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Suppose that P is a convex polyhedron of finite volume in the hyperbolic 3-space such that 
each dihedral angle is an integer (> I) submultiple of x. We show that the abelianization of any 

normal torsion-free finite index subgroup ofthe polyhedral group associated to P is not isomorphic 

to L, the group of integers 
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1. Introduction 

A polyhedron in the hyperbolic 3-space, W” = {(x +iiy, z): x, y, z E R, z > 0}, is in 

this paper assumed to be a convex subset of W’ of finite volume with finitely many 

faces such that each dihedral angle is rTT/ n for some positive integer n (> 1). Polyhedra 

of this type have been classified in [l] and [12]. 

The polyhedral group associated to a polyhedron is defined to be the subgroup 

of the orientation preserving isometries in the reflection group generated by the 

reflections of W’ in the planes containing the faces of the polyhedron. A polyhedral 

group admits a presentation which can be easily written down from a diagram of 

the polyhedron [5]. Generators are the rotations about the edges of the polyhedron, 

and, in addition to the standard defining relation that a proper power of each 

rotation is the trivial element, each vertex induces a relation which says that the 

product of the rotations about the edges sharing the vertex is the identity of the group. 

A polyhedral group is a discrete subgroup of PSL(2, C), the full group of orienta- 

tion preserving isometries of I?. A torsion-free finite index (t.f.i.) subgroup of a 

polyhedral group is discrete in PSL(2, C) and it gives a hyperbolic 3-manifold of 

finite volume as its orbit space of the action on W3. The subgroup is isomorphic to 

the fundamental group of the 3-manifold. The subgroups of polyhedral groups have 
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been studied by many people [2,4,7, 10, 131, and the first few examples of hyperbolic 

3-manifolds were discovered by studying the subgroups. If the polyhedron has an 

ideal vertex, then the hyperbolic 3-manifold corresponding to a t.f.i. subgroup of 

the polyhedral group is a link complement in a closed 3-manifold. The complements 

of many links in the 3-sphere arise this way, and among knots the figure-eight knot 

is such an example. 

The figure-eight knot group is an index 12 subgroup of a tetrahedral group [lo], 

[12]. This seems to be the only knot group known to be contained in a polyhedral 

group. Other known t.f.i. subgroups of polyhedra1 groups have abelian rank greater 

than one, or if the rank is one, the abelianization contains a torsion part. It might 

be conjectured that the figure-eight knot group is the only knot group contained in 

a polyhedral group. The main theorem of this paper shows that a weaker conjecture 

is true: No knot group is a normal finite index subgroup of a polyhedral group. 

Thus, the figure-eight knot group is not a normal subgroup of the tetrahedral group. 

Theorem. No polyhedral group contains a normal t.ji. subgroup whose abelianization 

is isomorphic to Z. 

Corollary. No knot group is contained in a polyhedral group as a normal$nite index 

subgroup. 

A knot group is torsion-free and the abelianization is isomorphic to Z. The 

Corollary follows from the Theorem. 

It is shown in [9] that if a polyhedra1 group contains a normal t.f.i. subgroup of 

rank one (the rank of the abelianization), then the polyhedron is a special kind 

described in the following definition. 

Definition. A polyhedron P (or the associated polyhedral group G) is exceptional if 

(i) P has exactly one ideal vertex and it is of type (2,2,2,2) and 

(ii) G has an index 2 subgroup, which does not contain any one of the four 

standard generators (rotations of rr about the edges sharing the vertex) of the 

stabilizer of the ideal vertex. 

Remark. The Theorem is true for the 3-dimensional Euclidean polyhedral groups, 

because the arguments in [9] work for the Euclidean polyhedral groups, and no 

Euclidean groups are exceptional. But the Theorem is not as interesting as in the 

hyperbolic case since there are only a few Euclidean polyhedra [6]. 

There are four types of idea1 vertices: (2,2,2,2), (2,3,6), (2,4,4) and (3,3,3) 

[ 121, where n divided by an integer in the description is the dihedral angle between 

two adjacent faces (faces meeting at an edge) sharing the vertex. There are four 



Y. W. Lee / Subgroups of polyhedral groups 27 

types of regular vertices: Type 1: (2,2, n), n > 1; type 2: (2,3,3); type 3: (2,3,4); 

type 4: (2,3,5). 

To prove the Theorem, we need to show that an exceptional polyhedral group 

cannot contain a normal t.f.i. subgroup whose abelianization is isomorphic to Z. 

We do this by proving two propositions which contain the Theorem. 

Proposition 1. If an exceptional polyhedral group contains a normal t.ji. subgroup of 

rank 1, then all the regular vertices of the polyhedron are of type 1. 

Remark. If there is no exceptional polyhedron whose regular vertices are of type 

1, then Proposition 1 contains the Theorem. But as the example in Fig. 1 shows, 

there are many exceptional polyhedra with only type 1 regular vertices. In describing 

a polyhedron or a union of its copies by a diagram, we use the following convention 

in this paper. Let P be a polyhedron or a union of its copies. In all cases we consider 

in this paper, the pair (P, JP) is homeomorphic to (W’, R’), where lQ2 = 

{(x + iy, 0): x, y E R} = &Hl’. We will call R2 the complex plane or the x-y-plane. To 

describe P, we draw the complex structure (faces, edges, vertices) of aP on the 

x-y-plane after JP is identified with the plane by a homeomorphism of the pair 

(P, dP) in a convenient way. The dihedral angle of an edge can be computed by 

dividing T by the integer assigned to the edge in the diagram. Note that a polyhedron 

P is uniquely determined by the complex structure of dP and the dihedral angles 

of P [l]. We make statements about P, while viewing P as it sits canonically (up 

to isometries) in the hyperbolic 3-space or as the whole of W’ after the pair (P, aP) 

is identified with (W’, R’). We will not identify the viewpoint in each 

actually, we will move back and forth between these two viewpoints. 

Fig. 1. 

case and, 

The polyhedron in Fig. 1 has 8 faces, 17 edges and 11 vertices. The integers n, , 

n2, n3, K, and n5 may be any positive integers greater than 1, where n3 is greater 

than 2. The existence of the polyhedron in the hyperbolic 3-space can be easily 

verified by checking the necessary and sufficient conditions given in [I]. Let K be 
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the subgroup of the polyhedral group generated by the rotations of angle 2n/ni 

about the edge whose dihedral angle is 7~1 n,, 1 c i G 5. Then K is an index 2 subgroup 

of the polyhedral group and it does not contain the rotation of angle n about any 

one of the four edges containing the ideal vertex ~0. Therefore, the polyhedron is 

an exceptional polyhedron with regular vertices only of type 1. 

