Weak compactness in Köthe–Bochner spaces and Orlicz–Bochner spaces*

by Marian Nowak

Institute of Mathematics, T. Kotarbiński Pedagogical University, Pl. Słowiański 9, 65-069 Zielona Góra, Poland,
e-mail: nowakmar@omega.im.wsp.zgora.pl

Communicated by Prof. R. Tijdeman at the meeting of December 24, 1997

ABSTRACT
Let E be a Banach function space over a σ-finite measure space (Ω, Σ, μ), E'-the Köthe dual of E
and let X be a reflexive Banach space, X^*-the topological dual of X. We characterize relatively
$\sigma(E(X), E'(X^*))$-compact subsets of a Köthe–Bochner space $E(X)$ in terms of absolute continuity
of certain seminorm defined on $E'(X^*)$. As an application, we obtain that a solid subset of an
Orlicz–Bochner space $L^\psi(X)$ is relatively $\sigma(L^\psi(X), L^{\psi^*}(X^*))$-compact iff it is norm bounded in
some Orlicz–Bochner space $L^\varphi(X)$, where ψ increases more rapidly than φ.

1. INTRODUCTION AND PRELIMINARIES
The problem of characterizing of relatively weakly compact subsets of the space
$L^1(X)$ was considered by many authors (see [5], [8], [10], [11], [14], [24], [26]).

J. Batt and W. Hiermeyer [3] characterized relatively $\sigma(L^p(X), L^q(X^*))$-compact subsets of a Lebesgue–Bochner space $L^p(X)$ for $1 \leq p < \infty$ and q
conjugate to p over a positive finite measure space.

F. Bombal [4] showed that if (Ω, Σ, μ) is a finite measure space and X has the
RNP then a subset H of the Orlicz–Bochner space $L^\varphi(X)$ is relatively
$\sigma(L^\varphi(X), L^{\psi^*}(X^*))$-compact ($\varphi^* =$ the complementary Young function) iff the
following conditions are satisfied:

*1991 Mathematics Subject Classification: 46E30, 46E40, 46A50.

Key words and phrases: Köthe–Bochner spaces, Orlicz–Bochner spaces, weak compactness, absolutely continuous seminorms.

Supported by KBN grant: 2P03A 031 10.
(i) H is norm-bounded,
(ii) the set $H(A) = \{\int_A f(\omega) d\mu : f \in H\}$ is relatively weakly compact in X for every $A \in \Sigma$, and
(iii) $\lim_{\mu(A) \to 0} \sup \{\int_A (f(\omega), g(\omega)) d\mu : f \in H\} = 0$ for every $g \in L^{\varphi^*}(X^*)$.

J. Diestel, W.M. Ruess and W. Schachermayer [11] found a characterization of weak compactness in a Köthe–Bochner space $E(X)$ whenever E is an order continuous Banach function space with $L^\infty \subset E \subset L^1$ for some probability space. It is shown (see [11, Theorem 3.2, Corollary 3.3]) that for a subset H of $E(X)$ the following statements are equivalent to relative weak compactness:

(1) The set $\{\|f(.)\|_X : f \in H\}$ of E is relatively weakly compact in E, and, given any sequence (f_n) in H, there exists a sequence (g_n) with $g_n \in \text{conv} \{f_k : k \geq n\}$, and such that $(g_n(\omega))$ is norm convergent for a.e. $\omega \in \Omega$.

(2) The set $\{\|f(.)\|_X : f \in A\}$ of E is relatively weakly compact in E, and H is relatively weakly compact in $L^1(X)$.

In this paper we extend to the vector valued setting the well known criterion for relative $\sigma(E, E')$-compactness in a Banach function space E given in terms of absolute continuity of certain seminorm defined on the Köthe dual E' of E (see [18, Theorem 1.3.5], [19, Theorem 5.1]). As an application, in case of a reflexive Banach space X, we characterize solid relatively $\sigma(L^\psi(X), L^{\psi'}(X^*))$-compact subsets of an Orlicz-Bochner space $L^\psi(X)$ as norm bounded sets in some Orlicz–Bochner space $L^{\psi}(X)$, where the Young function ψ increases more rapidly than the Young function φ. This result is the Bochner version of the Ando’s criterion for relatively $\sigma(L^\psi, L^{\psi'})$-compact sets in an Orlicz space L^ψ (see [2, Theorem 2], [21, Theorem 7.5]).

Let (Ω, Σ, μ) be a complete σ-finite measure space, and let L^0 denote the corresponding space of equivalence classes of all Σ-measurable real valued functions. Then L^0 is a super Dedekind complete Riesz space under the ordering $u_1 \leq u_2$ whenever $u_1(\omega) \leq u_2(\omega)$ μ-a.e. on Ω. Let χ_A stand for the characteristic function of a set A. Let E be an ideal of L^0 with $\text{supp} \ E = \Omega$, and let $\|\cdot\|_E$ be a Riesz norm on E. The complete space $(E, \|\cdot\|_E)$ is called a Banach function space or a Köthe function space. The Köthe dual E' of E is defined by

$$E' = \left\{ v \in L^0 : \int_\Omega |u(\omega)v(\omega)| d\mu < \infty \text{ for all } u \in E \right\}.$$

The associated norm $\|\cdot\|_{E'}$ on E' is defined by

$$\|v\|_{E'} = \sup \left\{ \left| \int_\Omega u(\omega)v(\omega)d\mu \right| : u \in E, \ |u|_E \leq 1 \right\}.$$

It is well known that $\text{supp} \ E' = \Omega$ and the inclusion $E \subset E''$ holds and $\|u\|_{E''} \leq \|u\|_E$ for $u \in E$ (see [16, Chapter VI, §1]). A Banach function space $(E, \|\cdot\|_E)$ is said to be perfect if $E = E''$ and $\|u\|_E = \|u\|_{E''}$ for $u \in E$. It is well
known that E is perfect if and only if the norm $\| \cdot \|_E$ satisfies both the σ-Fatou property and the σ-Levy property (see [16, Theorem 6.1.7]).

