Optimality Conditions for Lower Semi-continuous Functions*

Chin Cheng Chou

Département des Math., Université de Perpignan, 52, Avenue de Villeneuve,
66860 Perpignan Cedex, France

Xinbao Li¹ and Kung-Fu Ng²

Department of Mathematics, Chinese University of Hong Kong, Shatin,
N. T., Hong Kong

and

Shuzhong Shi¶

Nankai Institute of Mathematics, Nankai University, Tianjin, 300071, China

Submitted by William Art Kirk

Received September 28, 1995

DEDICATED TO PROFESSOR KY FAN

Let \(f \) be a lower semi-continuous and bounded below function from a Banach space \(X \) into \((-\infty, +\infty)\) where \(X \) is assumed to admit a Lipschitz smooth “bump-function.” Generalizing results of Chaney, we study optimality conditions for \(x \in X \) to be a local minimum point of \(f \). These conditions are described in terms of generalized Chaney’s subdifferentials and second-order derivatives.

*The authors gratefully acknowledge the financial support from the Institute of Mathematical Sciences, Chinese University of Hong Kong, and the Research Grant Council of Hong Kong.

¹E-mail address: xbli@ims.cuhk.hk.
²E-mail address: kfng@math.cuhk.hk.
¶E-mail address: shisz@bepc2.ihep.ac.cn.
1. INTRODUCTION

Let X be a Banach space with dual denoted by X^*. Given a locally Lipschitz real-valued function f, Clarke's directional derivative and subdifferential are defined [5] by

$$f^0(x; u) = \limsup_{t \downarrow 0, y \to x} \frac{f(y + tu) - f(y)}{t}, \quad x, u \in X,$$

$$\partial f(x) = \{ x^* \in X^* : x^*(\cdot) \leq f^0(x; \cdot) \text{ on } X \}.$$

For any unit vector u in X, we write $x_k \to u x$, if $\{x_k\}$ is a sequence convergent to $x \in X$ in the direction u in the sense that $(x_k - x)/\|x_k - x\| \to u$. It is equivalent to say that there exist a positive number sequence $t_k \to 0$ and a vector sequence $u_k \to u$ such that $x_k = x + t_k u_k$ for all k.

Chaney's subdifferential $\partial_u f(x)$ is defined to consist of all x^* for each of which there exist $\{x_k\}$ in X and $\{x_k^*\}$ in X^* such that $x_k \to u x$ and $\|x_k^* - x^*\| \to 0$ with $x_k^* \in \partial f(x_k)$ for all k. In this case, Chaney [2-4] further introduced the second-order directional derivatives $f''(x; x^*, u)$, and used them to provide optimality conditions for minimization problems mainly for $X = \mathbb{R}^n$. His results were recently improved considerably in [9, 10].

In this paper, we shall look at a more general class of functions: for the rest of the paper we consider that $f : X \to (-\infty, +\infty]$ is a bounded below l.s.c. (lower semi-continuous) function on X with dom$(f) \neq \emptyset$, i.e., there exists $\bar{x} \in X$ such that $f(\bar{x})$ is finite. Our approach is then to replace Clarke's subdifferential by β-subdifferentials in the investigation.

2. OPTIMALITY CONDITIONS AND β-SUBDIFFERENTIALS

Let $f : X \to (-\infty, +\infty]$ be a bounded below l.s.c. function on X with dom$(f) \neq \emptyset$ and $\bar{x} \in X$ be a local minimum point of f on X. A trivial, but the most strong necessary condition for \bar{x} is that

$$\liminf_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{\|x - \bar{x}\|} \geq 0. \quad (1)$$
The problem is what will happen when the equality holds in (1). If \(X = \mathbb{R}^n \) and a sequence \((x_k)\) in \(X \) satisfies

\[
\lim_{k \to \infty} \frac{f(x_k) - f(x)}{\|x_k - x\|} = 0,
\]

then there exists a subsequence of \((x_k)\), denoted also by \((x_k)\), such that \((x_k - x)/\|x_k - x\|\) converges to a unit vector \(u \in X \), i.e., \(x_k \to_u x \). Improving a result of Chaney [3], it is known from [9] for any locally Lipschitz function \(f \) and such a unit vector \(u \), 0 must belong to Chaney subdifferential \(\partial_u f(x) \). For a general Banach space, as we cannot deduce from (2) to the existence of \(u \) and a subsequence \((x_{k_j})\) of \((x_k)\) such that \(x_{k_j} \to_u x \), if we want to conclude a necessary condition about a direction \(u \), our starting point would be (2) with \(x_k \to_u x \). That is, we would replace (1) and (2) by

\[
\liminf_{t \downarrow 0, u' \to u} \frac{f(x + tu') - f(x)}{t} \geq 0, \quad \forall u \in X \text{ with } \|u\| = 1
\]

and

\[
\lim_{x_k \to_u x} \frac{f(x_k) - f(x)}{\|x_k - x\|} = 0.
\]