Proposition 2. Suppose that all the regular vertices qf an exceptional polyhedron are 

of type 1. If the polyhedral group contains a normal t.,f:i. subgroup of rank 1, then the 

abelianization of the subgroup contains torsion elements. 

The above two propositions are proved by using heavily some of the basic 

constructions and theorems from transformation group theory. To explain the main 

idea, let N be a normal t.f.i. subgroup of an exceptional polyhedral group G, such 

that the rank of the abelianization of N is 1. Then there exists a special index 2 

subgroup K of G containing N. The quotient group K/N acts naturally on the 

orbit space W’/ N and the orbit space of this action is W’/ K. By viewing W’/ K as 

the space obtained from a fundamental domain of K by identifying the faces, we 

prove that W’/ K is homeomorphic to the open solid torus, S’ x 8’ (Lemma 4). On 

the other hand, W’/ N is an open 3-manifold, and there exists a compact 3-manifold 

Y containing W’/ N such that in Y = Y-W’/ N = S’ x S’. We observe that the action 

of K/N on W’/N extends to an action of Y. The restriction of the extended 

action of K/N over ii Y turns out to be free (Lemma 5), and the orbit space of this 

action is homeomorphic to S’ x S’. It follows that K/N is an abelian group 

isomorphic to H,@h, for some positive integers p and 4 (Lemma 6). This implies 

that given any regular vertex u of P the stabilizer S, of u in G is either abelian or 

has an index 2 abelian subgroup. Type 1 regular vertices are the only ones with this 

property, thus proving Proposition 1. 

The proof of Proposition 2 is done by a contradiction. Suppose that G contains 

a normal t.f.i. subgroup N whose abelianization is isomorphic to Z. Proposition 1 

and the related lemmas hold under the new hypothesis. In Lemma 7, we prove that 

there exists an edge of P whose dihedral angle is -rr/n, n > 2. The lemma allows us 

to pick an edge E in P with the properties given in Section 3.4. From the properties, 

a rotation e about E is an element of K, and e can be regarded as an element of 

K/N. In Lemma 8, it is proven that the fixed point set of any non-trivial element 

of K/N acting on W’/ N is homeomorphic to a circle when it is not empty. By 

studying the fixed point set of e, we prove that K/N is cyclic (Lemma 10). Using 

this lemma, we show that there exists an element of K/N such that the fixed point 

set of the element contains two disjointly embedded circles in W’/ N, thus contradict- 

ing Lemma 8. The details of the proof of Proposition 1 and 2 are given in the 

Sections 2 and 3, respectively. Finally, it may be interesting to find more knot groups 

contained in polyhedral groups as finite index subgroups or to prove that the 

figure-eight knot group is the only such group. 
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2. Proof of Proposition 1 

Let P be an exceptional polyhedron and G the associated polyhedral group. 

Suppose that G contains a normal t.f.i. subgroup N of rank 1. It is shown in the 

proof of the main Theorem, Lemma 1 and Lemma 2 of [9], that N is contained in 

an index 2 subgroup K of G, where K does not contain any one of the standard 

generators of the stabilizer of the ideal vertex of P and the rank of H,(W3/ K; Z) 

is 1. We give a sketch of the proof given in [9] for this assertion to introduce the 

notation. 

G/ N can be regarded as acting on W’/ N simplicially and the orbit space of this 

action is homeomorphic to W’/ G, where W’/ G is homeomorphic to the open 3-ball. 

On the other hand, H,(W’/N; Z)/Tor=Z (/Tar means modulo the torsion sub- 

group), since the rank of N is 1. The action of G/ N on W’/ N induces a homomorph- 

ism $: G/N +Aut(H,(W’/ N; Z)/Tor) -;Z,, and 9 is not a trivial homomorphism 

by a theorem in Section 3 of [3]. Let r : G + G/N A Z2 be the composition of the 

quotient map with Cc, and define K = Ker(1‘). From the construction, K is an index 

2 subgroup of G containing N and H, (W’/ K; Z)/Tor = Z. If K contains one of the 

four standard generators of the stabilizer of the ideal vertex of P, then H, (W’/ K; Z) = 

0 by the proof of Lemma 2 of [9]. Therefore, K does not contain any one of the 

standard generators, thus proving the above assertion. 0 

2.1. Let A, B, C and D be the faces of P containing the ideal vertex ~3 as in Fig. 2. 

The diagram does not show all of aP. (Recall the convention for describing a 

polyhedron as explained in the Introduction.) For example, the face B may contain 

many more edges than the 3 edges shown in the diagram. 

We denote by d the reflection of W’ in D and by r the rotation of rr about the 

edge contained in C and D. Note that d E G but r E G. It is easy to see that P u d(P) 

is a fundamental domain of G and Q = P u d(P) u r(P) u rd (P) is a fundamental 

domain of K, since {l, r} is a set of right coset representatives of K in G [8]. The 

second diagram in Fig. 2 describes Q, where the face C of P is contained in the 
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y-z-plane and the face D is contained in the x-z-plane. Now lH?/K is homeomorphic 

to Q with faces identified by elements of K. We say that a face F of Q is identified 

to a face F’ by K if there exists g in K such that g(Q) n Q is a union of faces of 

Q and g(F) = F’. Every face of Q is identified by K to some other face of Q. If 

U is a union of faces of Q, and if U is identified with another union V of faces 

by elements of K, then we say that U is identified with V by K. 

Given an edge E of P with dihedral angle rrTT/ n, let a(E) be the rotation of 2~1 n 

about E. The definition does not give a(E) uniquely because we could have two 

distinct elements of G for a(E) depending on the direction of the rotation, with 

one the inverse of the other. It is necessary to choose the correct direction for some 

of the arguments of this paper to work. To save space, we will assume that the 

correct choice has been made whenever it is necessary without mentioning it. We 

define E to be a negative edge if u(E) E K and a positive edge otherwise. Define 

an equivalence relation - for the set of positive edges of P; for two positive edges 

E and E’, E - E’ if there exists a sequence of positive edges E,, EZ, _ . . , Ek such 

that E = E,, E’= Ek, and E, and E,,, meet at a regular vertex for i = 1,2, . . . , k - 1. 

