive at the first queue according to a Poisson process with rate λ. Customer’s service time is exponentially
distributed with rate µ1, and the discipline of service is first-come-first-serve (FCFS). At a job completion, the customer
enters the second queue, if there is space in its buffer, or waits in the first queue according to a Repetitive Service (RS) policy
(see, e.g., [12] for details of this blocking discipline). In the second queue, the service time is distributed according to an
exponential random variable with rate µ2. Fig. 1(B) shows the automataM1 andM2 underlying the two queues in isolation.
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Algorithm 2 The pseudo-code to transformM1 ⊕L M2 into M̃1 ⊕L M̃2

1: Start with:M1 = ⟨S1, Act1,→1⟩,M2 = ⟨S2, Act2,→2⟩,M1 ⊕{a1...aN } M2 and {a1 . . . aN} ∈ A1 ∩ P2;
2: Calculate π1(M1);

// Calculate →̃1
3: for all i = 1 . . .N do
4: Calculate Kai(s) =


s′∈S1

π1(s′)
π1(s)

q1(s′
ai
−→ s);

5: Calculate K̃ai =


s∈S1
Kai(s);

6: Calculate S
ai,<K̃ai
1 ;

7: Calculate S
ai,>K̃ai
1 ;

8: for all s ∈ S1 do
9: Select c ∈ Act1\(Act1 ∪ L)

10: Calculate q̃1(s′
ai
−→ s) =

K̃ai
Kai (s)

q(s′
ai
−→ s);

11: Calculate q⋆
1(s
′

c
−→ s) = q1(s′

ai
−→ s)− q̃1(s′

ai
−→ s);

12: end for
13: Set

→1 = →1 ∪({s
ai,K̃ai−Kai (s)
−−−−−−→ s : s ∈ S

ai,<K̃ai
1 })\({s′

ai,λ
−−→ s : s ∈ S

ai,>K̃ai
1 })

∪({s′
ai,q̃1(s′

ai
−→s)

−−−−−−→ s : s ∈ S
ai,>K̃ai
1 })

∪{s
c,q⋆

1(s
′

c
−→s)

−−−−−−→ s′ : s ∈ S
a,>K̃a
1 , c ≠ a1 . . . aN};

14: end for
15: return M̃1 = ⟨S1, Act1,→1⟩ and M̃1 ⊕{a1...aN } M2.

Observe that GRCAT conditions are not satisfied since state B2 ofM2 does not exhibit an outgoing passive transition labelled
a. According to our approach, we have S¬a2 = {B2}. To compute π̃2 we must know the value of Ka. We exploit the fact that
M1 is reversible, i.e., satisfies Eq. (3) and therefore Ka = λ. Hence,Mc

2 = M2{xa ← Ka} is defined straightforwardly without
the need of solving system (2). The stationary probability π̃2 can be finally computed to obtain the approximation µ̃1 for the
definition ofM1. The resulting models are shown in Fig. 1(C).

4.2. Network with Coxian service and state-dependent arrivals

We consider a tandem of queues as depicted by Fig. 2. The first queue of the tandem has a FCFS discipline with Coxian
service time distribution consisting of two exponential stages with possibly different rates. In this example, we assume,
as a simplifying hypothesis, that the first exponential stage has rate µ1 + µ2, while the second µ2. The probability for a
customer to join the second stage after a job completion isµ1/(µ1+µ2)while with probabilityµ2/(µ1+µ2) the customer
immediately enters the second queue. Customers arrive from the outside according to a Poisson process with rate λ. Arrivals
when the second phase is busy are discarded. The state-space of this queue in isolation is depicted by Fig. 3(A). After being
served, customers enter a standard./M/1 queue with exponential service time distribution with rate γ . The latter queue is
modelled using passive transitions labelled a from state n to state n + 1 (birth transitions), and non-synchronising active
ones with rate γ from state n+ 1 to n (death transitions), with n ≥ 0.