We will write $A_n \searrow \emptyset$ if (A_n) is a decreasing sequence in Σ such that $\mu(A_n \cap A) \to 0$ for every set $A \in \Sigma$ with $\mu(A) < \infty$. We denote by E_d the ideal of elements of absolutely continuous norm in E, i.e.,

$$E_d = \{ u \in E : \| \chi_{A_n} u \|_E \to 0 \text{ as } A_n \searrow \emptyset \}.$$

Let $(X, \| \cdot \|_X)$ be a real Banach space, and let S_X and B_X denote the unit sphere and the closed unit ball in X resp. Let X^* stand for the topological dual of X. By $L^0(X)$ we will denote the linear space of equivalence classes of all strongly Σ-measurable functions $f : \Omega \to X$. For $f \in L^0(X)$ let us put

$$\hat{f}(\omega) = \| f(\omega) \|_X \quad \text{for } \omega \in \Omega.$$

The linear space $E(X) = \{ f \in L^0(X) : \hat{f} \in E \}$ equipped with the norm $\| f \|_{E(X)} = \| \hat{f} \|_E$ is called a K"{o}the–Bochner space (see [6], [15]).

Now we recall some notions concerning the solid structure of $E(X)$ (see [13]).

A subset H of $E(X)$ is said to be solid whenever $\| f_1(\omega) \|_X \leq \| f_2(\omega) \|_X \mu$-a.e. and $f_1 \in E(X), f_2 \in H$ imply $f_1 \in H$.

A seminorm p on $E(X)$ is said to be solid whenever for every $f \in E(X), \| f_1(\omega) \|_X \leq \| f_2(\omega) \|_X \mu$-a.e. implies $p(f_1) \leq p(f_2)$.

A solid seminorm p on $E(X)$ is said to be absolutely continuous whenever for each $f \in E(X), p(\chi_{A_n} f) \to 0$ as $A_n \searrow \emptyset$.

The following description of absolutely continuous seminorms on $E(X)$ will be needed (see [13, Theorems 5.1, 5.3]).

Theorem 1.1. For a solid seminorm p on $E(X)$ the following statements are equivalent:

(i) p is absolutely continuous.

(ii) For every $f \in E(X)$ and $\varepsilon > 0$ there exist $\delta > 0$ and $A_0 \in \Sigma$ with $\mu(A_0) < \infty$ such that $p(\chi_A f) \leq \varepsilon$ for $\mu(A) \leq \delta$ and $p(\chi_{X \setminus A_0} f) \leq \varepsilon$.

(iii) For a sequence (f_n) in $E(X), f_n \overset{\| \cdot \|_X}{\to} 0$ in E implies $p(f_n) \to 0$.

For a linear functional F on $E(X)$ let us put for each $f \in E(X)$

$$|F|(f) = \sup \{ |F(h)| : h \in E(X), \| h(\omega) \|_X \leq \| f(\omega) \|_X \mu$-a.e. \}.$$

The set

$$E(X)^\sim = \{ F \in E(X)^\# : |F|(f) < \infty \text{ for all } f \in E(X) \}$$

will be called the order dual of $E(X)$ (see [22]). (Here $E(X)^\#$ denotes the algebraic dual of $E(X)$.) One can show that $E(X)^\sim$ coincides with the topological dual $(E(X), \| \cdot \|_{E(X)})^*$ (see [22, Theorem 3.5]).

A linear functional F on $E(X)$ is said to be order continuous whenever for a net (f_n) in $E(X), f_n \overset{\| \cdot \|_X}{\rightrightarrows} 0$ in E implies $F(f_n) \to 0$. The set $E(X)_o^\sim$ consisting of all order continuous linear functionals on $E(X)$ will be called the order continuous dual of $E(X)$. 75
In view of the super Dedekind completeness of L^0 we can restrict ourselves to the usual sequences (f_n) in $E(X)$. Moreover, we obtain that $E(X)_\infty \subset E(X)$ (see [22, Theorem 2.3]).

From now on we will assume that the Banach space X^* has the Radon–Nikodym property (RNP) (see [10, Chapter IV]). It is well known that X^* has the RNP whenever X is reflexive (see [10, Corollary 3.13]).

The following description of order continuous functionals on $E(X)$ will be of importance (see [6, Theorem 4.1, Theorem 1.1 and (3) p. 24], [7, Theorem 3.5]).

Theorem 1.2 Assume that X^* has the RNP. For a linear functional F on $E(X)$ the following statements are equivalent:

(i) F is order continuous.

(ii) There exists a unique $g \in E'(X^*)$ such that

$$F(f) = F_M(f) = \int_{\Omega} (f(\omega), g(\omega)) d\mu \quad \text{for all } f \in E(X).$$

Moreover, for each $g \in E'(X^*)$

\begin{equation}
|F_M(f)| = \int_{\Omega} \|f(\omega)\| \|g(\omega)\|_{X'} d\mu \quad \text{for all } f \in E(X)
\end{equation}

and

\begin{equation}
\|F_M\|_g(f) = \sup \left\{ \left| \int_{\Omega} (f(\omega), g(\omega)) d\mu \right| : f \in E(X), \|f\|_{E(X)} \leq 1 \right\}
= \|g\|_{E'(X^*)} = \|g\|_{E'}.
\end{equation}

Let M be a $\| \cdot \|_{E'}$-closed ideal of E' with supp $M = \Omega$. Then M can be equipped with the associated norm $\|v\|_{E'} = \sup \{|\int_{\Omega} u(\omega)v(\omega) d\mu| : u \in E, \|u\|_{E} \leq 1\}$. Thus $M(X^*)$ is a Köthe–Bochner space with the norm $\|g\|_{M(X^*)} = \|g\|_{E'}$ for $g \in M(X^*)$.