If E, E’ and E” are edges sharing a regular vertex of P, then a( E)a(E’)a( E”) = 1 

in G [S]. Therefore, either all three edges are negative or exactly two edges are 

positive since G/K = Z,. Hence an equivalence class of - is an open arc or is 

homeomorphic to a circle, and there are exactly two open arcs in the set of all 

equivalence classes. An example of the equivalence classes is given in Fig. 3. 

Fig. 3 

We may assume without loss of generality that the two open arcs are horizontal 

in the x-y-plane as in the figure, where the x-axis is assumed to be horizontal. Let 

J be the set of equivalence classes of -, and extend the definition of negative edges, 

positive edges and - to the edges of Q, i.e. an edge E of Q is negative if a(E) E K 

etc. Let J’ be the set of equivalence classes of - on the set of positive edges of Q. 

The following lemma is the key to the understanding of the identification of faces 

of Q by K and in turn, W’/K. 

Lemma 1. Let Fund F’ be faces of Q meeting at an edge E. Suppose that F is identijied 

with d (F)( rd (F)) by an element g E K such that g = d (rd) when restricted to F. Then 

(a) if E is a negative edge, then F’ is identiJed with d( F’)(rd( F’)) by an element 

h E K such that h = d (rd) when restricted to F’, and 
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(b) if E is a positive edge, then F’ is identi$ed with rd (F’)( d( F’)) by an element 

h’E K such that h’= rd (d) when restricted to F’. 

Proof. Suppose that F is identified with d(F) by g E K and g = d when restricted 

to F. Suppose that E is a negative edge. Let h = a(d( E))g. Since K is a normal 

subgroup of G, a(d (E)) = ga( E)g-’ E K and h E K. Now h identifies F’ with d (F’) 

and h = d when restricted to F’. This claim is easily verified by studying the sectional 

view of Q near E and its images as in Fig. 4, where Q is cut by a plane perpendicular 

to the edge E. If we denote the dihedral angle along E by 0, then the rotation, 

a(d( E)), of 20 about d(E) identifies g( F’) with d( F’), thus h identifies F’ with 

d( F’). From the construction of h, Q n h(Q) c 8Q and h = d when restricted to F’. 

This proves the first statement (given without the parentheses) of part (a). 

To prove the first statement of part (b), suppose that E is a positive edge. Let 

h’=a(rd(E))rg. Then cT(rd(E))=rdc(E)rd$ K and rg K. Since K is an index 2 

subgroup of G, h’E K, and h’ identifies F’ with rd( F’) such that h’= rd when 

restricted to F’ (refer to Fig. 4). The rest of the cases of the lemma can be shown 

similarly. q 

rd(E) 

Q 

F F’ v 0 

E 

-. 

d(E) 
Fig. 4. 

It follows from Lemma 1 that J’ is symmetric in the x- and y-axes when Q is 

described by the diagram in Fig. 2. Therefore, J’ is completely determined by J; 

J’= (JQ) n (J u d(J) LJ rd(J) u r(J)) (see Fig. 5). To verify this claim, let s be the 

rotation of 7~ about the common edge of the faces A and D of P Now rs is an 

element of K and it identifies the face A with rd(A). Furthermore, rs = rd when 

restricted to A. Suppose that F is a face of P adjacent to A. By Lemma 1, F is 

identified with d(F) or rd( F) by an element of K depending on whether the 

common edge of F and A is positive or negative. It is clear by induction that each 
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Q 

Fig. 5. 

face F of P is either identified to d(F) or rd(F) by K. We now make the following 

observations: Let E be an edge of (aQ) n P. From the above, we can derive that 

there exists g E K such that g identifies E with d(E) or rd( E). Suppose that E is 

identified with d(E). Then gv(E)g-’ =a(d(E)). Hence a(d(E))~ K if and only 

if a(E) E K. On the other hand, rg m’ra(rd(E))rgr=a(r(E)). Hence a(rd(E))~ K 

if and only if ~(r( E)) E K. If E is identified with rd( E), we can show similarly that 

~(E)EK ifandonlyifa(rd(E))EK,anda(d(E))EK ifandonlyifa(r(E))EK. 

Finally, for any edge E of ([IQ) n P, a( r( E)) = w( E)r. Hence a( r( E)) E K if and 

only if c(E) E K. this implies that /’ is symmetric in the origin ((0,O) in the 

x-y-plane). Now the above observations imply that /’ is symmetric in the x- and 

y-axes. 

2.2. We assume that ;)Q is identified with the x-y-plane as in Fig. 5 and let 

R = ?IQ - J’. If U is a component of R, then U is an open subset of the plane. The 

closure of U, a, has a boundary consisting of open arcs and circles, where an open 

arc or a circle is a union of edges of Q. 

Definition. Let U be a component of R. If a component of a~!? is an open arc, then 

define the union of all open arcs in i)Cl to be the outer boundary of U and the union 

of circles in 3 fl to be the inner boundary of U. If every component of i, 0 is a circle, 

Fig. 6 
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then there exists a largest circle in aU which contains the rest of the circles in its 

interior. We call the maximal circle the outer boundary and the union of the rest 

of the circles the inner boundary. 

Figure 6 shows three components of R. lJ3 has an open arc as the outer boundary, 

and a union of two circles as the inner boundary. U, has an empty inner boundary. 

Definition. Let U, and U, be two components of R. We call U, a predecessor of 

U, if the outer boundary of U, and the inner boundary of U2 have a common edge. 

In Fig. 6, U, is a predecessor of Uz and U, is a predecessor of U,. We observe 

that a component has at most one predecessor. Therefore, given a component U, 

there exists a unique sequence of components, U, = U, U,, . . , U, such that U,,, 

is a predecessor of Ui, 1s is k - 1, and U, does not have a predecessor. 

Definition. In the above notation, we call U, the maximal component associated to 

U and k the depth of U. A component without a predecessor will be called a maximal 

component. 