Since the second queue satisfies GRCAT conditions, only the first queue needs to be changed in order to obtain a product-
form network. For the first queue, we derive the expression of the steady-state probability distribution by solving the
following system of global balance equations (GBEs):

π1(0, 0)λ = π1(1, 0)µ2 + π1(1, 1)µ2

π1(n, 0)[λ+ µ1 + µ2] = π1(n+ 1, 0)µ2 + π1(n+ 1, 1)µ2 + π1(n− 1, 0)λ
π1(n, 1)µ2 = π1(n, 0)µ1 n > 0.

By solving the recurrence relation we obtain the following analytical solution:

π1(1, 0) = π1(0, 0)
λ

µ1 + µ2

π1(n, 0) = π1(0, 0)


λ

µ1 + µ2

n

π1(n, 1) = π1(0, 0)


λ

µ1 + µ2

n
µ1

µ2
.
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Fig. 1. Network composed of a tandem of queues. The first queue is an M/M/1 and the second queue is an./M/1 with finite capacity B2 . Figure (A) Network
representation. Figure (B) State space diagram of the two queues as LMAsM1,M2 . Figure (C) State space diagram of the LMAs M̃1, M̃2 of the approximated
queues. If the variable xa is substituted with λ in M̃2 then M̃c

2 is derived.

Fig. 2. Queue representation of network with Coxian service and state-dependent arrivals considered in Section 4.2.

By normalising, we find the value of π1(0, 0) as follows:

1 =
∞
i=0

π1(0, 0)


λ

µ1 + µ2

i
+

∞
i=1

π1(0, 0)


λ

µ1 + µ2

i
µ1

µ2

π1(0, 0) =
µ2(µ1 + µ2 − λ)

(µ1 + µ2)µ2 + λµ1

with λ < µ1 + µ2. Once the steady-state distribution is known, the computation of the sum of the reversed rates of the
transitions incoming to states (n, 0) (n ≥ 0) is straightforward:

Ka(n, 0) =
π1(n+ 1, 0)µ2 + π1(n+ 1, 0)µ2

π1(n, 0)
= λ. (9)

We notice that although the GRCAT condition expressed by Eq. (1) is satisfied for states (n, 0) with n ≠ 0, states (n, 1) have
no active incoming transitions.
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Fig. 3. Transition diagram of the queue with Coxian service time and state-dependent arrivals in the network considered in Section 4.2. (A) LMA
representation of the original model. (B) LMA representation of the approximated model.

We therefore derive:

K̃a =

∞
n=0

π1(n, 0)Ka(n, 0)+
∞
n=1

π1(n, 1)0 =
λµ2(µ1 + µ2)

µ1λ+ µ2(µ1 + µ2)
. (10)

We observe that K̃a < Ka(n, 0) as

∞

n=0 π1(n, 0) < 1 since π1(n, 1) > 0. This implies that S
a,<K̃a
1 = {(n, 1) : n ≥ 1} and

S
a,>K̃a
1 = {(n, 0) : n ≥ 0}.

Proposition 2. Let M1 = ⟨S1, Act,→⟩ be the automaton described in Fig. 3 (A). The transition relation →̃1 of the approximated
automaton M̃1 = ⟨S1, Act1, →̃1⟩ is depicted in Fig. 3 (B) where r1, r2, t1, t2 have the following values:

r1 = r2 =
µ2

2(µ1 + µ2)

µ1λ+ µ2(µ1 + µ2)
t1 = t2 =

µ1µ2λ

µ1λ+ µ2(µ1 + µ2)
.

Proof. By Eq. (6) we obtain r1, r2 and by Eq. (7) we obtain t1, t2. �

Observe that, if µ1 → 0, then the first queue tends to assume the behaviour of a M/M/1 queue, and hence the product-
form is satisfied without the need of approximations. According to this observation, we point out that r1 = r2 = µ2 and
t1 = t2 = 0 as µ1 → 0. Fig. 4(a) shows the steady-state distributions of the number of customers obtained with two sets
of parameters in the exponential queue for the original tandem model and the approximating models obtained with the
technique explained in Section 3.2. The exact values are obtained by the analysis of the truncation of the joint process since
the load factor of the queues is kept low.

