A Regularity Test for Pushdown Machines

R. E. Stearns
General Electric Research and Development Center, P.O. Box 8, Schenectady, New York 12301

It is possible to test a deterministic pushdown machine to determine if the language it recognizes is regular.

The object of this paper is to show that, given a deterministic pushdown recognition machine, it is possible to determine if the set of input strings it recognizes is regular. In particular, we will show that if the set is regular, then the number of states in the reduced state machine which recognizes the set may be bounded by an expression of the order

$$
t^{q^{q q}}
$$

(when $q, t>1$) where q is the number of control states of the pushdown machine and t is the size of the pushdown tape alphabet. Therefore, one solution to our problem is to test all finite state machines of that size or less to see if one of them recognizes the same set as the pushdown machine.

The method of proof is to take the pushdown machine and extract a finite state machine which is equivalent to the pushdown machine whenever it recognizes a regular set. An alternate solution to the problem is to construct this candidate machine and test it. This improved method is also unsatisfactory as a practical algorithm, so we omit proof that this machine can be obtained constructively; the first solution being sufficient to establish our objective.

We spare the reader and the writer considerable hardship by defining the pushdown machine and proving the basic self-evident lemmas on a slightly informal basis. The symbol Λ will be used to represent a null sequence.

Definition 1. A general (deterministic on-line) pushdown machine is a finite state control with the capability of reading inputs and storing an arbitrary string of symbols from finite tape alphabet X. When this
string is non-null, the leftmost symbol is referred to as the top symbol; otherwise we call Λ the top symbol. The string is called a tape word as it may be pictured as being stored on a vertical Turing machine tape, the top symbol being under the reading head, and the remaining symbols stored below. A machine configuration c is represented as an ordered pair (s, ω) where s is from the set S of control states and $\omega=x_{n} \cdots x_{1}$ is the tape word from X^{*}, the set of strings over X. The machine changes from configuration to configuration under machine operations determined by the control state, top tape symbol, and sometimes an input symbol.

There are three kinds of pushdown machine operations; the pushdown operation, the write operation, and the pop-up operation. A pushdoun operation consists of adding a new tape symbol to the left (top) of the stored tape word and changing the control state. A write operation consists either of replacing the non-null top symbol with a new tape symbol and changing control state or else changing control state without altering the (possibly null) tape word. A pop-up operation consists of deleting the leftmost symbol of a non-null tape word and changing control state.

With certain (stable) combinations of control state and top tape symbol, an input symbol is read and the next machine operation determined by the combination of input symbol, control state, and tape symbol. The remaining (unstable) combinations of state and tape symbol determine the next operation without reading an input. These latter operations are commonly called ϵ-moves. If input a in A is read and configuration c_{1} changes to configuration c_{2} under the resulting operation, we write

$$
c_{1} \xrightarrow{a} c_{2}
$$

If c_{1} changes to c_{2} under an ϵ-move or if $c_{1}=c_{2}$, we write

$$
c_{1} \xrightarrow{\Lambda} c_{2} .
$$

This notation extends inductively to sequences of inputs under the following rule:

$$
c_{1} \xrightarrow{\alpha_{1}} c_{2} \quad \text { and } \quad c_{2} \xrightarrow{\alpha_{2}} c_{3} \text { implies } c_{1} \xrightarrow{\alpha_{1} \alpha_{2}} c_{3}
$$

where c_{1}, c_{2}, and c_{3} are configurations, α_{1} and α_{2} are input strings, and $\alpha_{1} \alpha_{2}$ is the concatenation of α_{1} and α_{2}.

Definition 2. A pushdown recognition machine is a general pushdown machine with a designated starting configuration c_{0} with null tape word and a designated subset of the stable combinations in $S \times(X \cup\{\Lambda\})$
called accepting combinations. Those configurations which have an accepting combination of control state and top tape symbol are called accepting configurations. A sequence of inputs α is said to be accepted or recognized by the machine if and only if

$$
c_{0} \xrightarrow{\alpha} c_{1},
$$

for some accepting configuration c_{1}. The set of all α accepted by the machine is called the set recognized by the machine.