It is clear from the diagram of i)Q that the faces B, d(B), r(B) and rd(B) belong 

to distinct maxima1 components. On the other hand, the faces A and rd(A) belong 

to one maxima1 component, and the faces d(A) and r(A) belong to another maximal 

component. Hence there are at least six maximal components in R. These are denoted 

by V, , Vi, V,, Vi,, V, and V, in Fig. 5. In addition to these maximal components, 

if the face D contains negative edges, then there exist more maximal components 

like V, and V, in Fig. 5. We call this type of maxima1 components inessential 

components. An inessential component is characterized as a maximal component 

containing a negative edge of D or r(D). We partition some of the maximal 

components as follows. 

For any inessential component V, 

Vi= Vn{(x+iy): ysO}, V = CIosure( V- V’), 

Vc= V,n{(x+iy): x20}, VT = Closure( V, - V:), 

Vl= V,n{(x+iy): x20}, Vi = Closure( V, - V,‘). 

The following two lemmas describe the face identification on Q by K in terms 

of the components in R. 

Lemma 2. Suppose that U, and U, are components of R (the components could be 

the same) and F is a face of Q contained in U, . If F is identified with a ,face F’ in 

U, by an element g E K such that g = d or rd when restricted to F, then U, is identified 

with U2 by elements of K such that the identification is equivalent to the one induced 

by d or rd, respectively. 
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Proof. If fl, = F, then the lemma holds trivially. Suppose that a, # F. Then there 

exists a face F; in .!?, such that F’ and Fi share a negative edge. If F is identified 

with F’ by g, where g = d or rd when restricted to F, then by Lemma 1, F’, is 

identified with d (Fi) or rd (Fi), respectively, such that the identification is equivalent 

to the one induced by d or rd, respectively. The proof is completed inductively 

since every face in I.?> can be joined to F’ by a finite sequence of faces in iI,, where 

any two consecutive faces share a negative edge. 0 

Lemma 3. Suppose that U is a component of R, Vis the maximal component associated 

to U, and k is the depth of U. 

(a) Suppose that V= V,, V, or an inessential component. 

(i) 0 is identi$ed with d( 0) by elements of K ifk is odd and the identification 

is equivalent to the one induced by d. 

(ii) 0 is identified with rd( 0) if k is even and the identification is equivalent 

to the one induced by rd. 

(b) Suppose that V = V, or V,. 

(i) Uis identified with rd( U) by K ifk is odd and the identtfication is equivalent 

to the one induced by rd. 

(ii) I!? is identified with d(U) if k is even and the identijcation is equivalent to 

the one induced by d. 

Proof. We use induction on k. 

(a) Suppose that V = V, and k = 1. (The argument is similar if V = V, and k = 1.) 

Let t be the rotation of T about the edge common to B and C. We also use the 

rotations, r and s, defined in Section 2.1. Since r G K and t & K, rt E K. Now rt 

identifies the face B with d(B) in v{ and rt = d when restricted to B. By Lemma 

2, v, is identified with d( V,) = V{ and the identification is equivalent to the one 

induced by d. 

Suppose that V is an inessential component, say V3, and k = 1. (The argument 

is similar for any inessential component.) There exists a face F in V, such that F 

and d(F) share a negative edge, say E. We may imagine that F is a face of V: and 

d(F) a face of VT such that E is an edge along the x-axis in Fig. 5. Now a(E) 

identifies F with d(F) and a(E) = d when restricted to F. Lemma 2 implies that 

K identifies V, with itself, more precisely, Vl with VT, and the identification is 

equivalent to the one induced by d. 

Suppose that (a) is true for k - 1. 

(i) Suppose that U has depth k and k is odd. Let U, be the predecessor of U. 

Then t?, is identified with rd( 0,) by the induction hypothesis. There exists 

a face F of t? containing a positive edge E such that E is contained in the 

inner boundary of U,. Let F, be the face contained in a, meeting F at the 

edge E. By Lemma 1, since F, is identified with rd(F,), F is identified with 

d(F) and the identification is equivalent to the one induced by d. By Lemma 

2, f is identified with d( U) as described. 
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(ii) If k is even, the induction step can be shown the same way as the above. 

(b) The proof of case (b) is again similar. We observe that Vc and Vl are 

identified with V, and Vi by K, respectively, since A and d(A) are identified with 

rd(A) and r(A) by rs E K, respectively. 0 

2.3. We now have enough information to describe W3/K. 

Lemma 4. W’/ K is homeomorphic to the open solid torus, S’ x 8’. 

Proof. According to Lemma 3, K identifies V, with Vi, V, with V;, and V+ with 

V- for any inessential component V, where the identification is equivalent to the 

one induced by d. K also identifies V : with VT and Vl with V,, where the 

identification is equivalent to the one induced by rd. Therefore, if every component 

of R is maximal, then the above completely describes the face identification of Q 

and W’/K is homeomorphic to the open solid torus. We show below that R has 

only maximal components. 

Suppose that not all the components of R are maximal. Then there exists a 

component U, such that it is not a predecessor of other components and it has a 

predecessor. Denote the predecessor of U by U,. U is homeomorphic to the 

2-dimensional open disk. Suppose that fl, is identified with d( a,) by elements of 

K. (If 0, is identified with rd( l?,), the argument below still holds.) Then rd( 0,) 

is identified with r( a,) by elements of K, l? with rd( l?), and d( l?) with r( r/) 

(Fig. 7) as described in Lemma 3. 

big. I. 
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We now alter the of the of Q K as follows. The 

new identification is the same as the old one, except that ii is identified with d(u) 

and rd( Z?) with r(a), where the identification is done by d. Let A4 be the space 

obtained from Q by the new face identification. M is an orientable 3-manifold 

(topological) and W3/K is obtained from M by a O-surgery (orientation preserving), 

where a O-surgery can be described as follows. 

We first give S” x D’ the orientation induced from that of the standard orientation 

of D’ x D’. Let M be an orientable connected 3-manifold with a fixed orientation 

and LY be an orientation preserving embedding of S’X 0’ into the interior of M. 

Then the result of a O-surgery on A4 using (Y is 

(Closure of (M - Im( a)) u D’ x S*, 

where the identification is done by 

a~S”xS*=a~(t~D’)x(~D~). 

In general, if M’ is the result of a O-surgery on M, then the rank of H,( M’; Z) 

is one larger than that of H,(M; Z). To see this, let MO = CIosure( M - Im(n)). 

Using h-coefficients, H,(M) = H,( MO) and we have the following long exact 

sequence 

H,(M’, M,)~H,(M,)~H,(M’)-,H,(M’, M,)+O. 