Assume that X^* has the RNP. In view of Theorem 1.2 we have the dual system $(E(X), M(X^*))$ under its natural duality:

$$(f, g) = F_M(f) = \int_{\Omega} (f(\omega), g(\omega)) d\mu \quad \text{for } f \in E(X), g \in M(X^*).$$

Using the Lebesgue dominant convergence theorem one can define a natural embedding

$$j_M : E(X) \rightarrow M(X^*)_{\infty}$$

by

$$j_M(f)(g) = \int_{\Omega} (f(\omega), g(\omega)) d\mu \quad \text{for } g \in M(X^*).$$

We shall need the following lemma.

Lemma 1.3. Let $(E, \| \cdot \|_E)$ be a perfect Banach function space, and let a Banach
space X be reflexive. Assume that M is a $\| \cdot \|_{E'}$-closed ideal of E' with $\text{supp } M = \Omega$. Then

$$j_{M}(E(X)) = M(X^*)^\sim.$$

Proof. Let $\kappa : X \to X^{**}$ stand for the canonical isometry. To prove that $M(X^*)^\sim \subset j_{M}(E(X))$, let $G_{0} \in M(X^*)^\sim$. Since X is reflexive, X^{**} has the RNP (see [10, Corollary 3.13]), so by Theorem 1.2 there exists a unique $h_{0} \in M'(X^{**})$ such that

$$G_{0}(g) = \int (g(\omega), h_{0}(\omega)) d\mu \quad \text{for all } g \in M(X^*).$$

Since $\kappa(X) = X^{**}$ we can put $f_{0}(\omega) = \kappa^{-1}(h_{0}(\omega))$ for $\omega \in \Omega$. One can easily show that the function f_{0} is strongly Σ-measurable, and since $\|f_{0}(\omega)\|_{X} = \|h_{0}(\omega)\|_{X^{*}}$ for all $\omega \in \Omega$, we get $f_{0} \in M'$. But by [20, Theorem 0.1] $M' = (E')' = E$, so $f_{0} \in E(X)$. Thus

$$G_{0}(g) = \int (f_{0}(\omega), g(\omega)) d\mu \quad \text{for all } g \in M(X^*).$$

so $G_{0} = j_{M}(f_{0}) \in J_{M}(E(X))$, as desired. □

The following Eberlein–Šmulian theorem for the locally convex space $(E(X), \sigma(E(X), M(X^*)))$ will be of importance (see [22, Corollary 5.3, Theorem 2.6]).

Theorem 1.4. Let $(E, \| \cdot \|_{E})$ be a perfect Banach function space and assume that the Banach space X^{*} has the RNP. Let M be an ideal of E' with $\text{supp } M = \Omega$. Then for a subset H of $E(X)$ the following statements are equivalent:

(i) H is relatively sequentially compact for $\sigma(E(X), M(X^*))$.

(ii) H is relatively countably compact for $\sigma(E(X), M(X^*))$.

(iii) H is relatively compact for $\sigma(E(X), M(X^*))$.

2. WEAKLY COMPACT SETS IN KÖTHE–BOCHNER SPACES

W.A. Luxemburg and A.C. Zaanen [19] obtained some criterion for relative $\sigma(E, M)$-sequential compactness in E, where M is a closed ideal of E'. In this paper, following the idea of [19] and using the Eberlein–Šmulian theorem for the locally convex space $(E(X), \sigma(E(X), M(X^*)))$ (see [22]) we obtain an equivalent criterion for relative $\sigma(E(X), M(X^*))$-compactness in $E(X)$ when X is a reflexive Banach space, and M is a $\| \cdot \|_{E'}$-closed ideal of E' with $\text{supp } M = \Omega$.

Theorem 2.1. Let $(E, \| \cdot \|_{E})$ be a Banach function space and assume that the Banach space X^{*} has the RNP. Let M be a $\| \cdot \|_{E'}$-closed ideal of E' with $\text{supp } M = \Omega$. Then for a solid, relatively $\sigma(E(X), M(X^*))$-compact subset H of $E(X)$ the functional ρ_{H} on $M(X^*)$ defined for each $g \in M(X^*)$ by
\[\rho_H(g) = \sup_{f \in H} \int_{\Omega} |\langle f(\omega), g(\omega) \rangle| \, d\mu \]

is an absolutely continuous seminorm.

Proof. Since \(H \) is solid, for each \(g \in M(X^*) \) we get (see [22, Theorem 1.3])

\[\rho_H(g) = \sup_{f \in H} \int_{\Omega} \|f(\omega)\|_X \cdot \|g(\omega)\|_X \, d\mu = \sup_{f \in H} \int_{\Omega} \langle f(\omega), g(\omega) \rangle \, d\mu. \]

Thus \(\rho_H \) is a seminorm because \(H \) is \(\sigma(E(X), M(X^*)) \)-bounded. It is also seen that \(\rho_H \) is solid. Since \(\text{supp} \, M = \Omega \), there exists a sequence \((\Omega_n) \) in \(\Sigma \) such that \(\Omega_n \uparrow \Omega \), \(\mu(\Omega_n) < \infty \) and \(\chi_{\Omega_n} \in M \) for \(n = 1, 2, \ldots \) (see [26, Theorem 8.6.2]). Assume that the seminorm \(\rho_H \) is not absolutely continuous. Then in view of Theorem 1.1 there exist \(g_0 \in M(X^*) \), \(\varepsilon_0 > 0 \) and a sequence \((A_n) \) in \(\Sigma \) with \(\mu(A_n) < 1/n \) such that either

\[\rho_H(\chi_{A_n} g_0) > \varepsilon_0 \text{ for } n = 1, 2, \ldots \]

or

\[\rho_H(\chi_{\Omega_n \setminus A_n} g_0) > \varepsilon_0 \text{ for } n = 1, 2, \ldots. \]