Pushdown machines are sometimes defined to allow slightly more general operations such as pushing down a string of tape symbols or writing and pushing in a single operation. These variations are easily simulated on our type pushdown machine, so no generality is lost. Similarly, the case of a starting configuration with a non-null tape word is no problem either.

The essential notation introduced above may be summarized as follows:

	Set	Element	String	Set Size
Input	A	a	$\boldsymbol{\alpha}$	-
State	S	s	-	q
Tape	X	x	ω	t
Configuration: $c=(s, \omega)$ or $c=\left(s_{n}, x_{n} \cdots x_{1}\right)$ Starting configuration: c_{0} Null string: Λ				

A NON-REGULARITY CONDITION

In this section, we give a condition for non-regularity that we plan to exploit in the main proof. First, we must define an equivalence relation on A^{*}, the set of all input strings.
Definition 3. For a given language L over alphabet A, we write $\alpha_{1} \approx \alpha_{2}$ for α_{1} and α_{2} in A^{*} if and only if α_{1} and α_{2} are either both in L or both not in L. We write $\alpha_{1} \not \approx \alpha_{2}$ otherwise.
Theorem 1. A language L over alphabet A is non-regular if, for some $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}$, and α_{5} in A^{*}, the following two conditions hold:
(i) for all $i, j, k \geqq 0$, $\alpha_{1} \alpha_{2}{ }^{i} \alpha_{3} \alpha_{4}{ }^{j} \alpha_{j} \approx \alpha_{1} \alpha_{2}^{i+k} \alpha_{3} \alpha_{4}^{j+k} \alpha_{5}$;
(ii) there exists an ℓ such that for all $i \geqq \ell$, $\alpha_{1} \alpha_{2}{ }^{i} \alpha_{3} \alpha_{5} \not \approx \alpha_{1} \alpha_{3} \alpha_{5}$.
Proof. Suppose that there is a finite state machine M that recognizes L. For each integer n, let s_{n} be the state of M that results from input
sequence $\alpha_{1} \alpha_{2}^{n \ell}$ where α_{1}, α_{2}, and ℓ are as in condition (ii). If $n_{1}<n_{2}$, then states $s_{n_{1}}$ and $s_{n_{2}}$ can be distinguished by the sequence $\alpha_{3} \alpha_{4}^{n_{1} \ell} \alpha_{5}$ because

$$
\left(\alpha_{1} \alpha_{2}^{n_{1} t}\right)\left(\alpha_{3} \alpha_{4}^{n_{1} \ell} \alpha_{5}\right) \approx \alpha_{1} \alpha_{3} \alpha_{5}
$$

and

$$
\left(\alpha_{1} \alpha_{2}^{n_{2} t}\right)\left(\alpha_{3} \alpha_{4}^{n_{1} t} \alpha_{5}\right) \approx \alpha_{1} \alpha_{2}^{\left(n_{2}-n_{1}\right) t} \alpha_{3} \alpha_{0},
$$

by condition (i) and

$$
\alpha_{1} \alpha_{3} \alpha_{3} \not \approx \alpha_{1} \alpha_{2}^{\left(n_{2}-n_{1}\right) t} \alpha_{3} \alpha_{5},
$$

by condition (ii). But this means that M has an infinite number of states, contrary to our hypothesis.
Q.E.D.

The effect of our proof will be to show that Theorem 1 becomes an "if and only if" result when L is a set recognized by a pushdown machine. Thus a non-regular pushdown language has a non-regular context-free subset which is bounded in the sense of Ginsburg and Spanier (1964).

BASIC RELATIONS

The primary purpose of this section is to define two relations $\downarrow(\alpha)$ and $\uparrow(\alpha)$ and derive some of their basic properties. These relations are both special cases of the relation $\xrightarrow{\alpha}$, the first being a generalized pushdown and the other a generalized pop-up.