H,( M’, Mo) = H,. D’ x S’, S’x S*) by excision, 

H2( M’, MO) = H2( D’ x S2, S” x S2) = H’( D’ x S*) = 0 

by Poincare duality [ll], and 

H,( M’, M,,) = H2( D’ x S’) = Z. 

The above exact sequence reduces to 

o+ H,(M,)+ H,(M’)+B+O. 

Hence the rank of H,(M’) is one larger than that of H,(M). 

We see inductively that W’/ K is obtained from the open solid torus by a sequence 

of O-surgeries and the sequence is not empty if not all the components in R are 

maximal. But if the sequence is not empty, then the rank of H,(W3/K; Z) is greater 

than 1, which contradicts our assumption that H,(W’/K; Z) has rank 1. This finishes 

the proof of the lemma. 0 

Remark. The proof of Lemma 4 shows that the equivalence classes J of positive 

edges of P defined in Section 2.1 consist exactly of two open arcs. 

2.4. The abelianization of rr1(W3/N)(=N) is isomorphic to H,(W3/N; Z). Hence 

the rank of H,(W3/N; h) is 1 by the assumption. On the other hand, the rank of 

H,(W3/N; E) is greater than or equal to the number of cusps in HI’/ N. Since P has 

an ideal vertex, W’/ N has at least one cusp. Consequently, W’/ N has exactly one 
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cusp. Therefore, W’/ N is an orientable open 3-manifold with one end homeomorphic 

to S’ x s’ x R [ 121. 

Let Y be a compact 3-manifold containing l&/N as a submanifold such that 

a Y = Y-W’/ N is homeomorpic to S’ x S’ ( Y is a compactification of W’/ N). We 

observe now that the natural action of K/N on W’/ N extends to an action over 

Y. Let H = K/N. We may write H = {[a;]: ai E K, 1 S id n, a, = the identity of K}. 

Then Q’= U,,+ n q(Q) is a fundamental domain of N [8], and W’/ N can be 

obtained from Q’ by identifying the faces by elements of N. Topologically, Q is 

homeomorphic to I x I x [0, l), a solid cube with no top face, where I is the unit 

interval. By viewing I x I x (0) as the base of the cube, we may assume that the four 

faces on the side of the cube correspond to the four faces of Q containing 03. It is 

important to note that a face on the side of ai( Q) can only be identified with a face 

on the side of u,(Q) by an element on N. Thus, i) Y admits a rectangular decomposi- 

tion consisting of n rectangles. 

Given x E Q’, let [x] be the point of HI’/ N represented by x. Then for any i, j 

and x E Q, [a,]([uj(x)]) = [u,(x)], where [a!] . [a,] = [Q,] in H. Therefore, an element 

of H leaves the [w factor fixed in the end (-S’ x S’ x R) of E-U’/ N. It follows that 

the action of H on W’/ N extends to an action over Y. If we restrict the extended 

action to ?‘Y, an element of H permutes the rectangles in the rectangular 

decompositions of i’ Y. 

Let X be the compact solid torus. Then the orbit space of the extended action 

of H on Y is homeomorphic to X such that X -ax is homeomorphic to W’/ K. 

By restricting this action to in Y, we obtain an action of H on S’ x S’ such that its 

orbit space is homeomorphic to S’ x S’. 

Lemma 5. The action of H on d Y is free. 

Proof. Suppose that [h] E H is not the identity of H and [h] fixes a point in JY. 

Then the fixed point set of [h] in Y is a regularly embedded l-dimensional 

submanifold whose boundary is in ii Y since [h] can be regarded as an orientation 

preserving diffeomorphism of Y. Therefore, the fixed point set of [h] in W’/ N must 

contain an open arc. Let cy be such an arc, and let y E f y’(a), where fl : Q’- I-U’/ N 

is the quotient map induced by the identification of the faces. Then there exist x E Q 

and a,, i = 1,2, . . , n, such that y = u,(x). On the other hand, since [ h]( f,(y)) = f,(y), 

there exists g E N such that g/z(y) = y. Then u,‘ghu,(x) =x. Since a non-trivial 

element of K can only fix a point in an edge of Q, x is a point of an edge. Hence 

y is a point of an edge of Q’. This implies that f I’( a) must contain an interior 

point of an edge containing cc since cy is an open arc and Q’ has only finitely many 

edges. Let y be such a point in the above argument. Then x is an interior point of 

an edge E of Q containing ~0. From the definition of Q (see Section 2.1), there 

exist g, E G and an edge El of P containing cc such that E = g,(E,). Now 

g;‘u,‘ghuig, is an element of G, and it fixes g,‘(x), an interior point of E,. It is 

a standard fact that if an element of a polyhedral group fixes an interior point of 

an edge E, of the polyhedron, then the element is equal to a power of the rotation, 
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CT(E,). In the above discussion, the order of u(E,) is 2 since the dihedral angle 

along E, is n/2. Therefore, g,‘a,‘gha,g, = (T(E,) E K since gh E K and K is an 

index 2 normal subgroup of G (any index 2 subgroup is normal). But K cannot 

contain such an element from the definition given in Section 2. 0 

Remark. The proof of Lemma 5 shows that f;‘(a) is a union of edges. 

Lemma 6. K/N is an abelian group. 

Proof. By Lemma 5, we may regard H as the group of covering transformations of 

the covering projection f: S’ x S’ @ S’ x S’. A theorem in covering space theory 

[ 1 l] implies that H is isomorphic to m, (S’ x S’)/f,(vr,( S’ x S’)). Since 7r1 (S’ x S’) E 

Z@Z, H is an abelian group. Furthermore, there exist positive integers p and q 

such that K/N =Z,OZ,. 0 

2.5. We now finish the proof of Proposition 1. Let v be a regular vertex of P and 

S, be the stabilizer of v in G. Suppose that S, P K. Let g E S, - K. Then 

S, =(S,n K)u (S,nKg) =(&I-J K)u(S,n Kg)g-‘g 

=(S,nK)u(S,nK)g. 