Recall that Dini’s directional derivative and subdifferential are defined (see, e.g., [1, 11]) by

\[
D_- f(x; u) := \liminf_{t \downarrow 0, u' \to u} \frac{f(x + tu') - f(x)}{t},
\]

\[
\partial^- f(x) = \{x^* \in X^* : x^*(\cdot) \leq D_- f(x; \cdot) \text{ on } X\}
\]

and, similar to Chaney’s subdifferential, we define \(\partial^- u f(x) \) to consist of all \(x^* \) for each of which there exist \((x_k)\) in \(X \) and \((x^*)\) in \(X^* \) such that \(x_k \to_u x \) and \(\|x_k^* - x^*\| \to 0 \) with \(x_k^* \in \partial^- f(x_k) \) for all \(k \) (thus \(\partial^- f(x) \) and \(\partial^- u f(x) \) are subsets of \(\partial f(x), \partial u f(x) \), respectively.) Then (3) and (4) would become

\[
D_- f(x; v) \geq 0, \quad \forall v \in X, \|v\| = 1 \text{ or } 0 \in \partial^- f(x)
\]

and

\[
D_- f(x; u) = 0.
\]
A natural generalization of Chaney's result stated above would be

\[D_- f(\bar{x}; u) = 0 \Rightarrow 0 \in \partial^- u f(\bar{x}). \] (9)

In this paper we shall show this is indeed the case for any l.s.c. bounded below function \(f \) on a Banach space which admits a smooth bump function (for definition, see the next section).

For shrinking \(\partial f(\bar{x}) \) and its various subsets along a given unit direction, we shall make use of the concept of \(\beta \)-differential. Recall that [6, 7, 12–14] a bornology of \(X \), denoted by \(\beta \), is a family of bounded subsets of \(X \) which forms a covering of \(X \), i.e., \(\bigcup_{\mathcal{S} \in \beta} S = X \). A (extended real-valued) function \(f : X \to [-\infty, +\infty] \) is \(\beta \)-subdifferentiable at \(x \in X \) if \(f \) is finite at \(x \) and there is an \(x^* \in X^* \) such that

\[\liminf_{t \downarrow 0} \inf_{u \in \mathcal{S}} \left(\frac{f(x + tu) - f(x)}{t} - x^*(u) \right) \geq 0, \quad \forall \mathcal{S} \in \beta. \]

Such an \(x^* \) is called a \(\beta \)-subderivative of \(f \) at \(x \) and the set of all \(\beta \)-subderivatives of \(f \) at \(x \) is denoted by \(\partial_\beta f(x) \) and is called the \(\beta \)-subdifferential of \(f \) at \(x \); i.e.,

\[\partial_\beta f(x) = \left\{ x^* \in X^* : \liminf_{t \downarrow 0} \inf_{u \in \mathcal{S}} \left(\frac{f(x + tu) - f(x)}{t} - x^*(u) \right) \geq 0, \quad \forall \mathcal{S} \in \beta \right\}. \] (10)

If \(-f\) is \(\beta \)-subdifferentiable at \(x \), then \(f \) is said to be \(\beta \)-superdifferentiable at \(x \), and its \(\beta \)-superdifferential at \(x \) is defined by \(\partial^\beta f(x) = -\partial_\beta (-f)(x) \). If \(f \) is both \(\beta \)-subdifferentiable and \(\beta \)-superdifferentiable at \(x \), then \(f \) is said to be \(\beta \)-differentiable at \(x \). This is the case if and only if \(\partial^\beta f(x) = \partial_\beta f(x) \) consists of a single element which will then be denoted by \(f^\beta(x) \). If \(f \) is \(\beta \)-differentiable everywhere on a open subset \(D \) of \(X \), then \(f \) is called \(\beta \)-smooth on \(D \). Notice that if \(\beta = F \) (resp. \(G \)) is the collection of all bounded (resp. finite) subsets of \(X \), then \(\beta \)-differentiability coincides with Fréchet-(resp. Gâteaux-)differentiability. Obviously, if \(f \) is locally Lipschitz near \(x \), then we have always

\[\partial_\beta f(x) \subseteq \partial f(x). \]

In addition, it is easy to show

\[0 \in \partial f(x) \Leftrightarrow (1). \]
On the other hand, Dini's subdifferential \(\partial^- f(x) \) lies between \(\partial f(x) \) and \(\partial_G f(x) \),

\[
\partial f(x) \subseteq \partial^- f(x) \subseteq \partial_G f(x)
\]
and if the dimension of \(X \) is finite, then \(\partial f(x) = \partial^- f(x) \) \[1\].