Definition 4. If α is an input sequence and c and c^{\prime} are configurations, we write

$$
c \downarrow(\alpha) c^{\prime}
$$

if and only if there is a sequence of configurations $c_{1} \cdots c_{r}$ and corresponding a_{i} in $A \cup\{\Lambda\}$ for $1 \leqq i<r$ such that $c_{1}=c, c_{r}=c^{\prime}$, each c_{j} for $r \geqq j>1$ has a longer tape word than c and results from c_{j-1} by a single operation with input a_{j-1}, and α is the concatenation of the a_{k} (i.e. $\alpha=a_{1} \cdots a_{r-1}$ if $r>1$ and $\alpha=\Lambda$ if $r=1$).

Definition 5. If α is an input sequence and c and c^{\prime} are configurations, we write

$$
c \uparrow(\alpha) c^{\prime}
$$

if and only if there is a sequence of configurations $c_{1} \cdots c_{r}$ and corresponding a_{i} in $A \cup\{\Lambda\}$ for $1 \leqq i<r$ such that $c_{1}=c, c_{r}=c^{\prime}$, each c_{j} for $r>j \geqq 1$ has a longer tape word than c^{\prime}, each c_{j} for $r \geqq j>1$ results
from c_{j-1} by a single operation with input a_{j-1}, and α is the concatenation of the a_{k}.

Note that $c \uparrow(\Lambda) c$ and $c \downarrow(\Lambda) c$ always hold since we can take $c=c_{1}$ and $r=1$.

The first lemma relates the new relations to the previously defined relation $\xrightarrow{\alpha}$.

Leman 1. If $c=\left(s, x_{n} \cdots x_{1}\right)$ and $c^{\prime}=\left(s^{\prime}, x_{m}{ }^{\prime} \cdots x_{1}{ }^{\prime}\right)$ are configura-

(i) $n \leqq m$ implies there exists an s_{n} in Q and α_{1} and α_{2} in A^{*} such that $c \xrightarrow{\alpha_{1}}\left(s_{n}, x_{n}{ }^{\prime} \cdots x_{1}{ }^{\prime}\right) \downarrow\left(\alpha_{2}\right) c^{\prime}$ and $\alpha=\alpha_{1} \alpha_{2}$;
(ii) $n \geqq m$ implies there exist a unique s_{m} in Q and unique α_{1} and α_{2} in A^{*} such that $c \uparrow\left(\alpha_{1}\right)\left(s_{m}, x_{m} \cdots x_{1}\right) \xrightarrow{\alpha_{2}} c^{\prime}$.
Proof. The relation $c \xrightarrow{\alpha} c$ implies that there is some sequence of configurations $c_{1} \cdots c_{r}$ and corresponding a_{i} in $A \cup^{\prime}\{\Lambda\}$ for $1 \leqq i<r$ such that $c_{1}=c, c_{r}=c^{\prime}$, and $a_{1} \cdots a_{r}=\alpha$.

In case (i), we choose c_{k} to be the last configuration of this series with tape word of length n. We let s_{n} be the state of $c_{k}, \alpha_{i}=a_{1} \cdots a_{k-1}$, and $\alpha_{2}=a_{k} \cdots a_{r-1}$. In going from c_{k} to c_{r}, there was no opportunity for the tape symbols of c_{k} to be altered and so the tape word of c_{k} must be precisely $x_{n}{ }^{\prime} \cdots x_{1}{ }^{\prime}$. The sequence $c_{k} \cdots c_{r}$ satisfies Definition 4 and so (i) is proved.

In case (ii), we choose c_{k} to be the first configuration of the series with tape word of length m, let s_{m} be the state of c_{k}, and let $\alpha_{1}=a_{1} \cdots a_{k-1}$ and $\alpha_{2}=a_{k} \cdots a_{r-1}$. There is no opportunity for changing symbols of c_{k} between c_{1} and c_{k} and so the tape word of c_{k} is precisely $x_{m} \cdots x_{1}$. Because the machine is deterministic and because c_{k} occurs prior to the first occurrence of c^{\prime} in the sequence $c_{1} \cdots c_{r}, \alpha$ and c_{1} determine s_{m} and α_{1} uniquely.
Q.E.D.