Therefore, S, n K is either S, or an index 2 subgroup of S,. On the other hand, 

S, n K n N is a trivial group since S, n K is finite and N is torsion-free. Here, we 

are using the fact that for any regular vertex v, S, is a finite group because it is a 

so-called spherical group acting on a 2-sphere. We will see below what S, precisely 

is. Therefore, S, n K = (S, n K) N/ N c K/ N. By Lemma 6, S, n K is abelian. Hence 

for any regular vertex v, S, is abelian or it contains an index 2 abelian subgroup. 

The stabilizer S, of a regular vertex v has the following presentation. 

(1) 1st type: (2,2, n), n > 1, 

S, =(a, b; a’= b2= (ab)“= l)=D,,. 

(2) 2nd type: (2,3,3), 

&=(a,b; a2=b3=(ba)3=1)=AAq. 

(3) 3rd type: (2,3,4), 

S,=(a,b; a2=b’=(ba)4=l)=S4. 

(4) 4th type: (2,3,5), 

S,=(a,b; a2=b3=(ba)s=1)=AA,. 

S, denotes the permutation group on n letters and A,, the alternating subgroup of S,,. 

It is obvious from the presentation that none of A4, S, and A5 is abelian or 

contains an index 2 abelian subgroup. Therefore, any regular vertex of P must be 

of the 1st type, and this finishes the proof of Proposition 1. We note that the dihedral 

group D,( n > 3) does contain a unique index 2 abelian subgroup and D, is abelian. 
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Remark. Suppose that u is a regular vertex of Q of type 1 with n > 2 and let E be 

the edge containing v with dihedral angle equal to n/n. Then S, is isomorphic to 

D, and D,, is not abelian. Therefore, the above argument shows that S, n K must 

be an index 2 abelian subgroup of S,. The only index 2 abelian subgroup of S, is 

the subgroup generated by g(E), the rotation of 27r/n about E. Therefore, E is a 

negative edge and the other two edges containing v are positive edges. 

3. Proof of Proposition 2 

We prove Proposition 2 by a contradiction. Suppose that G is an exceptional 

polyhedral group associated to polyhedron P and all the regular vertices of P are 

of type 1. Suppose that G contains a normal t.f.i. subgroup N and H,( N; Z) is 

isomorphic to P. Notice that all the results obtained in the last section hold under 

the new hypothesis. We use the notations of the last section. 

3.1. We first show that not all of the regular vertices of P are of type (2,2,2). 

Lemma 7. There exists a negative edge in P whose dihedral angle is n/n, n > 2. 

Proof. Suppose that all the regular vertices are of type (2,2,2). Given a group H, 

let #H denote the smallest number of generators for H. By the proof of Lemma 6, 

K/N = h, 0 Zy for some positive integers p and q. From the short exact sequence 

l+ N + K + K/N + 1 we obtain an exact sequence of homology groups with Z 

coefficients 

H,(N)+ H,(K)+Z,OZ,+O. 

#H,(K) < 4 since #H,(N) = 1. On the other hand, 

H,(K)+ H,(G)+Z,-+O. 

Therefore, #H,(G) < 5. 

Suppose that P has m vertices. Then P has k = $(3m + 1) edges and a presentation 

of G can be given as follows [5]. 

G=(g,,g,,..., gk; gf=l,l~i~k,R,,l~j~m-I), 

where R, is a relation of the form, g,gpg, = 1, and for each vertex there is one 

relation of this type. The relation corresponding to the ideal vertex is redundant 

[5]. This shows that H,(G) is isomorphic to the direct sum of at least (k-m + 1) 

copies of Z,‘s. Hence #H,(G)>k-m+l=f(m+3) and $(m+3)<5. Therefore, 

m = 5 or 6, since P must have at least 5 vertices. 

(i) If m = 5, the only possible polyhedron is given in Fig. 8. 

But P cannot be a hyperbolic polyhedron [l], because two non-adjacent faces 

containing ~0 meet a third face at angle n/2. 
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Fig. 8. 

(ii) It is easy to check that there is no exceptional polyhedra with 6 vertices. This 

finishes the proof of the lemma. 0 

3.2. We consider the natural action of H = K/N on Y, where Y is defined as in 

Section 2.4. 

Lemma 8. Suppose that [h] E H and [h] IS not the trivial element. If [h] fixes a point 

in Y, then the jixed point set of [h] is homeomorphic to a circle, 

Proof. Let S be the fixed point set of [h]. Then S is a union of circles (see the 

proof of Lemma 5). Let w be a prime number dividing the order of [h]. We regard 

Z,,, as a subgroup of the group generated by [h]. Then Z, acts on Y and the fixed 

point set of Z, contains S. 

If we use Z,. coefficients for the homology groups, then rank( H,(S)) c 

rank(H,( Y))+rank( H,( Y)) by [3]. On the other hand, we have a homology long 

exact sequence 

O-+H,(Y,aY)+H,(aY)+H,(Y)+H,(Y,aY) 

+H,(aY)+H,(Y)+H,(Y,aY)+O. 

By Poincare duality and the universal coefficient theorem [ 1 I] the above sequence 

reduces to 

The sequence implies that H2( Y) = 0. Therefore, rank( H,( S)) s rank( H,( Y)) = 1 

and S is homeomorphic to a circle. 0 

3.3. We define the quotient maps J; f, , f 2 and f3 as in the following diagram, where 

for any x E Q and i, 1 G i G n, f2(ai(x)) = x. The diagram clearly commutes. Recall 
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that {ai} is defined to be a set of right cosets of N in K in Section 2.4. 

fZ 

Q' - Q 

n n 

lH 
Y - x 

Suppose that E is a negative edge of Q and let e = a(E). Since e has a finite 

order, e does not belong to N. Hence we may regard the group generated by e as 

a subgroup of H and it acts on Y. The fixed point set of e is non-empty and it is 

homeomorphic to a circle by Lemma 8. Let S be the fixed point set of e. 

Lemma 9. Under the above notation, f,‘(f(S)) ‘. IF a union qf negative edges of Q. 

Proof. From the commutativity of the above diagram, f;‘(f(S)) =f(f’l’(S)) and 

from the remark of Section 2.4, f;‘(S) is a union of edges of Q’. Hence .fT’(f(S)) 

is a union of edges since f2 maps edges to edges. 

Suppose that E’ is an edge in f,‘(f(S)). If V( E’) has order greater than 2, then 

the lemma holds trivially by the remark of Section 2.5. Suppose that a(E’) has 

order 2. Then there exist a, E K and g E N such that for any x E E’ gea,(x) = a,(x). 