Now, similar to Chaney's subdifferential, we define

\[
\partial_{\beta} f(x) = \limsup_{x_k \to x} \partial_{\beta} f(x_k),
\]

i.e.,

\[
\partial_{\beta} f(x) = \{ x^* \in X^* : \exists x_k \to u x, \exists x_k^* \in \partial_{\beta} f(x_k), x_k^* \to x^* \text{ in norm} \}.
\]

For \(x^* \in \partial_{\beta} f(x) \) (resp. \(x^* \in \partial_{\beta}^- f(x) \)), we define Chaney's second-order derivative \(f_{\beta}^*(x; x^*, u) \) (resp. \(f_{\beta}^-(x; x^*, u) \)) to be the infimum of all extended real numbers

\[
\liminf_{k \to \infty} \frac{f(x_k) - f(x) - x^*(x_k - x)}{\|x_k - x\|^2}
\]

taken over the set of all sequences \((x_k) \) satisfying the properties

(a) \(x_k \to x \);

(b) \(\forall k, \exists x_k^* \in \partial_{\beta} f(x_k) \) (resp. \(x_k^* \in \partial_{\beta}^- f(x_k) \)), such that \(\|x_k^* - x^*\| \to 0 \).

If condition (b) is dropped from the above definition, one obtains yet another type of derivative which we will denote by \(f_{\beta}^- (x; x^*, u) \) (resp. \(f_{\beta}^-- (x; x^*, u) \)). Note that \(f_{\beta}^-- (x; x^*, u) \leq f_{\beta}^*(x; x^*, u) \) (resp. \(f_{\beta}^- (x; x^*, u) \leq f_{\beta}^- (x; x^*, u) \)), and that

\[
f_{\beta}^- (x; x^*, u) \quad \text{(resp. } f_{\beta}^- (x; x^*, u) \text{)}
\]

\[
= \inf \liminf_{\{x_k\} \to_{x_k \to u x}} \frac{f(x_k) - f(x) - x^*(x_k - x)}{\|x_k - x\|^2}.
\]

In addition, if \(X = \mathbb{R}^* \), we have \(f_{\beta}^*(x; x^*, u) = f_{\beta}^- (x; x^*, u) \) and \(f_{\beta}^- (x; x^*, u) = f_{\beta}^-- (x; x^*, u) \).

The main results of this paper are as follows.

Theorem 2.1 (Necessary Condition Theorem). Let \(X \) be a Banach space with a Lipschitz \(\beta \)-smooth bump function and \(f : X \to (-\infty, +\infty] \) be a bounded below l.s.c. function on \(X \). Let \(\bar{x} \) be a local minimum point of \(f \) on \(X \). Then

\[
D_- f(\bar{x}; u) \geq \liminf_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{\|x - \bar{x}\|} \geq 0, \quad \forall u \in X, \|u\| = 1.
\]
If u is a unit vector such that $D_-f(\bar{x}; u) = 0$, then $0 \in \partial_{\beta u} f(\bar{x})$ and

$$0 \leq f'_{\beta} (\bar{x}; 0, u) \leq f''_{\beta} (\bar{x}; 0, u).$$

Corollary 2.1. Let X be a Banach space with a Lipschitz Fréchet-smooth bump function (in particular, $X = \mathbb{R}^n$) and $f: X \to (-\infty, +\infty]$ be a bounded below l.s.c. function on X. Let \bar{x} be a local minimum point f on X. Then

$$D_-f(\bar{x}; u) \geq \liminf_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{\|x - \bar{x}\|} \geq 0, \quad \forall u \in X, \|u\| = 1. \quad (15)$$

If u is a unit vector such that $D_-f(\bar{x}; u) = 0$, then $0 \in \partial_{\alpha} f(\bar{x})$ and

$$0 \leq f''_{\alpha} (\bar{x}; 0, u) \leq f''_{\alpha} (\bar{x}; 0, u).$$

For stating a sufficient condition theorem, we propose a new concept about a minimum point. $\bar{x} \in X$ is called a **local strict minimum point in the direction** v with $\|v\| = 1$ if

$$\exists \delta_v > 0, \forall t \in (0, \delta_v), \forall w \in B[v, \delta_v], \quad f(\bar{x} + tw) > f(\bar{x}), \quad (16)$$

where $B[v, \alpha] := \{w \in X : \|w - v\| \leq \alpha\}$, the closed ball with centre v and radius $\alpha \geq 0$. $\bar{x} \in X$ is called a **weak local strict minimum point of** f if for any $v \in X$ with $\|v\| = 1$, $\bar{x} \in X$ is a local strict minimum point in the direction v. A local strict minimum point is always a weak one, and vice versa for $X = \mathbb{R}^n$. Similarly, we can also define a “weak local minimum point” of f. In fact, Theorem 2.1 and its corollaries hold for weak local minimum points.

A sufficient condition for a weak local strict minimum point is that

$$D_-f(\bar{x}; v) > 0, \quad \forall v \in X \text{ with } \|v\| = 1. \quad (17)$$

A non-trivial sufficient condition would be for the case that there exists a direction v such that $D_-f(\bar{x}; v) = 0$.