Except for certain subcases of the case where c^{\prime} goes into itself under a non-trivial sequence of ϵ-moves, the s_{n}, α_{1}, and α_{2} of part (i) are also unique, although we have no application of this fact here. There are never more than two possible values for s_{n} and α_{1}.

The next lemma shows that the defining property of the relation $\xrightarrow{\alpha}$ also holds for the stronger relations $\downarrow(\alpha)$ and $\uparrow(\alpha)$.

Lemma 2. (Concatenation property) For all configurations c_{1}, c_{2}, and c_{3} and all α_{1} and α_{2} in A^{*},
(i) $c_{1} \downarrow\left(\alpha_{1}\right) c_{2}$ and $c_{2} \downarrow\left(\alpha_{2}\right) c_{3}$ implies $c_{1} \downarrow\left(\alpha_{1} \alpha_{2}\right) c_{3}$;
(ii) $c_{1} \uparrow\left(\alpha_{1}\right) c_{2}$ and $c_{2} \uparrow\left(\alpha_{2}\right) c_{8}$ implies $c_{1} \uparrow\left(\alpha_{1} \alpha_{2}\right) c_{3}$.

Proof. The required sequence for $c_{1} \downarrow\left(\alpha_{1} \alpha_{2}\right) c_{3}$ is obtained by taking
the sequence for $c_{1} \downarrow\left(\alpha_{1}\right) c_{2}$ and extending it with the sequence for $c_{2} \downarrow\left(\alpha_{2}\right) \quad c_{3}$. The proof of (ii) is similar.
Q.E.D.

Lemma 3. (Independence property) For all control states s and s^{\prime}, all tape words $\omega_{1}, \omega_{2}, \omega_{3}$, and all input words α,
(i) $\left(s, \omega_{2}\right) \downarrow(\alpha)\left(s^{\prime}, \omega_{1} \omega_{2}\right)$ implies $\left(s, \omega_{3}\right) \downarrow(\alpha)\left(s^{\prime}, \omega_{1} \omega_{3}\right)$ whenever ω_{2} and ω_{3} have the same first symbol;
(ii) $\left(s, \omega_{1} \omega_{2}\right) \uparrow(\alpha)\left(s^{\prime}, \omega_{2}\right)$ implies $\left(s, \omega_{1} \omega_{3}\right) \uparrow(\alpha)\left(s^{\prime}, \omega_{3}\right)$.

Proof. The sequence of operations required by Definition 4 are completely determined by the top symbol of ω_{2} as ω_{2} is simply pushed down and not looked at again. Thus the machine will do the same with any ω_{3} that has the same top symbol as ω_{2}. In part (ii), ω_{2} does not affect the intermediate operations at all and thus any substitute for ω_{2} would cause the identical sequence of operations and result in the corresponding configuration.
Q.E.D.