Therefore, ay’gea, = a( E’) or the trivial element of K since the order of a( E’) is 

2. Recall that any element of K fixing E’ pointwise is a power of u( E’). If ay’gea, 

is the trivial element of K, then g = em’, which is not possible. Hence ai’gea, = 

a( E’) E K, thus E’ is a negative edge. 0 

3.4. We have shown in the remark of Section 2.3 that J consists of exactly two open 

arcs. We assume without loss of generality that they are horizontal as in Fig. 9. 

Lemma 10. K/N is cyclic. 

Proof. We choose a smoothly embedded horizontal open arc A in i9P (or the 

x-y-plane) extending to 00 at both ends with the following properties (see Fig. 9). 

(i) A is disjoint from J and passes through the faces A and C. 

(ii) A does not contain any regular vertex of P, and if it intersects an edge, then 

it does so transversely. 

(iii) There exists a negative edge E of P such that E cannot be joined to a point 

of n by a path consisting only of points of negative edges. 

We see the existence of A as follows. If there exists an open arc satisfying (i) 

and (iii), then we isotop the arc slightly to make it satisfy (ii). If an edge of B or 

D is negative, then any arc A satisfying (i) satisfies (iii). Suppose that B and D do 

not contain any negative edges, then the dihedral angles of all edges of B and D 
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Fig. 9 

are n/2 by the remark of Section 2.5. On the other hand, there exists by Lemma 7 

an edge E in P whose dihedral angle is r/n, n >2. The endpoints of E are in J 

again by the remark of Section 2.5. Let J, and J2 be the components of J. Then both 

endpoints of E must be either in J, or J2, because if not, the faces I3 and D intersect 

a third face at a dihedral angle 7r/2, which is impossible for a hyperbolic polyhedron 

[l]. Now we can choose A such that it satisfies (i) and is disjoint from E. There is 

no path of negative edges joining E to A. 

We assume that (0, dQ) is identified with (W’, R2) as in Fig. 5. Let A’= aQ n 

(A u d(A)), and W be the half plane in Q perpendicular to the x-y-plane with 

A’ as its boundary. Then f3( W) is an open disk embedded in W’/ K. Furthermore, 

there exists a smoothly embedded closed disk A in X such that A -dA is f3( W). 

The map f: Y + X is transverse regular to A. If not, there exists a y E Y such that 

f is not transverse regular at y and y must be a fixed point of some element [h] E H. 

Then there exists an embedded circle S containing y in Y such that [h] fixes the 

points of S. Now f;‘(f(S)) is a union of edges (negative) in Q. The property (ii) 

of A implies that A intersects f(S) transversely at f(y). Therefore, the tangent space 

of A at f(y) and the tangent space off(S) at f(y) generate the tangent space of X 

at f(y), which is a contradiction. By the transverse regularity theorem, f-‘(A) is a 

2-dimensional orientable compact submanifold of Y. 

We now fix two generators, p and V, of H, (dX; Z). Let v be an element represented 

by the embedded circle dA in ax. Then v may be regarded as a meridian of ax. To 

define p, let W’ be the upper half of the y-z-plane in Q in Fig. 5. Then the closure 

off3( W’) in X intersects aX in a circle. We define p to be an element represented 

by this circle. We may regard p as a longitude of ax. Since f]a Y is a covering 

projection by Lemma 4, there exist generators a and b of H,(ttY;Z) represented by 

embedded circles in a Y such that jJ a) = pp and f,( b) = qv, where K/N z Z,, OZ, 

as in the proof of Lemma 6. 

Now fP’(f3( W)) is Ulsisn ai( W) with the boundaries identified by elements of 

IV, where n =pq and {a,, 1 s is n} is a set of cosets of N in K. Since each ai( W) 

is non-compact, each component of f-‘(f3( W)) is non-compact. Hence each 
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component off-‘(A) must have a non-empty boundary contained in a Y nf -‘( A ) = 

fp’(ad), where fp’(da) is a union of p circles. 

Suppose that i is a component in f-‘(A). Then Ja consists of some of the p 

circles which make up_/-‘(ad). Sincef is transverse regular to A, f induces a bundle 

map from the normal bundle of f-‘(A) in Y into the normal bundle of A in X. 

Both bundles are line bundles and we may assume that f respects positive directions 

of the bundles if we choose the directions properly. On the other hand, the positive 

direction of the bundles restricted over the boundaries must be as in Fig. 10 if we 

identify the total spaces of the normal bundles with tubular neighborhoods. 

Ga X 

n 

Fig. 10. 

Suppose that the boundary of 2 has more than one component. Let S, and S2 

be two components such that they form the boundary of a compact annulus T in 

JY, where T does not contain any other components of ai. Let Z be the closure 

of the component of Y-n” containing T. 2 is an orientable 3-manifold. Hence 

there exists a consistent inward normal direction along a.Z, and we may assume that 

this direction agrees with the positive direction along a copy of L in JZ. But if we 

translate the positive direction along S, across T to S, using the inward normal 

direction of ?JZ in Z, we obtain an inconsistent direction. This implies that Z is not 

an orientable manifold. Therefore, each component of fP’( A) contains exactly one 

component of f-‘(ad), thus f-‘(A) has p components. 

Let S be the fixed point set of a(E), where E is the edge given in property (iii) 

in the definition of A. Now fy’(((S)) is a union of negative edges of Q by Lemma 

9, and if fl’(f(S)) n A’ # Id, then there must be a path in dP from E to a point in 
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A consisted of points of negative edges. But E and A are chosen such that this is 

not possible. Hence fl’(f( S)) n A’ = 0. Therefore, f(S) n A = 0 or S n_/-‘(A) = 61. 

We choose a thin tubular neighborhood f-‘(A) x (-1, 1) of f-‘(A) in Y, such 

that it does not intersect S, and &f-‘(A) x (-1,1)) is a thin tubular neighborhood 

of A in X, which does not intersect f;(E). Let Y,= Y-f-‘(A)x(-1, 1). S is 

contained in one of the components of Y,. By the Lefschetz duality [ 111, HO( Y,) I- 

H3( Y, dYuf_‘(A)), where the homology and cohomology groups are over Z 

coefficients. From the triple ( Y, i3 Y uf-‘(A), d Y), we get a long exact sequence 

+H*(Y,aY)+H*(aYuf-‘(A),aY) 

+H’(Y,aYufm’(A))+H’(Y,aY)+O. 