Theorem 2.2 (Sufficient Condition Theorem). Let X be a Banach space with a Lipschitz β-smooth bump function and f be a l.s.c. bounded below function on X. Let $\bar{x} \in X$ satisfy

(i) $\liminf_{x \to \bar{x}} (f(x) - f(\bar{x}))/\|x - \bar{x}\| \geq 0$;

(ii) $f'_{\beta} (\bar{x}; 0, u) > 0$ whenever $D_-f(\bar{x}; u) = 0$ and $\|u\| = 1$.

Then \bar{x} is a weak local strict minimum point of f.
COROLLARY 2.2. Let X be a Banach space with a Lipschitz Fréchet-smooth bump function and let f be a l.s.c. bounded below function on X. Let $\bar{x} \in X$ satisfy

\begin{enumerate}[(i)]
 \item $\liminf_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{\|x - \bar{x}\|} \geq 0$.
 \item $f'(\bar{x}; 0, u) > 0$ whenever $D_-f(\bar{x}; u) = 0$ and $\|u\| = 1$.
\end{enumerate}

Then \bar{x} is a weak local strict minimum point of f.

COROLLARY 2.3. Let f be a l.s.c. bounded below function on $X = \mathbb{R}^n$. Let $\bar{x} \in X$ satisfy

\begin{enumerate}[(i)]
 \item $D_-f(\bar{x}; v) \geq 0$ for all $v \in X$ with $\|v\| = 1$;
 \item $f'(\bar{x}; 0, u) > 0$ whenever $D_-f(\bar{x}; u) = 0$ and $\|u\| = 1$.
\end{enumerate}

Then \bar{x} is a local strict minimum point of f.

Our results on optimality conditions generalize those in [9] dealing with locally Lipschitz functions which in turn improve results given by Chaney [2–4]. Our arguments are based on a generalization of the Ekeland variational principle proposed by [12].

3. A GENERALIZED EKELAND VARIATIONAL PRINCIPLE USING BUMP FUNCTION

A bump function on a Banach space X means a real valued function $b: X \to \mathbb{R}$ with bounded non-empty support, saying $b(0) > 0$, $b(x) = 0$ if $\|x\| \geq 1$. We will need the existence of a Lipschitz β-smooth bump function on X. Replacing b by $\phi \circ b$ if necessary, where $\phi \in C^\infty(\mathbb{R}, [0,1])$ with $\phi(0) = 0$ and $\phi(b(0)) = 1$, it is equivalent to say that the following hypothesis holds:

\begin{enumerate}[(H)]
 \item There exists a Lipschitz β-smooth function $b: X \to [0,1]$ such that
 \begin{enumerate}[(i)]
 \item $b(0) = 1$;
 \item $\|x\| > 1 \Rightarrow b(x) = 0$.
 \end{enumerate}
\end{enumerate}

PROPOSITION 3.1. Assume that a Banach space X admits a Lipschitz β-smooth bump function b with a Lipschitz constant L such that (H) holds. Then

\begin{enumerate}[(P)]
 \item There exists a Lipschitz β-smooth function $\rho: X \to [0,1]$ such that
 \begin{enumerate}[(i)]
 \item $0 \leq \rho(x) \leq L\|x\|$
 \item $\rho(x) \geq \|x\|^2/4$ if $\|x\| \leq 1$.
 \end{enumerate}
\end{enumerate}
Proof. We take
\[\rho(x) = \sum_{n=1}^{\infty} \frac{1}{2^{2n}} [1 - b(2^n x)] . \]

Obviously, \(\rho \) is a Lipschitz \(\beta \)-smooth function with the same Lipschitz constant \(L \) as that of \(b \) and then, for all \(x \in X \),
\[0 = \rho(0) \leq \rho(x) \leq \sum_{n=1}^{\infty} \frac{1}{2^{2n}} = \frac{1}{3} , \]
\[\rho(x) = \rho(x) - \rho(0) \leq L \|x\| . \]

On the other hand, if
\[1/2^{n-1} \geq \|x\| > 1/2^n , \quad n = 1, 2, \ldots , \]
then
\[\rho(x) \geq [1 - b(2^n x)] / 2^{2n} = 1/2^{2n} \geq \|x\|^2 / 4 . \]
Therefore, \(\rho \) satisfies (P). \(\blacksquare \)

Remark 3.1. We have also (P) \(\Rightarrow \) (H). See [12, Proposition 2].

Remark 3.2. If we take
\[\rho(x) = \sum_{n=1}^{\infty} \frac{1}{n^2 2^n} [1 - b(2^n x)] , \]
then for any \(\varepsilon \in (0, 1) \), we can replace \(\rho(x) \geq \|x\|^2 / 4 \) by \(\rho(x) \geq C(\varepsilon) \|x\|^{1-\varepsilon} \), where \(C(\varepsilon) \) is a constant depending on \(\varepsilon \).