Thus there exist either a sequence \((f_n) \) in \(H \) or a sequence \((h_n) \) in \(H \) such that

\[\int_{A_n} \langle f_n(\omega), g_0(\omega) \rangle \, d\mu > \varepsilon_0 \text{ for } n = 1, 2, \ldots \]

or

\[\int_{\Omega \setminus A_n} \langle h_n(\omega), g_0(\omega) \rangle \, d\mu > \varepsilon_0 \text{ for } n = 1, 2, \ldots. \]

For each \(A \in \Sigma \) let us put for \(n = 1, 2, \ldots \)

\[\nu_n^1(A) = \int_{A_n} \langle f_n(\omega), g_0(\omega) \rangle \, d\mu \quad \text{and} \quad \nu_n^2(A) = \int_{A_n} \langle h_n(\omega), g_0(\omega) \rangle \, d\mu. \]

Then \(\nu_n^1 \) and \(\nu_n^2 \) are countably additive set functions on \(\Sigma \), absolutely continuous with respect to the measure \(\mu \).

\(^1\) Assume that (1) holds. By Theorem 1.4 \(H \) is relatively sequentially compact for \(\sigma(E(X), M(X^*)) \), so there exist a subsequence \((f_{k_n}) \) of \((f_n) \) and \(f_0 \in E(X) \) such that

\[\nu_{k_n}^1(A) = \int_{A} \langle f_{k_n}(\omega), g_0(\omega) \rangle \, d\mu \to \int_{A} \langle f_0(\omega), g_0(\omega) \rangle \, d\mu = \nu^1(A) \]

for all \(A \in \Sigma \), because \(\chi_{A} g_0 \in M(X^*) \). Hence by the Vitali–Hahn–Saks theorem (see [9], [18, p. 20]) the family \(\{\nu_{k_n} : n = 1, 2, \ldots\} \) is uniformly absolutely continuous, so there exists \(\delta_0 > 0 \) such that for \(n = 1, 2, \ldots \) and \(A \in \Sigma \) with \(\mu(A) < \delta_0 \)

78
Choose $n_0 \in \mathbb{N}$ such that $1/n_0 \leq \delta_0$. Then for $n \geq n_0$, $\mu(A_{k_n}) < 1/k_n < \delta_0$, so

$$\left| \int_{A_{k_n}} \langle f_{k_n}(\omega), g_0(\omega) \rangle d\mu \right| \leq \frac{\varepsilon_0}{2}.$$

But this contradicts (1).

2º. Assume that (2) holds. Thus there exist a subsequence (h_{i_n}) of (h_n) and $h_0 \in E(X)$ such that

$$\nu_{i_n}^2(A) = \int_{\Omega \setminus \Omega_{i_n}} (h_{i_n}(\omega), g_0(\omega)) d\mu \rightarrow \int_{\Omega} (h_0(\omega), g_0(\omega)) d\mu$$

for all $A \in \Sigma$, because $\chi_A g_0 \in M(X^*)$. Hence by the Vitali–Hahn–Saks theorem the family $\{\nu_{i_n}^2 : n = 1, 2, \ldots\}$ is uniformly absolutely continuous, so there exists $n_0 \in \mathbb{N}$ such that for $n = 1, 2, \ldots$

$$\left| \nu_{i_n}^2(\Omega \setminus \Omega_{i_n}) \right| = \left| \int_{\Omega \setminus \Omega_{i_n}} (h_{i_n}(\omega), g_0(\omega)) d\mu \right| \leq \frac{\varepsilon_0}{2},$$

so

$$\left| \int_{\Omega \setminus \Omega_{i_n}} (h_{i_n}(\omega), g_0(\omega)) d\mu \right| \leq \frac{\varepsilon_0}{2}.$$

But this contradicts (2).

This means that ρ_H is absolutely continuous, as desired. \(\square\)

Theorem 2.2. Let $(E, \| \cdot \|_E)$ be a perfect Banach function space and assume that a Banach space X is reflexive. Let M be a $\| \cdot \|_E$-closed ideal of E' with $\text{supp } M = \Omega$ and let H be a solid subset of $E(X)$. Assume that the functional ρ_H on $M(X^*)$ defined for each $g \in M(X^*)$ by

$$\rho_H(g) = \sup_{f \in H} \int_{\Omega} |\langle f(\omega), g(\omega) \rangle| d\mu$$

is an absolutely continuous seminorm. Then the set H is relatively compact for $\sigma(E(X), M(X^*))$.

Proof. Since H is solid, for each $g \in M(X^*)$ we have (see [22, Theorem 1.3])

$$\rho_H(g) = \sup_{f \in H} \int_{\Omega} \|f(\omega)\|_X \|g(\omega)\|_X d\mu = \sup_{f \in H} \int_{\Omega} \langle f(\omega), g(\omega) \rangle d\mu.$$

Hence the set $\hat{H} = \{ \hat{f} : f \in H \}$ is $\sigma(E, M)$-bounded. Since M is norm fundamental (i.e., $\|u\|_E = \sup \{ \| \int_{\Omega} u(\omega) v(\omega) d\mu \| : v \in M, \|v\|_E \leq 1 \}$) for each $u \in E$ (see [22, Lemma 5.1]), the set \hat{H} is bounded for $\| \cdot \|_E$ (see [18, Lemma 1.3.1]).
Thus $H \subset B_{E(X)}(r) = \{ f \in E(X) : \| f \|_{E(X)} \leq r \}$ for some $r > 0$. Hence $H^0 \supset B_{M(X^*)}(1/r) = \{ g \in M(X^*) : \| g \|_{M(X^*)} \leq 1/r \}$ (see Theorem 1.2). Let $(M(X^*))^* = (M(X^*))^\sigma_{\| \cdot \|_{M(X^*)}}$, and let us consider the dual system $(M(X^*), (M(X^*))^*)$. Then by the Banach–Alaoglu theorem H^{00} is $\sigma((M(X^*))^*, M(X^*))$-compact subset of $(M(X^*))^*$ and $H^{00} = \text{abs conv } j_M(H)^\sigma$, where the closure is taken in $(M(X^*))^*$ for the topology $\sigma((M(X^*))^*, M(X^*))$.