We now take a closer look at the behaviour of the whole network and its approximation. When the first queue is in state
(n, 1) the arriving customers are discarded. We define the effective arrival rate, λe, as the rate at which customers enter the
queue. Clearly, it holds that λe ≤ λ. In the original network, a customer that enters the first queue definitely enters also the
second queue. In the approximatedmodel of the network, some customersmay leave the system before entering the second
queue, and there may be some extra external arrivals directly at the second queue. The external arrivals are introduced by
the cooperation with self-loops at states (n, 1)-see Fig. 3(B). The following lemma is important because it shows that, at
steady-state, the effective arrival rate at the first queue is indeed K̃a.

Lemma 1. The effective arrival rate of the queue with state space described in Fig. 3(A) is K̃a.
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(a) Steady-state distribution of the second queue of the network with Coxian
service and state-dependent arrivals as studied in Section 4.2.

(b) Steady-state distribution of the second queue of the network with Coxian
service and LCFS discipline as studied in Section 4.3.

Fig. 4. (a)—Steady-state distribution of the second queue of the network with Coxian service and state-dependent arrivals as studied in Section 4.2. The
label (Ideal) denotes the original model and the label (Approx.) denotes the approximated model. (b)—Steady-state distribution of the second queue of the
network with Coxian service and LCFS discipline as studied in Section 4.3. The label (Ideal) denotes the original model and the label (Approx.) denotes the
approximated model.

Proof. We apply the PASTA property [13], i.e., customers arriving according to a Poisson process see time averages.
Mathematically, the effective arrival rate λe is defined as

λe = λ

∞
i=0

π1(n, 0).

By Eq. (9) it holds that Ka(n, 0) = λ. Observing that the definition of λe is identical to Eq. (10) we obtain the result. �

In the approximatedmodel, K̃a is the solution of the traffic equation or the ratewe substitute in the LMAMc
2 = M2{xa ← K̃a}.

This implies that K̃a is the arrival rate at the second queue. We conclude that the effective arrival rates at the first and the
second queue in the approximated network are the same. Table 1 shows a comparison of the mean number of customers
in the second queue between the original and the approximating model. Since Little’s law [14] can be applied to the second
queue, onemay derive from the average number of customers also themean response time, considering that the throughput
in stability is K̃a.

4.3. Network with Coxian service and LCFS discipline

We consider another tandem of queues in which the first node has Coxian service time and LCFS scheduling discipline
as depicted in Fig. 5. Pre-emption is assumed and when a job is pre-empted the time spent in service is lost. Note that, this
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Table 1
Comparison of mean number of customers in the second queue of the network with Coxian service
and state dependent arrivals as studied in Section 4.2. The table shows the comparison of the mean
number of customers in the second queue for the exact and the approximated network.

Parameters Exact N Approx. N

λ = 0.1, µ1 = 0.15, µ2 = 0.1, γ = 0.4 0.177053 0.189708
λ = 0.1, µ1 = 0.35, µ2 = 0.1, γ = 0.4 0.153409 0.191314
λ = 0.1, µ1 = 0.35, µ2 = 0.1, γ = 0.9 0.0645057 0.0777937
λ = 0.1, µ1 = 0.02, µ2 = 0.7, γ = 0.9 0.124247 0.100385
λ = 0.1, µ1 = 0.2, µ2 = 0.2, γ = 0.9 0.0948834 0.0969089

Fig. 5. Queue representation of the network with Coxian service time distribution and LCFS scheduling discipline as studied in Section 4.3.

Fig. 6. Transition diagram of the queue with Coxian service time distribution and LCFS scheduling discipline (example analysed in Section 4.3).

queue is not the same as in [2]. In fact, it can be shown that the discipline is not symmetric [4], which is a necessary and
sufficient condition for this type of queue to yield a product-form solution.