Remark 3.3. If we take \(\rho_1(x) = 2/\sum_{n=0}^{\infty} b(nx) \), then \(\rho_1 \) satisfies [8]

\[(P_1) \begin{cases}
\text{There exists a Lipschitz function } \rho_1 : X \to [0, 2] \\
\text{such that} \\
\quad (i) \rho_1 \text{ is } \beta \text{-smooth on } X \setminus \{0\}; \\
\quad (ii) \|x\| \leq \rho_1(x) \leq C \|x\| \text{ if } \|x\| \leq 1 \text{ and } \rho_1(x) = 2 \text{ if } \|x\| \geq 1 .
\end{cases} \]

We shall need the following generalized Ekeland variational principle due to [12].

Theorem 3.1. Let \(X \) be a Banach space, \(F : X \to (-\infty, +\infty] \) be a bounded below l.s.c. function, and \(\lambda > 0 \). Suppose that \(\rho : X \to (-\infty, +\infty] \)
is a lower semi-continuous function such that
\[
\begin{cases}
(i) \ \rho(0) = 0; \\
(ii) \ \forall \{y_k\} \subseteq X, \ \rho(y_k) \to 0 \Rightarrow \|y_k\| \to 0;
\end{cases}
\] (18)

and that \(\delta_n > 0, \ n = 0, 1, 2, \ldots\), is a positive number sequence. Then, for every \(x_0 \in X\) and \(\varepsilon > 0\) with
\[
F(x_0) \leq \inf_X F + \varepsilon,
\] (19)

there exists a sequence \(\{x_n\} \subseteq X\) which converges to some \(x_\varepsilon \in X\) such that
\[
\rho(x_\varepsilon - x_n) \leq \varepsilon / 2^n \delta_0, \quad n = 0, 1, 2, \ldots;
\] (20)
\[
F(x_\varepsilon) + \sum_{n=0}^\infty \delta_n \rho(x_\varepsilon - x_n) \leq F(x_0) \leq \inf_X F + \varepsilon
\] (21)
\[
\forall x \neq x_\varepsilon, \quad F(x) + \sum_{n=0}^\infty \delta_n \rho(x - x_n) > F(x_\varepsilon) + \sum_{n=0}^\infty \delta_n \rho(x_\varepsilon - x_n).
\] (22)

Theorem 3.2. Let \(X\) be a Banach space with a Lipschitz \(\beta\)-smooth bump function, \(F: X \to (-\infty, +\infty]\) be a bounded below l.s.c. function, and \(\lambda > 0\). Then, for every \(x_0 \in X\) and \(\varepsilon > 0\) small enough with
\[
F(x_0) \leq \inf_X F + \varepsilon,
\] (23)

there exists an \(x_\varepsilon \in X\) such that
\[
\|x_\varepsilon - x_0\| \leq 2\sqrt{\lambda},
\] (24)
\[
F(x_\varepsilon) \leq F(x_0) \leq \inf_X F + \varepsilon
\] (25)

and
\[
\forall x \neq x_\varepsilon, \quad F(x) + \Phi_\varepsilon(x) > F(x_\varepsilon) + \Phi_\varepsilon(x_\varepsilon),
\] (26)
where \(\Phi_\varepsilon: X \to \mathbb{R}\) is a Lipschitz \(\beta\)-smooth function such that
\[
\forall x \in X, \quad 0 \leq \Phi_\varepsilon(x) \leq 2\varepsilon \lambda^{-1}
\] (27)

and
\[
\left\|\Phi_\varepsilon'(x)\right\| \leq 2\varepsilon L \lambda^{-1},
\] (28)
where \(L\) is a constant.
Proof. We can assume that \((P)\) holds. Take a sequence \(\{\delta_n\}\) of positive real numbers with \(\delta_0 = \varepsilon / \lambda = \sum_{n=1}^\infty \delta_n\). From Theorem 3.1, there exists a sequence \(\{x_n\} \subseteq X\) which converges to some \(x_0 \in X\) such that
\[
\rho(x_n - x_0) \leq \varepsilon / 2^n \delta_0, \quad n = 0, 1, 2, \ldots ;
\]
and
\[
F(x_n) + \sum_{n=0}^{\infty} \delta_n \rho(x_n - x_0) \leq F(x_0) \leq \inf_X F + \varepsilon,
\]
and
\[
\forall x \neq x_0, \quad F(x) + \Phi_\varepsilon(x) > F(x_0) + \Phi_\varepsilon(x_0),
\]
where
\[
\Phi_\varepsilon(x) = \sum_{n=0}^{\infty} \delta_n \rho(x - x_n).
\]
From (30) and (31), we obtain (25) and (26). Then, when \(\varepsilon\) is small enough, (29) and (P) imply
\[
\|x_n - x_0\| \leq \sqrt{\lambda / 2^n} - \varepsilon
\]
which includes (24) when \(n = 0\).