We shall show that

$$j_M(H)^\sigma \subset j_M(E(X)).$$

Indeed, let $G_0 \in j_M(H)^\sigma$. Then for each $g \in M(X^*)$ and $\varepsilon > 0$ there exists $f_0 \in H$ such that $|j_M(f_0)(g) - G_0(g)| \leq \varepsilon$. It follows that

$$|G_0(g)| \leq |j_M(f_0)(g)| + \varepsilon \leq \int |\langle f_0(\omega), g(\omega) \rangle| d\mu + \varepsilon.$$

Hence $|G_0(g)| \leq \rho_H(g)$, and since ρ_H is an absolutely continuous seminorm on $M(X^*)$, by Theorem 1.1 $G_0 \in M(X^*) = j_M(E(X))$ (see Lemma 1.3). Since $j_M(H)^\sigma \subset j_M(E(X)) = M(X^*)^\sigma_n$ and $\sigma((M(X^*))^*, M(X^*))|_{M(X^*)} = \sigma(M(X^*)^*, M(X^*))$ we get

$$j_M(H)^\sigma = j_M(H)^\sigma_n,$$

where $j_M(H)^\sigma_n$ denotes the closure of $j_M(H)$ in $M(X^*)^\sigma_n$ for the topology $\sigma(M(X^*)^*, M(X^*))$. Thus $j_M(H)^\sigma_n$ is a $\sigma(M(X^*)^*, M(X^*))$-compact subset of $M(X^*)^\sigma_n$, because $j_M(H)^\sigma$ is a $\sigma((M(X^*))^*, M(X^*))$-compact subset of $(M(X^*))^*$. It is easy to verify that the mapping

$$j_M : (E(X), \sigma(E(X), M(X^*))) \to (M(X^*)^\sigma_n, \sigma(M(X^*)^\sigma_n, M(X^*)))$$

is a homeomorphism. Thus

$$H^\sigma(E(X), M(X^*)) = j^{-1}_M(j_M(H)^\sigma_n)$$

and H is relatively $\sigma(E(X), M(X^*))$-compact. Thus the proof is complete. \square

Now we are in position to present our desired result.

Theorem 2.3. Let $(E, \| \cdot \|_E)$ be a perfect Banach function space, and assume that a Banach space X is reflexive. Let M be a $\| \cdot \|_E$-closed ideal of E' with $\text{supp } M = \Omega$. For a solid subset H of $E(X)$ the following statements are equivalent:

(i) H is relatively $\sigma(E(X), M(X^*))$-compact.

(ii) The functional ρ_H on $M(X^*)$ defined for each $g \in M(X^*)$ by

$$\rho_H(g) = \sup_{f \in H} \int_{\Omega} |\langle f(\omega), g(\omega) \rangle| d\mu$$

is an absolutely continuous seminorm.
Now we prove two interesting consequences of Theorem 2.3 (see [19, Theorems 5.2, 5.4]).

Corollary 2.4. Let \((E, \| \cdot \|_E)\) be a perfect Banach function space with \(\text{supp} (E')_a = \Omega\) and assume that a Banach space \(X\) is reflexive. Then for a subset \(H\) of \(E(X)\) the following statements are equivalent:

(i) \(\sup_{f \in H} \| f \|_{E(X)} < \infty\).

(ii) \(H\) is relatively \(\sigma(E(X), (E')_a(X^*))\)-compact.

Proof. (i) \(\Rightarrow\) (ii). Let \(H \subseteq B_{E(X)}(r)\) for some \(r > 0\). Assume \(A_n \not\subseteq \emptyset\) and \(g \in (E')_a(X^*)\). Then by the Hölder inequality

\[
\rho_{E(X)}(\chi_{A_n}, g) \leq \sup_{f \in B_{E(X)}(r)} \| f(\omega) \|_X \| g(\omega) \|_{X^*} d\mu \leq r \| \chi_{A_n} \|_{E^*}.
\]

Thus \(\rho_{E(X)}(\chi_{A_n}, g) \to 0\) because \(\tilde{g} \in (E')_a\). By Theorem 2.2 the ball \(B_{E(X)}(r)\) is relatively \(\sigma(E(X), (E')_a(X^*))\)-compact, and so is \(H\).

(ii) \(\Rightarrow\) (i). The set \(\tilde{H}\) is \(\sigma(E(X), (E')_a(X^*))\)-bounded, so by [22, Corollary 4.6] its solid hull \(S(\tilde{H})\) is also \(\sigma(E(X), (E')_a(X^*))\)-bounded. By [22, Theorem 1.3] for each \(g \in (E')_a(X^*)\)

\[
\sup_{f \in S(\tilde{H})} \left\| \int_{\Omega} \langle f(\omega), g(\omega) \rangle d\mu \right\| = \sup_{f \in S(\tilde{H})} \left\| \int_{\Omega} \| f(\omega) \|_X \| g(\omega) \|_{X^*} d\mu \right\| = \sup_{f \in S(\tilde{H})} \int_{\Omega} \| f(\omega) \|_X \| g(\omega) \|_{X^*} d\mu.
\]

Hence \(\sup_{f \in H} \int_{\Omega} \| f(\omega) \|_X \| g(\omega) \|_{X^*} d\mu < \infty\) for each \(g \in (E')_a(X^*)\). This shows that the set \(\tilde{H} = \{ f : f \in H \}\) is \(\sigma(E, (E')_a)\)-bounded. Since the space \((E')_a\) is norm fundamental (see [22, Lemma 5.1]) the set \(\tilde{H}\) is bounded for \(\| \cdot \|_E\) (see [18, Lemma 1.3.1]), i.e., \(\sup_{f \in H} \| f \|_{E(X)} < \infty\), as desired. \(\Box\)

Corollary 2.5. Let \((E, \| \cdot \|_E)\) be a perfect Banach function space and assume that a Banach space \(X\) is reflexive. Then for each \(f_0 \in E(X)\) its solid hull \(S(f_0) = \{ f \in E(X) : \| f(\omega) \|_X \leq \| f_0(\omega) \|_X \ \mu\text{-a.e.} \}\) is a relatively \(\sigma(E(X), E'(X^*))\)-compact subset of \(E(X)\).