After a job completion at the first queue, customers enter another simple exponential queue whose service rate is γ . The
state space for the first queue is depicted in Fig. 6. The GBEs for this queue are the following:

π1(0, 0)λ = π1(1, 0)µ2 + π1(1, 1)µ3 (11)
π1(1, 0)[λ+ µ1 + µ2] = π1(2, 0)µ2 + π1(2, 1)µ3 + π1(0, 0)λ (12)
π1(1, 1)[µ3 + λ] = π1(1, 0)µ1 (13)
π1(n, 0)[λ+ µ1 + µ2] = π1(n+ 1, 0)µ2 + π1(n+ 1, 1)µ3 + π1(n− 1, 0)λ+ π1(n− 1, 1)λ for n > 0 (14)
π1(n, 1)[µ3 + λ] = π1(n, 0)µ1. (15)

For this model, the steady-state distribution of the Coxian queue can be computed by matrix geometrics techniques [15].
It is possible to verify that the sum of the reversed rates of the transitions incoming to states (n, 0) with n ≥ 0 are not

constant (and active transitions labelled a incoming to states (n, 1) aremissing). Note that once the first queue is numerically
solved the algorithm presented in Section 3.2 can be straightforwardly applied. K̃a =


∞

i=0 π1(n, 0)Ka can be numerically
computed, and the approximated LMA M̃1 can be found.

In this example, we wish to focus the attention on what happens to the synchronisation of the first and the second
queue. Adding self-loops to states (n, 1) with n > 0, from the point of view of the exponential queue, means that an
external arrival stream of customers is present when the first queue is in one of these states. On the other hand, splitting
the synchronising transitions labelled a entering into states (n, 0), n ≥ 0, causes some customers to leave the system after
a job completion instead of entering the second queue. An interesting problem is to compare the arrival rate at the second
queue in the approximatedmodel with that of the original one. In the latter case it is obvious that since there is no customer
loss, or customer generation, the rate (in equilibrium) must be λ. The following lemmas show that the approximated model
preserves the arrival rate at the second queue, i.e., K̃a = λ.
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Table 2
The table shows the comparison of mean number of customers in the second queue of
the exact and approximate network with Coxian service and LCFS discipline as studied in
Section 4.3. It is assumed λ = 0.31.

Parameters Exact N Approx. N

µ1 = 1.5, µ2 = 2.8, µ3 = 2.0, γ = 2.0 1.8372 1.7717
µ1 = 0.01, µ2 = 0.8, µ3 = 0.4, γ = 0.9 0.525 0.520
µ1 = 0.001, µ2 = 0.35, µ3 = 0.4, γ = 2.9 0.116 0.116
µ1 = 0.01, µ2 = 0.4, µ3 = 0.8, γ = 1.2 0.348 0.345
µ1 = 0.9, µ2 = 0.9, µ3 = 0.4, γ = 1.2 0.362 0.330

Lemma 2. The steady-state probabilities π1 of the Coxian queue depicted by Fig. 6 fulfil the following property:

π1(i+ 1, 0)µ2 + π1(i+ 1, 1)µ3 = λ[π1(i, 0)+ π1(i, 1)]
π1(i+ 1, 0)(µ1 + µ2) = λ[π1(i, 0)+ π1(i, 1)+ π1(i+ 1, 1)] (16)

for all i ≥ 1.
Proof. Eq. (16) is proven by induction. For i = 1, we take the GBE for state (1, 0) given by Eq. (12) and replace expression
π1(1, 0)µ1 using Eq. (13). We obtain:

π1(1, 0)[λ+ µ2] + π1(1, 1)[µ3 + λ] = π1(2, 0)µ2 + π1(2, 1)µ3 + π1(0, 0)λ.

By rearranging the terms we obtain:

λ[π1(1, 0)+ π1(1, 1)] + π1(1, 0)µ2  +π1(1, 1)µ3   = π1(2, 0)µ2 + π1(2, 1)µ3 + π1(0, 0)λ   .

After observing that the under-braced terms correspond to the GBE of state (0, 0) of Eq. (11) the proof for i = 1 is concluded.
For i = n > 1 we write done the GBE (14) for state (n, 0):

π1(n, 0)[λ+ µ1 + µ2] = π1(n+ 1, 0)µ2 + π1(n+ 1, 1)µ3 + π1(n− 1, 0)λ+ π1(n− 1, 1)λ.