On the other hand, we have
\[
0 \leq \Phi_\varepsilon(x) = \sum_{n=0}^{\infty} \delta_n \rho(x - x_n) \leq \sum_{n=0}^{\infty} \delta_n = 2 \varepsilon \lambda^{-1}
\]
and
\[
\|\Phi_\varepsilon'(x)\|^* \leq \sum_{n=0}^{\infty} \delta_n \|\rho'(x - x_n)\|^* \leq 2 \varepsilon L \lambda^{-1},
\]
where \(L\) is a Lipschitz constant of \(\rho\). Hence, (27) and (28) are proved.

Remark 3.4. Replacing \(\rho\) by \(\rho_1\) in \((P)\), we can replace (24) by \(\|x_n - x_0\| \leq \lambda\) as in the classic Ekeland variational principle. But in this case, \(\Phi_\varepsilon\) may not be \(\beta\)-differentiable at \(x_0\).

Remark 3.5. A similar result without (24) appeared in [6, 7].

The key points of our results are the following two theorems.

Theorem 3.3. Let \(X\) be a Banach space with a Lipschitz \(\beta\)-smooth bump function, \(f: X \to (-\infty, +\infty]\) be a bounded below l.s.c. function. Let \(D \subseteq X\) be closed, \(y_0 \in D\) with \(f(y_0)\) finite, and \(\varepsilon, t > 0\) such that
\[
f(y_0) \leq \inf_D f + \varepsilon t.
\]
Then there exist a Lipschitz β-smooth function g and $z_0 \in D$ such that

(i) $\forall x \in X, |g(x)| \leq 3\varepsilon t$ and $\|g'(x)\|_* \leq 3L\sqrt{\varepsilon t}$;
(ii) $f(x) + g(x) \geq f(z_0) + g(z_0), \forall x \in D$;
(iii) $f(z_0) \leq f(y_0)$;
(iv) $\|z_0 - y_0\| \leq \sqrt{\varepsilon t}$.

Proof. We can assume that (H) holds. Define

$$h(x) = \begin{cases} f(x) - 2\varepsilon t b \left(\frac{x - y_0}{\varepsilon t} \right) & \forall x \in D, \\ +\infty & \forall x \in X \setminus D, \end{cases}$$

where b is as in (H) with a Lipschitz constant L. Then h is l.s.c. bounded below and

(a) $h(y_0) = f(y_0) - 2\varepsilon t \leq \inf_D f - \varepsilon t$,
(b) $h(x) = f(x) \geq \inf_D f, \forall x \in D \setminus B[y_0, \sqrt{\varepsilon t}]$.

If y_0 is a minimum point of h on D, then the theorem is seen to hold by taking $g(x) = -2\varepsilon t b(x - y_0)/\sqrt{\varepsilon t}$ and $z_0 = y_0$. Therefore, we may suppose that $h(y_0) > \inf_D h$. Then take ξ with

$$0 < \xi < \min\{\varepsilon t, L\sqrt{\varepsilon t}\}$$

such that

$$h(y_0) > \xi + \inf_D h.$$

By Theorem 3.2, there exist a Lipschitz β-smooth function ϕ and $z_0 \in X$ such that

$$\forall x \in X, \quad 0 \leq \phi(x) \leq \xi/2,$$

$$\|\phi'(x)\|_* \leq \xi,$$

and

$$\forall x \neq z_0, \quad h(x) + \phi(x) > h(z_0) + \phi(z_0).$$

Note that z_0 must be in D and

$$h(z_0) \leq h(x) + \phi(x) - \phi(z_0) \leq h(x) + \xi, \quad \forall x \in D.$$

This implies by virtue of (a) that

$$h(z_0) \leq \inf_D h + \xi < h(y_0) < \inf_D f.$$
It follows from (b) that \(z_0 \in B[y_0, \sqrt{e_1}] \), showing (iv). By (32), we also have
\[
 f(z_0) - 2e t b \left(\frac{z_0 - y_0}{\sqrt{e_1}} \right) < f(y_0) - 2e t b \left(\frac{y_0 - y_0}{\sqrt{e_1}} \right) = f(y_0) - 2e t ,
\]
implying (iii) as \(0 \leq b(x) \leq 1 \). Finally by the minimality of \(h + \phi \) at \(z_0 \), we see that \(z_0 \) is a strict minimum point of \(f(x) - 2e t b(h(x_0)/\sqrt{e_1}) + \phi(x) \) on \(D \). Hence (i) and (ii) hold by taking \(g(x) = -2e t b(h(x_0)/\sqrt{e_1}) + \phi(x) \) for all \(x \).

Remark 3.6. Instead of applying Theorem 3.2, one can alternatively apply the main result of [6, 7].