Proof. For each \(g \in E'(X^*)\) we have

\[
\rho_{S(f_0)}(g) = \sup_{f \in S(f_0)} \left\| \int_{\Omega} \langle f(\omega), g(\omega) \rangle d\mu \right\| = \sup_{f \in S(f_0)} \int_{\Omega} \| f(\omega) \|_X \| g(\omega) \|_{X^*} d\mu = \int_{\Omega} \| f_0(\omega) \|_X \| g(\omega) \|_{X^*} d\mu.
\]

To prove that the solid seminorm \(\rho_{S(f_0)}\) on \(E(X)\) is absolutely continuous, let \(A_n \not\subseteq \emptyset\). Then
\[
\rho_{S(f_0)}(\chi_{A_0}g) = \int_\Omega \chi_{A_0}(\omega) \tilde{f}_0(\omega) \tilde{g}(\omega) d\mu = \|\chi_{A_0}(\tilde{f}_0 \tilde{g})\|_{L^1},
\]
so \(\rho_{S(f_0)}(\chi_{A_0}g) \to 0\), because \(\tilde{f}_0 \tilde{g} \in L^1\). By Theorem 2.2 the set \(S(f_0)\) is relatively \(\sigma(E(X), E'(X^*))\)-compact, as desired. \(\square\)

3. WEAKLY COMPACT SETS IN ORLICZ–BOCHNER SPACES

In this section, as an application of Theorem 2.3 we characterize solid, relatively \(\sigma(L^\varphi(X), L^{\varphi^*}(X^*))\)-compact subsets of an Orlicz–Bochner space \(L^\varphi(X)\) as norm bounded sets in some Orlicz–Bochner space \(L^{\psi}(X)\).

We first recall some notation and terminology concerning Orlicz spaces (see [17], [18], [23] for more details).

By a Young function we mean here a map \(\varphi: [0, \infty) \to [0, \infty)\) that is convex, vanishing only at 0 and \(\lim_{t \to 0} \varphi(t)/t = 0\), \(\lim_{t \to \infty} \varphi(t)/t = \infty\).

For a Young function \(\varphi\) we denote by \(\varphi^*\) the function complementary to \(\varphi\) in the sense of Young, i.e., \(\varphi^*(s) = \sup\{ts - \varphi(t) : t \geq 0\}\) for \(s \geq 0\). It is known that \(\varphi^*\) is also a Young function and \(\varphi^{**} = \varphi\).

The Orlicz space generated by \(\varphi\) is the ideal of \(L^0\) defined by

\[
L^\varphi = \left\{ u \in L^0 : \int_\Omega \varphi(\lambda|u(\omega)|)d\mu < \infty \quad \text{for some } \lambda > 0 \right\}
\]

and equipped with two equivalent norms:

\[
\|u\|_\varphi = \sup\left\{ \int_\Omega u(\omega)v(\omega)d\mu : v \in L^{\varphi^*}, \int_\Omega \varphi^*(|v(\omega)|)d\mu \leq 1 \right\},
\]

\[
\|u\|_{\varphi^*} = \inf\left\{ \lambda > 0 : \int_\Omega \varphi(|u(\omega)|/\lambda)d\mu \leq 1 \right\},
\]
called the Orlicz norm and the Luxemburg norm resp. It is well known that both the norms \(\|\cdot\|_\varphi\) and \(\|\cdot\|_{\varphi^*}\) on \(L^\varphi\) satisfy the \(\sigma\)-Fatou property and the \(\sigma\)-Levy property (see [16, Theorem 4.3.7]). Moreover, \((L^\varphi)' = L^{\varphi^*}\) and

\[
(L^\varphi)' = E^{\varphi^*} = \left\{ u \in L^\varphi : \int_\Omega \varphi(\lambda|u(\omega)|)d\mu < \infty \quad \text{for all } \lambda > 0 \right\}.
\]

The Köthe–Bochner space \(L^\varphi(X) = \{ f \in L^0(X) : \tilde{f} \in L^\varphi \}\) is usually called an Orlicz–Bochner space and is equipped with the corresponding norms

\[
\|f\|_{L^\varphi(X)} = \|\tilde{f}\|_\varphi \quad \text{and} \quad \|f\|_{L^{\psi}(X)} = \|\tilde{f}\|_{\psi^*}.
\]

We shall say that a Young function \(\psi\) is completely weaker than another \(\varphi\), in symbols \(\psi \lesssim \varphi\), if for an arbitrary \(c > 1\) there exists \(d > 1\) such that \(\psi(ct) \leq d\varphi(t)\) for \(t \geq 0\). It is seen that \(\varphi\) satisfies the so-called \(\Delta_2\)-condition if \(\psi \lesssim \varphi\). It is known that the relation \(\psi \lesssim \varphi\) implies that \(L^\varphi \subset E^\psi\) holds (see [2], [23, Theorem 5.3.1]).

We shall say that a Young function \(\varphi\) increases more rapidly than another \(\psi\).
in symbols \(\psi \prec \varphi \), if for \(c > 0 \) there exists \(d > 0 \) such that \(c \psi(t) \leq (1/d) \varphi(dt) \) for \(t \geq 0 \). Note that \(\varphi \) satisfies the so-called \(\nabla_2 \)-condition iff \(\psi \prec \varphi \) (see [2]). It is well known that \(\varphi \) satisfies the \(\nabla_2^\infty \)-condition iff the Simonenko index
\[
a_{\varphi} = \liminf_{t \to \infty} \left(t \varphi'(t) / \varphi(t) \right) > 1
\]
(see [23, Corollary 2.3.4], [25]). One can verify that for Young functions \(\psi \) and \(\varphi \) the relation \(\varphi \prec \psi \) holds if \(\psi^* \prec \varphi^* \) holds (see [23, Proposition 2.2.4]).