By substituting in the left-hand side π1(n, 0)µ1 with the expression given by Eq. (15) and applying the induction step the
result follows. Eq. (16) can be derived by substituting expression µ3π1(i, 1) with the left-hand side of GBE (13) in Eq. (16).
This concludes the proof. �

Lemma 3. The average reversed incoming flow to a state due to an action labelled a equals the rate of arrivals, K̃a = λ, in the
Coxian queue depicted in Fig. 6 with LCFS pre-emptive scheduling discipline.
Proof. By Eq. (5) we must compute the following series:

∞
i=0

(π1(i+ 1, 0)µ2 + π1(i+ 1, 1)µ3).

Using Eq. (16) we straightforwardly have:

π1(1, 0)µ2 + π1(1, 1)µ3 +

∞
i=1

λ(π1(i, 0)+ π1(i, 1)).

Observe that by GBE (11) this may be conveniently rewritten as:

λ


π1(0, 0)+

∞
i=1

(π1(i, 0)+ π1(i, 1))


= λ. �

The approximate model is obtained from the original one by forcing the total reversed rate in each state to be K̃a without
changing its steady-state distribution. K̃a is the arrival rate seen by the exponential queue which is at the end of the
tandem.

Fig. 4(B) shows a comparison of the steady-state probability distribution of the number of customers in the exponential
queue (recall that the Coxian model steady-state probabilities are not affected by the modifications). Table 2 illustrates the
comparison of the average number of customers in the exponential queue in the original model (obtained as solution of a
truncation of the infinitesimal generator of the joint process) and in the approximation.

4.4. Network with collisions

Model description
In this section we study a queueing network in which customer collisions may occur. Collision will cause the elimination

of the customers involved. The topology is depicted in Fig. 7. Customers arrive at nodes 1 and 2 according to independent
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Fig. 7. Network with collisions studied in Section 4.4.

Fig. 8. Transition diagram as LMA of each single queue of network with collisions, studied in Section 4.4.

Poisson processes with rates λ1 and λ2, respectively. Service times at nodes 1 and 2 are independent and exponentially
distributed with rates µ1 and µ2, respectively. After a job completion at one the first two queues, customers enter a third
node whose service time is independent and exponentially distributed with rate µ3. When the first two queues are both
non-empty, collisions between the customers occur with rate µc . The collision simultaneously destroys one customer from
each of these queues.

Model analysis
Fig. 8 illustrates the transition diagram of each queue (ignore the dashed self-loop). Observe that Condition 1 is not

satisfied since state 0 in M2,corresponding to queue Q2, has no passive outgoing transition labelled c . According to the
algorithm given in Section 3.1 a passive self-loop in state 0 of M2 must be added to obtain M̃2. Observe that each queue is
a birth-and-death process if each LMA is closed. This ensures that the reversed rates of the labelled death transitions are
constant. Specifically, in M̃1 we have that K̃c = λ1µ̃c/(µ1 + µ̃c) and in M̃2 we have S¬c2 = {0} and 1 −


s∈S¬c2

π̃2(s) =

λ2/(µ2 + K̃c). Therefore, the system of Eqs. (2) in this example is:


K̃c = λ1

µ̃c

µ1 + µ̃c

µ̃c =
λ2

µ2 + K̃c
µc
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(a) Network with collisions as analysed in Section 4.4. The graph shows the expected
number of customers.

(b) Network with collisions as analysed in Section 4.4. The graph shows the
utilisation.

Fig. 9. (a) Average number of customers in the queues of the network with collisions as studied in Section 4.4. (b) Utilisation of the nodes of network
with collisions as in the example considered in Section 4.4. The results for the original model are obtained by simulation. The results for the approximated
model are based on the analytical solution of the product-form.

whose solution can be obtained symbolically:

µ̃c =
−µ1µ2 + λ2µc +

√
∆

2(λ1 + µ2)

K̃c = λ1 −
2λ1µ1(λ1 + µ2)

2λ1µ1 + µ1µ2 + λ2µc +
√

∆
,

where ∆ = 4λ2µ1(λ1 + µ2)µc + (µ1µ2 − λ2µc)
2. Observe that, if µc → 0 then the model is equivalent to a Jackson’s

network in product-form, and coherently the approximation gives µ̃c = 0. Given the product-form joint-model M̃1⊕{c} M̃2,
we observe that the reversed rates of the transitions labelled a and b are constant and thatM3 satisfies Condition 1 of GRCAT.
Therefore the product-form of (M̃1⊕{c} M̃2)⊕{a,b}M3 is obtained without applying the approximating algorithms. We have
K̃a = λµ1/(µ1 + µ̃c) and K̃b = λ2µ2/(µ2 + K̃c). The steady-state distribution is:

π(n1, n2, n3) ≈ π̃(n1, n2, n3)

=


1−

λ1

µ1 + µ̃c


1−

λ2

µ2 + K̃c


1−

K̃a + K̃b

µ3


λ1

µ1 + µ̃c

n1
·


λ2

µ2 + K̃c

n2

K̃a + K̃b

µ3

n3

where ni denotes the number of customers in node i = 1, 2, 3. Fig. 9 shows the comparison between the average number
of customers and the utilisation in the approximated model and in the original one. For this latter case, the results have
been obtained by simulation with confidence intervals of 95% and maximum interval width of 0.5 and 0.08 for the graphs
of Fig. 9(A) and (B), respectively.
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5. Conclusion

In this paper, we have investigated approximations of non-product-formmodelswith product-form ones.We have taken
a practical approach and considered several examples. Themethod presented in Sections 3.1 and 3.2 exploits the formulation
of GRCAT given in [9]. The main strengths of the proposed approach are:

• Modularity: the perturbations may be interpreted for each component in isolation;
• Generality: the algorithms are defined in terms of cooperating LMAs;
• Symbolic analysis: the method allows the modeller to derive an approximation of the steady-state distribution both

numerically and analytically.

With our algorithms it is possible to study open models with infinite state-spaces and perform sensitivity analysis
efficiently.

We have considered four case studies, and we have analysed the results of the approximations. The estimates of our
approximation are showed to be relatively accurate with respect to the exact solution, in our case studies. One can expect
that stronger perturbations in the models will give worse approximations (see the example of Section 4.4). As future
research efforts are concerned, we shall investigate the problem of the analytical definition of bounds for the errors on
the performance measures introduced by the proposed approach.

Appendix. Formal treatment of the theoretical background

Definition of LMA can be found in Section 2. LMAs can be seen as CTMCs with labelled transitions. The definition of LMA
has been inspired by PEPA [16]. The definition of two interacting automata can be found below.

Definition 2. LetM1 = ⟨S1, Act1,→1⟩ and M2 = ⟨S2, Act2,→2⟩ be two LMAs.
The interacting LMAM1⊕L M2 = ⟨S, Act,→, ⟩with L ⊆ Act1 ∩ Act2 is a new automata defined as follows:

• S = S1 × S2.
• Act = Act1 ∪ Act2.
• → is the smallest relation defined by the rules below:

s1
a,λ
−→1 s′1 s2

a,xa
−→2 s′2

(s1, s2)
a,λ
−→ (s′1, s

′

2)

(a ∈ L)
s1

a,r
−→1 s′1

(s1, s2)
a,r
−→ (s′1, s2)

(a /∈ L).

The symmetric rules are omitted.

The use of variables is needed to denote that a passive transition occurs with an unknown rate, since it depends on
the transitions of other automata. If an automaton does not contain any passive transition, then the underlying model
description is a time-homogeneous CTMC. On this basis we justify the following definitions.

Definition 3 (Open and Closed Automata). We distinguish the following classes of automata:

1. An LMAM = ⟨S, Act,→⟩ is called open if there exists a label a ∈ Act and a state s ∈ S such that a passively enabled in s,
i.e., ∃s′ ∈ S such that s

a,xa
−→ s′ and s ≠ s′.

2. An LMAM = ⟨S, Act,→⟩ is called closed if it is not open.

We exclude the possibility of two passive transitions with the same label outgoing from the same state. The automata
that enjoy this property are called well-formed.

Definition 4 (Well-formed Automata). LMA M = ⟨S, Act,→⟩ is well-formed if:

1. Given a label a ∈ Act then all the transitions labelled a are either active or passive. Hence, we can say that label a is active
or passive for the automaton:

A(M) ∩ P (M) = ∅.