H*(Y,aY)=H](Y)-H,(N)=z, 

H2(dYufm’(A),dY))=ppZ (direct sum of p copies of Z) and H’( Y,JY)=Z. 

Therefore, the rank of H’( Y, a Y uf-‘(A)) is at least p and Y0 has at least p 

components. 

Let X,, = X -f(f-‘(A) x (-1,l)) =f( YO). Suppose that Y’ is a component of Yo. 

Y’ is a compact connected manifold and f(J Y’) = ax,,. We now observe that f is 

an open map when restricted to Y’. Suppose that y E Y’. If y is in i) Y’, then there 

exists an open neighborhood of y, whose image under f is open in X, from the 

fact that f is a covering projection on a Y and is transverse regular to A. If y is an 

interior point of Y’, we can still find an open neighborhood of y, whose image 

under f is open in X, since ,f’ is a quotient map induced by a finite group action. 

From the observation, f( Y’) is an open subset of X,‘. On the other hand, f( Y’) is 

closed since it is a continuous image of a compact space. Hence f( Y’) = X,,. In 

particular, f-‘(J;( E)) n Y’# 0 and Y’ contains f,(a,( E)) for some i = 1,2,. . , n. 

Suppose that XE E. Then c(E)(f,a,(x)) = a(E)[a,](f,(x)) = [a,]u(E)(f’(x)) = 

[u,]f,(a(E)(x)) = [u;]f,(x) =f,(u,(x)). (In the computation, we used the fact that 

K/N is abelian.) Hencef,(u,(E))cS and S n Y’ # 0. This implies that S is con- 

tained in every component of Yo, thus Y, has only one component. Therefore, p = 1 

and K/N=Z,. 0 

3.5. We now finish the proof of Proposition 2. First, observe that the endpoints of 

any negative edge of P lie in / (see Section 3.4 for the definition of J). Because if 

not, there must be three negative edges meeting at a vertex, and the stabilizer of 

the vertex can be regarded as a subgroup of H, which implies that H is not cyclic. 

Choose two negative edges E and E, of P (Fig. 11) with the following properties: 

The endpoints of E are in distinct components of J, 

the order of IT is greater than 2, and 

there is no path joining E to E, consisting only of points of negative edges. 

Edges E and E, exist from the above observation and Lemma 7. Note that f;(E) 

is disjoint from J;( El) by Lemma 9. 

Let S be the fixed point set of a( E) E H. Ify E S and h E H, u( E)h(y) = ha(E)(y) = 

h(y). Hence h(y) E S for any y E S, thus H acts on S. Let H, be the subgroup of H 
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Fig. 11 

of elements fixing S pointwise. We claim that ,f(S) = S/H = S/( H/ H,) is a circle 

in X. 

Suppose that it is not. Then ,f(S) is a compact arc and H/Ho must contain an 

element which reverses the orientation of S. By identifying S with the standard unit 

circle in the x-y-plane, we may assume that the orientation reversing element is the 

involution 7 reflecting the plane in the x-axis. On the other hand, the subgroup of 

H/H,, of orientation preserving elements is generated by a rotation 5 of the plane 

about the origin in an angle 2rr/ k for some integer k 3 1. It is easy to check that 

H/H, I- (q)@(t). If we regard the circle as { 0: 0 4 0 < 2~r}/(O = 2a), then for any 

integer i, 

and 

[‘q(O) = g-0) = _o+?‘” * r( * 

k ’ 

Since H/H, is abelian, 

for some integer n. 

-4iT/k = 2nrr. Hence 2i/k is an integer for every integer i. Hence k = 1 or 2. If 

k = 2, then H/H,, = h,Oh,, but this is not possible since H is cyclic. If k = 1, then 

H/ H,,=Zz. This implies that there exists h E (a( E,)) such that [h] E Ho, because 

the order of a(E,) is greater than 2. Let S, be the fixed point set of a(E,). S, is 

disjoint from S by the choice of E and E, . Furthermore, S and S, are fixed pointwise 
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by [II], which contradicts Lemma 8. We have shown that f( S) is an embedded circle 

in X. 

Let E’= E u d(E). Thenf(S) =f3(E’) and S=f,(U,,i,, a,(E’)). Since H/H, is 

a cyclic group, say of order k, and f: S+ f(S) . IS a k-fold covering projection of a 

circle onto a circle. Choose a vertical open arc A” containing E’ in aQ (Fig. 11) 

with the following properties: 

The arc extends to ~0 at both ends, does not contain vertices except for the ones 

in E’, is transverse regular to the edges it intersects except for E’ and is symmetric 

in the x-axis. 

Let W” be the plane perpendicular to the x-y-plane containing A”. Then f3( W”) 

is a non-compact annulus in W3/K whose boundary is f(S) and there exists an 

embedded compact annulus A’in X such that A’n 8X is a circle and A’- (A’n dX) = 

f3( W”). Clearly, A’n JX represents the homology class k of H,(aX; Z) which 

generates H,(X; Z). (See Section 3.4 for the notation.) 

From the construction, f is transverse regular to Al-f(S). Hence f -‘(A’-f(S)) 

is an orientable 2-manifold. Since the closure of each component of this manifold 

is obtained by identifying the boundaries of some of the ai( W”), 14 i c q, it has S 

as a boundary component. Hence f -‘(A’) is a union of orientable 2-manifolds, 

where they are identified along the common boundary S. Therefore, Y-f -‘(A’) is 

an orientable 3-manifold. As in the proof of Lemma 10, we can show that each 

component of f-‘(Al-f(S)) has exactly one boundary component. Let i’ be a 

component of fP’( A’ -f(S)). Then aa”’ is an embedded circle in a Y and it represents 

the homology class a in H,(d Y; Z), where a is defined in Section 3.4. Since d’u S 

is a cobordism between S and ai’, [S] = [an”‘] in H,( Y; Z), where [ ] denotes a 

homology class. Now f+.([S])=+k([f(S)])=+kp since f:S+f(S) is a k-fold 

covering projection andf*([ad’]) = f,( a) = p. Therefore, k = 1, thus H/Ho is a trivial 

group. This implies that every element of H fixes the points of S, in particular, 

v(E,) fixes the points of S which is a contradiction. 0 
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