The following characterization of absolutely continuous seminorms on \(L^\varphi(X) \) will be of importance (see [13, Corollary 6.7]).

Theorem 3.1. Let \(\varphi \) be a Young function. Then for a solid seminorm \(\rho \) on \(L^\varphi(X) \) the following statements are equivalent:

(i) \(\rho \) is absolutely continuous on \(L^\varphi(X) \).

(ii) There exists a Young function \(\psi \) such that \(\psi \prec \varphi \) and \(\rho(f) \leq a \| f \|_{L^\varphi(X)} \) for some number \(a > 0 \) and all \(f \in L^\varphi(X) \).

The next theorem presents conditions for \(\sigma(L^\varphi(X), L^{\varphi^*}(X^*)) \)-compact embeddings of Orlicz–Bochner spaces.

Theorem 3.2. Let \(X \) be a reflexive Banach space and assume that the measure space \((\Omega, \Sigma, \mu) \) is infinite and atomless. Let \(\psi \) and \(\varphi \) be Young functions such that \(L^{\psi^*}(X) \subset L^\varphi(X) \). Then the following statements are equivalent:

(i) \(\varphi \prec \psi \).

(ii) The embedding \(j : L^\varphi(X) \hookrightarrow L^\psi(X) \) is \(\sigma(L^\varphi(X), L^{\psi^*}(X^*)) \)-compact (i.e., the unit ball in \(L^\varphi(X) \) is a relatively \(\sigma(L^\varphi(X), L^{\psi^*}(X^*)) \)-compact subset of \(L^\psi(X) \)).

Proof. (i) \(\Rightarrow \) (ii). Since \(\varphi \prec \psi \), we have \(\psi \prec \psi^* \), so \(L^{\psi^*} \subset E^{\psi^*} = (L^{\psi^*})^* \) (see [23, Theorem 5.3.1]). Let \(B_{L^{\psi^*}(1)}(1) = \{ f \in L^{\psi^*}(X) : \| f \|_{L^{\psi^*}(X)} \leq 1 \} \). Assume that \(g \in L^{\psi^*}(X^*) \) and \(A_n \setminus \emptyset \). Then by the Hölder inequality

\[
\rho_{B_{L^{\psi^*}(1)}(1)}(\chi_{A_n} g) = \sup \left\{ \int_{\Omega} |(f(\omega), \chi_{A_n}(\omega) g(\omega))| d\mu : f \in B_{L^{\psi^*}(1)}(1) \right\}
\]

\[
\leq \sup \left\{ \int_{\Omega} \| f(\omega) \|_X \| \chi_{A_n}(\omega) g(\omega) \|_X \cdot d\mu : f \in B_{L^{\psi^*}(1)}(1) \right\}
\]

\[
\leq \| \chi_{A_n} \tilde{g} \|_{\psi^*}.
\]

Thus \(\rho_{B_{L^{\psi^*}(1)}(1)}(\chi_{A_n} g) \to 0 \), because \(\tilde{g} \in (L^{\psi^*})^* \). By Theorem 2.2 the ball \(B_{L^{\psi^*}(1)}(1) \) is relatively \(\sigma(L^{\varphi}(X), L^{\psi^*}(X^*)) \)-compact.

(ii) \(\Rightarrow \) (i). Since \(L^\varphi(X) \subset L^\psi(X) \) we have \(L^{\psi^*} \subset L^{\varphi^*} \), so \(L^{\psi^*} \subset L^{\varphi^*} \). It is enough to show that \(L^{\varphi^*} \subset E^{\psi^*} \) holds, because this inclusion implies \(\psi^* \prec \varphi^* \) (see [23, Theorem 5.3.1]) and hence \(\varphi \prec \psi \). Indeed, let \(\nu \in L^{\psi^*} \) and \(A_n \setminus \emptyset \). Let \(g = \nu x^* \) for some \(x^* \in S_Y \). Since the Orlicz norm \(\| \cdot \|_{\psi^*} \) on \(L^{\psi^*} \) is the associated norm of the Luxemburg norm \(\| \cdot \|_{\psi^*} \), by Theorem 1.2 we get...
\[
\|\chi_{A_n}g\|_{L^{\varphi^*}(X^*)} = \|\chi_{A_n}v\|_{\varphi^*},
\]
\[
= \sup \left\{ \int_{\Omega} |(f(\omega), \chi_{A_n}(\omega)g(\omega))|d\mu : f \in B_{L^\varphi(X)}(1) \right\}.
\]

Since the unit ball \(B_{L^\varphi(X)}(1)\) is relatively \(\sigma(L^\varphi(X), L^\varphi^*(X^*))\)-compact, by Theorem 2.3 \(\|\chi_{A_n}v\|_{\varphi^*} \to 0\), so \(v \in (L^{\varphi^*})_0 = E^\varphi^*\), as desired. \(\square\)

Corollary 3.3. Let \(\varphi\) be a Young function, and let \(X\) be a reflexive Banach space. Assume that the measure space \((\Omega, \Sigma, \mu)\) is infinite (resp. finite) and atomless. Then the following statements are equivalent:

(i) \(\varphi\) satisfies the \(\nabla_2\)-condition (resp. \(\nabla_2^\infty\)-condition).

(ii) The unit ball in \(L^\varphi(X)\) is relatively \(\sigma(L^\varphi(X), L^\varphi^*(X^*))\)-compact.