2. If a is a passive label, then for every state s of the automaton there exists exactly one transition labelled a outgoing
from s:

∀s∃s′ ∈ S such that s
a,xa
−→ s′

∀s, s′, s′′ ∈ S, s
a,xa
−→ s′ ∧ s

a,xa
−→ s′′ =⇒ s′ = s′′.

We introduce the notion of irreducible LMA.

Definition 5 (Reachability Set). LetM = ⟨S, Act,→⟩ be an LMA.



A. Marin, M.G. Vigliotti / Computers and Mathematics with Applications 64 (2012) 3852–3868 3867

1. A state s′ is said to be reachable in one step from s if for some a ∈ Act and t ∈ R+ ∪ Var, s a,t
−→ s′.

2. A state sn is said to be reachable from s1 if for some a1, . . . , an ∈ Act and t1, . . . , tn ∈ R+ ∪ Var and s2, . . . , sn−1 ∈ S we

have s1
a1,t1
−→ s2

a2,t2
−→ s3 . . . sn−1

an,tn
−→ sn.

We write Reach(s) the set of all reachable states from s.

Definition 6 (Irreducible LMA). An LMAM = ⟨S, Act,→⟩ is irreducible if for all s ∈ SReach(s) = S.

We define an operation on an automata which we call closure. Informally, it consists in the operation of specifying the
rates of the passive transitions of an open automatonM.

Definition 7. Assume M is a well-formed automaton and a ∈ P (M) = {a1, . . . , aN}. The closure of the automaton,
Mc
{Ka1 ,...,Kan }

= ⟨Sc, Actc,→c
⟩ Kai ∈ R+, is defined as:

• Sc
= S,

• Actc = Act ,
• →

c
=→ r{(s, ai, xai , s

′), ai ∈ P (M), s, s′ ∈ S} ∪ {(s, ai, Kai , s
′), ai ∈ P (M), s, s′ ∈ S}.

For simplicity we shall write M{xa1 ← Ka1 , . . . , xa1 ← Kan} for Mc
{Ka1 ,...,Kan }

, or when the substitution is clear from the
context simplyMc .

The closed automata Mc is identical to the original automaton M except that each transition labelled ai ∈ P (M) becomes
active with rate Kai . Note that, in Mc all the transitions sharing the same label and that were passive in M have the same
rate, and that Mc has a well-defined underlying CTMC and hence the steady-state analysis can be carried out.

We recall GRCAT in a version [9] which is slightly modified with respect to the original one [8].

Theorem 1 (GRCAT). Let M1 andM2 be two well-formed LMAs that cooperate on a finite set of labels L = {a1, . . . , aN} such that
the state-space S1 × S2 of M1⊕L M2 is irreducible.

If there exists the set of rates {Ka1 , . . . , Kan} which satisfies the following equations:

∀s ∈ S1, ∀ai ∈ A(M1)


s′∈S1

q(s′
ai
−→ s)π1(s′)

π1(s)
= Kai (A.1)

and

∀s ∈ S2, ∀ai ∈ A(M2)


s′∈S2

q(s′
ai
−→ s)π2(s′)

π2(s)
= Kai (A.2)

where π1 and π2 are the invariant measures of the following closed automataMc
1 andMc

2

Mc
1 = M1{ai ← Kai : ai ∈ P (M1)}

Mc
2 = M2{ai ← Kai : ai ∈ P (M2)}

then the following statements hold:

1. The invariant measure of M1⊕L M2 has the product-form:

π(s1, s2) = π1(s1)π2(s2) ∀s1 ∈ S1, s2 ∈ S2. (A.3)

2. If


si∈Sℓ
πℓ(si) = 1, with ℓ = 1, 2, then π is the steady-state probability distribution of M1⊕L M2.

Note that Theorem 1 implies that every state of an automaton must have at least one incoming transition for each active
label.

Corollary 1. Let M1 and M2 be two well-formed LMAs that cooperate on a finite set of labels L = {a1, . . . , an} such that they
satisfy the conditions of Theorem 1. If ai ∈ A(Mj) then for all s ∈ Sj there exists a s′ such that s′

ai,µ
−→ s with µ > 0 and ai ∈ L

and j = 1, 2.
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