Theorem 3.4. Let \(X \) be a Banach space with a Lipschitz \(\beta \)-smooth bump function, \(f : X \to (-\infty, +\infty) \) be a bounded below l.s.c. function. Let \(\bar{x} \in X \) with \(f(\bar{x}) \) finite, \(u \) be a unit vector in \(X \), and \(\{x_k\} \) be a sequence convergent to \(\bar{x} \) in the direction \(u \). Let \(1 > e_k \downarrow 0, \ t_k > 0 \) with \(\|x_k - \bar{x}\|/t_k \to 1 \), and \(\gamma_k > 0 \) be such that \(3t_k \leq \gamma_k \) and
\[
 f(x_k) \leq \inf_{B_{\bar{x}}} f + e_k t_k , \quad \forall k ,
\]
where \(B_{\bar{x}} := B[\bar{x}, \gamma_k] \), the closed ball with centre \(\bar{x} \) and radius \(\gamma_k \). Then \(0 \in \partial_{\mu^k} f(\bar{x}) \), and in fact there exist sequences \(\{z_k\} \) and \(\{z_k^k\} \) with each \(z_k^k \in \partial_{\mu^k} f(z_k) \) such that \(z_k \to_{\mu} \bar{x} \), \(\|z_k^k\| \to 0 \), and \(f(z_k) \leq f(x_k) \) for all \(k \).

Proof. Without loss of generality we may suppose that \(\|x_k - \bar{x}\| < 2t_k \) for all \(k \). For each \(k \), by Theorem 3.3 (applied to \(x_k, B_{\bar{x}} \) in place of \(y_0, D \)), there exist Lipschitz \(\beta \)-smooth function \(g_k \) and \(z_k \in B_{\bar{x}} \) such that
\[
 (i) \quad \forall x \in X , \ g_k(x) \leq 3e_k t_k \text{ and } \|g'_k(x)\| \leq 3L_{\sqrt{\varepsilon_k}} ;
\]
\[
 (ii) \quad \forall x \in B_{\bar{x}} , \ f(x) + g_k(x) \geq f(z_k) + g_k(z_k) ;
\]
\[
 (iii) \quad f(z_k) \leq f(x_k) ;
\]
\[
 (iv) \quad \|z_k - x_k\| \leq \sqrt{\varepsilon_k} t_k .
\]
By (iv) it follows that
\[
 \|z_k - \bar{x}\| \leq \|z_k - x_k\| + \|x_k - \bar{x}\| \leq \left(\sqrt{\varepsilon_k} + 2 \right) t_k \leq 3t_k ,
\]
showing that \(z_k \in \text{int } B_{\bar{x}} \). Moreover, since
\[
 \left\| \frac{z_k - \bar{x}}{t_k} - \frac{x_k - \bar{x}}{t_k} \right\| = \left\| \frac{z_k - x_k}{t_k} \right\| \leq \sqrt{\varepsilon_k} \to 0 ,
\]
and \((x_k - \bar{x})/t_k \to u \), we have \((z_k - \bar{x})/t_k \to u \), showing that \(z_k \to_{\mu} \bar{x} \). Since \(z_k \) is an interior point of \(B_{\bar{x}} \), (ii) implies that
\[
 0 \in \partial_{\mu}(f + g_k)(z_k) = \partial_{\mu} f(z_k) + g'_{\mu^k}(z_k) .
\]
Letting \(z_k^* = -g_k' (z_k) \), we see that \(z_k^* \in \partial f(z_k) \) and \(\|z_k^*\| \to 0 \) by (i). Hence, \(0 \in \partial \mu f(x) \).

Corollary 3.1. Let \(X, f \) be as in Theorem 3.3. Let \(x = x \in X \), \(1/4 > \varepsilon_k \downarrow 0 \), and \(\delta_k > 0 \) be such that

\[
f(x) \leq f(x) + \varepsilon_k \|x - \bar{x}\|, \quad \forall x \in B[\bar{x}, \delta_k].
\] (33)

Suppose that \(u \in X \) is a unit vector such that \(D f(x; u) = 0 \). Then \(0 \in \partial \mu f(x) \).

Proof. Since \(D f(x; u) = 0 \) for each \(k \), we can find inductively sequences \(t_k \downarrow 0 \) and \(u_k \to u \) such that \(3t_k < \delta_k \) and

\[
f(x + t_k u_k) - f(x) < \varepsilon_k t_k.
\]

Let \(x_k = x + t_k u_k \) and \(\gamma_k = 3t_k \). If \(x \in B[\bar{x}, \gamma_k] \), then

\[
f(x_k) < f(x) + \varepsilon_k t_k \leq f(x) + \varepsilon_k \|x - \bar{x}\| + \varepsilon_k t_k \leq f(x) + 4 \varepsilon_k t_k.
\]

By Theorem 3.4 (applied to \(4 \varepsilon_k \) in place of \(\varepsilon_k \)), we have \(0 \in \partial \mu f(x) \).

Equivalently, Corollary 3.1 can be restated in the following form.

Corollary 3.1. Let \(X, f \) be as in Theorem 3.3. Let \(x \in X \) satisfy

\[
\liminf_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{\|x - \bar{x}\|} \geq 0.
\] (34)

Suppose that \(u \in X \) is a unit vector such that \(D f(x; u) = 0 \). Then \(0 \in \partial \mu f(x) \).