Example. Let \(X\) be a reflexive Banach space and let the measure space \((\Omega, \Sigma, \mu)\) be finite and atomless. Let \(\varphi(t) = e^{-t} - t - 1\) for \(t \geq 0\). Then \(a_\varphi = \infty\), so \(\varphi\) satisfies the \(\nabla_2^\infty\)-condition. Thus every norm bounded subset of \(L^\varphi(X)\) is relatively \(\sigma(L^\varphi(X), L^\varphi^*(X^*))\)-compact.

Now we are in position to prove our desired result.

Theorem 3.4. Let \(\varphi\) be a Young function, and assume that \(X\) is a reflexive Banach space. Then for a solid subset \(H\) of \(L^\varphi(X)\) the following statements are equivalent:

(i) \(H\) is relatively \(\sigma(L^\varphi(X), L^\varphi^*(X^*))\)-compact.

(ii) There exists a Young function \(\psi\) with \(\varphi \preceq \psi\) such that \(H \subset L^\psi(X)\) and \(\sup \{ \|f\|_{L^\varphi(X)} : f \in H \} < \infty\).

Proof. (i) \(\Rightarrow\) (ii). By Theorem 2.1 the functional \(\rho_H\) defined on \(L^\varphi^*(X^*)\) by
\[
\rho_H(g) = \sup_{f \in H} \int_{\Omega} |(f(\omega), g(\omega))|d\mu = \sup_{f \in H} \int_{\Omega} \|f(\omega)\|_X \|g(\omega)\|_Y d\mu
\]
is an absolutely continuous seminorm. In view of Theorem 3.1 there exist a number \(a > 0\) and a Young function \(\psi_0\) with \(\psi_0 \preceq \varphi^*\) such that
\[
(1) \quad \rho_H(g) \leq a\|g\|_{L^{\varphi^*}(X^*)} \quad \text{for all} \ g \in L^{\varphi^*}(X^*).
\]
Putting \(\psi = \psi_0^*\) we have \(\varphi = \varphi^{**} \preceq \psi^*_0 = \psi\) and it is enough to show that \(H \subset L^\psi(X)\) and \(\sup \{ \|f\|_{L^\psi(X)} : f \in H \} < \infty\). Indeed, let \(f_0 \in H\). Then by (1) for each \(g \in L^\varphi^*(X^*) \subset E^\psi_0(X^*)\)
\[
(2) \quad \int_{\Omega} \|f_0(\omega)\|_X \|g(\omega)\|_Y d\mu \leq a\|g\|_{L^{\varphi^*}(X^*)} = a\|g\|_{E^\psi_0(X^*)}.
\]

Let \((\Omega_n)\) be a sequence in \(\Sigma\) with \(\Omega_n \uparrow \Omega\) and \(\mu(\Omega_n) < \infty\) for \(n = 1, 2, \ldots\). Let \(v \in L^{\psi_0}\) and let us put for \(n = 1, 2, \ldots\)
\[
v^{(n)}(\omega) = \begin{cases} v(\omega) & \text{if } |v(\omega)| \leq n \quad \text{and} \quad \omega \in \Omega_n, \\ 0 & \text{elsewhere.} \end{cases}
\]
Then $v^{(n)} \in L^{\psi^n}$ for $n = 1, 2, \ldots$ and $|v^{(n)}(\omega)| < \infty$ for $\omega \in \Omega$. By applying the Fatou lemma and (2) we get

$$\int_{\Omega} \tilde{f}_0(\omega)|v(\omega)|d\mu \leq \sup_n \int_{\Omega} \tilde{f}_0(\omega)|v^{(n)}(\omega)|d\mu$$

$$\leq a \sup_n \|v^{(n)}\|_{c_0} \leq a \|v\|_{c_0}.$$

Hence $\tilde{f}_0 \in (L^{\psi^n})' = L^{\psi_0} = L^\varphi$ and since $\psi - \psi_0$ by (3) we get

$$\|f_0\|_{L^\varphi(X)} = \|\tilde{f}_0\|_\varphi = \left\{ \int_{\Omega} \tilde{f}_0(\omega)v(\omega)d\mu : v \in L^{\psi_0}, \|v\|_{c_0} \leq 1 \right\} \leq a.$$

Thus $\sup \{\|f\|_{L^\varphi(X)} : f \in Z\} < \infty$, as desired.

(ii) \Rightarrow (i). Assume that $H \subset L^\varphi(X)$ and $\sup \{\|f\|_{L^\varphi(X)} : f \in H\} = a < \infty$ for some Young function ψ with $\varphi \prec \psi$. Thus $\psi^* \ll \varphi^*$, so $L^{\psi^*} \subset E^{\varphi^*} = (L^\varphi)^*$. Let $g \in L^{\psi^*}(X^*)$ and $A_\alpha \setminus \emptyset$. Then by the Hölder inequality

$$\rho_H(\chi_{A_\alpha}g) = \sup \left\{ \int_{\Omega} \langle f(\omega), \chi_{A_\alpha}(\omega)g(\omega) \rangle d\mu : f \in H \right\}$$

$$\leq \sup \left\{ \int_{\Omega} \|f(\omega)\|_X \|\chi_{A_\alpha}(\omega)g(\omega)\|_{X^*} d\mu : f \in H \right\}$$

$$\leq \sup \{\|f\|_{L^\varphi(X)} : f \in H\} \cdot \|\chi_{A_\alpha}g\|_{L^{\psi^*}(X^*)} \leq a \|\chi_{A_\alpha}g\|_{c_\alpha}.$$

Thus $\rho_H(\chi_{A_\alpha}g) \to 0$, because $\tilde{g} \in (L^\varphi)^*$. By Theorem 2.2 the set H is relatively $\sigma(L^{\varphi^*}(X), L^{\psi^*}(X^*))$-compact, as desired.

ACKNOWLEDGEMENT

The author wishes to thank the referee for the valuable remarks.

REFERENCES

Received November 25, 1996, revised November 28, 1997