Proof. Let \(\varepsilon > 0 \). Then there exists \(\delta > 0 \) such that

\[
f(x) \leq f(x) + \varepsilon \|x - \bar{x}\|, \quad \forall x \in B[\bar{x}, \delta].
\]

For, otherwise, there exists a sequence \((x_k) \) such that \(\|x_k - \bar{x}\| \leq 1/k \), and

\[
f(x) > f(x_k) + \varepsilon \|x_k - \bar{x}\|, \quad \forall k.
\]

Note that \(x_k \neq \bar{x} \) and

\[
-\varepsilon \geq \frac{f(x_k) - f(\bar{x})}{\|x_k - \bar{x}\|},
\]

contradicting (34). This shows that for any sequence \(\{\varepsilon_k\} \) with \(\varepsilon_k \downarrow 0 \), there exists \(\{\delta_k\} \) with \(\delta_k > 0 \) satisfying (33). Thus the result follows from Corollary 3.1.
Remark 3.7. Conversely it is easy to show that if (33) holds with some \(\{e_k\} \) and \(\{\delta_k\} \), then (34) must hold.

Corollary 3.2. Let \(f, X \) be as in Theorem 3.3, \(\bar{x} \in X \), and suppose (34) holds. Let \(u \) be a unit vector and \(\{x_k\} \) be a sequence convergent to \(\bar{x} \) in the direction \(u \) such that \(f(x_k) \leq f(\bar{x}) \) for all \(k \). Then \(0 \in \partial_{\bar{x}}f(\bar{x}) \) and \(f_{\bar{x}}^+(\bar{x};0,u) \leq 0 \).

Proof. Take \(1/4 > e_k \downarrow 0 \). By the proof of Corollary 3.1*, there exists a sequence \(\{\delta_k\} \) with \(\delta_k > 0 \) such that (33) holds. Without loss of generality we may suppose that \(3\|x_k - \bar{x}\| < \delta_k \) for all \(k \). Let \(t_k = \|x_k - \bar{x}\| \) and \(\gamma_k = 3t_k \). Then, whenever \(x \in B[\bar{x}, \gamma_k] \), one has from (33) that

\[
f(x_k) \leq f(\bar{x}) \leq f(x) + e_k \gamma_k = f(x) + 3e_k t_k, \quad \forall k.
\]

By Theorem 3.4, \(0 \in \partial_{\bar{x}}f(\bar{x}) \) and there exist sequences \(\{z_k\} \) and \(\{z^+_k\} \) with \(z^+_k \in \partial f(z_k) \), \(f(z_k) \leq f(x_k) \leq f(\bar{x}) \) for all \(k \), such that \(z_k \to u \bar{x} \) and \(\|z^+_k\| \to 0 \). Therefore,

\[
f^+_u(\bar{x};0,u) \leq \liminf_{k \to \infty} \frac{f(z_k) - f(\bar{x})}{\|z_k - \bar{x}\|^2} \leq 0.
\]

4. PROOF OF THE MAIN RESULTS

Proof of Theorem 2.1. The first conclusion follows from Corollary 3.1 with any \(e_k \downarrow 0 \) and the last inequality from the definition. Thus we need only prove the first inequality. Let \(x_k \to u \bar{x} \). Then

\[
\liminf_{k \to \infty} \frac{f(x_k) - f(\bar{x})}{\|x_k - \bar{x}\|^2} \geq 0,
\]

because \(f(x_k) \geq f(\bar{x}) \) by minimality of \(\bar{x} \). This implies that \(f^+_u(\bar{x};0,u) \geq 0 \).

Corollaries 2.1 and 2.2 are the consequences of Theorem 2.1 by using (11) and \(X = \mathbb{R}^n \).

Proof of Theorem 2.2. Suppose not: there exist a unit vector \(u \) and a sequence \(\{x_k\} \) in \(X \) such that \(x_k \to u \bar{x} \), \(x_k \neq \bar{x} \), and \(f(x_k) \leq f(\bar{x}) \). Then \(D_-f(\bar{x};u) \leq 0 \). But by (i), \(D_-f(\bar{x};u) \geq 0 \); hence, \(D_-f(\bar{x};u) = 0 \). Thus, \(f^-u(\bar{x};0,u) > 0 \) by (ii), contradicting Corollary 3.2.
Corollary 2.3 follows from Theorem 2.2 by taking $\beta = F$, the family of all bounded subsets of X and by noting

$$f^u_\beta(x;0,u) \geq f^\ast_\beta(\bar{x};0,u), \quad 0 \in \partial^+_u f(\bar{x}) \subseteq \partial^+_u f(\bar{x})$$

as readily verified from the definitions. Finally Corollary 2.4 follows from Corollary 2.3 as, for $X = \mathbb{R}^n$, the assumptions of these corollaries are equivalent as well as their conclusions.

REFERENCES