Lemma 4. (Factor property) Let c and c^{\prime} be configurations with tape words of length n and m respectively, let $x_{n} \cdots x_{1}$ be the tape word of c, and let a be an input sequence.
(i) If $c^{\prime} \downarrow(\alpha) c$, then $n \geqq m$ and there exist control states s_{i} for $m \leqq i \leqq n$ and input sequences $\alpha_{i j}$ for $m \leqq i \leqq j \leqq n$ such that for $m \leqq i \leqq j \leqq k \leqq n$
(a) $c=\left(s_{n}, x_{n} \cdots x_{1}\right)$,
(b) $c^{\prime}=\left(s_{m}, x_{m} \cdots x_{1}\right)$,
(c) $\alpha=\alpha_{m n}$,
(d) $\left(s_{i}, x_{i} \cdots x_{1}\right) \downarrow\left(a_{i j}\right)\left(s_{j}, x_{j} \cdots x_{1}\right)$,
(e) $\alpha_{i j} \alpha_{j k}=\alpha_{i k}$.
(ii) If $c \uparrow(\alpha) c^{\prime}$, then $n \geqq m$ and there exist unique control states s_{i} for $m \leqq i \leqq n$ and unique input sequences $\alpha_{i j}$ for $n \geqq i \geqq j \geqq m$ such that for $n \geqq i \geqq j \geqq k \geqq m$
(a) $c=\left(s_{n}, x_{n} \cdots x_{1}\right)$,
(b) $c^{\prime}=\left(s_{m}, x_{m} \cdots x_{1}\right)$,
(c) $\alpha=\alpha_{n m}$,
(d) $\left(s_{i}, x_{i} \cdots x_{1}\right) \uparrow\left(\alpha_{i j}\right)\left(s_{j}, x_{j} \cdots x_{1}\right)$,
(e) $\alpha_{i j} \alpha_{j k}=\alpha_{i k}$.

Proof. The relation $c^{\prime} \downarrow(\alpha) c$ implies at once that $n \geqq m$. Letting $c_{1} \cdots c_{r}$ be a sequence of configurations and $a_{1} \cdots \alpha_{r-1}$ a sequence of inputs which satisfy Definition 4 in justification of the relation $c^{\prime} \downarrow(\alpha) c$, let $\sigma(i)$ be the index of the last configuration in the series with tape length i. Let s_{i} for $m \leqq i \leqq n$ be the control state of configuration ${c_{\sigma(i)}}$. The fact that $c_{k}=c$ has tape length n insures that $\sigma(n)=r$. Therefore,
s_{n} is the control state of $c=c_{\sigma(n)}$ and equation (a) is established. None of the inputs $a_{\sigma(i)}$ to a_{r-1} can change the i tape symbols of $c_{\sigma(i)}$ since these inputs result in configurations with more than i tape symbols. This means that the i tape symbols at $c_{\sigma(i)}$ are just the last i tape symbols of c, i.e.,

$$
c_{\sigma(i)}=\left(s_{i}, x_{i} \cdots x_{i}\right),
$$

for $m \leqq i \leqq n$. Since c_{1} is the last configuration in the series with tape length $m, \sigma(m)=1$ and $c_{\sigma(m)}=c^{\prime}$. Equation b is a statement of this fact. Now for $m \leqq i \leqq m$, we define $\alpha_{i i}=\Lambda$ and for $m \leqq i<j \leqq n$ we define

$$
\alpha_{i j}=a_{\sigma(i)} \cdots a_{\sigma(j)-1} .
$$

This defnition is valid since $i<j$ implies $\sigma(i)<\sigma(j)$. Equation (e) is immediate from this definition and (c) follows from the fact that $\sigma(m)=1$ and $\sigma(n)=r$. Relation (d) says that $c_{\sigma(i)} \downarrow\left(\alpha_{i j}\right) c_{\sigma(j)}$ and this is true because $c_{\sigma(i)} \cdots c_{\sigma(j)}$ and corresponding σ_{t} satisfy Definition 4.

For part (ii) take the configuration series $c_{1} \cdots c_{r}$ of Definition 5 and let $\sigma(i)$ be the index of the first configuration in the series with tape length i. Now define s_{i} and $\alpha_{i j}$ as above using this new series and the equations follow as before. As in the proof of Lemma 1, the deterministic nature of the machine insures that the s_{i} and $\alpha_{i j}$ are unique.

> Q.E.D;

The uniqueness of the configuration sequence associated with $c \uparrow(\alpha) c^{\prime}$ implies some further special properties. Analogous results hold for the non-pathological pushdown cases, but they are not needed.
Lemma 5. For configurations c_{1}, c_{2}, c_{3}, input words $\alpha, \alpha_{1}, \alpha_{2}$, and integer n;
(i) $c_{1} \uparrow\left(\alpha_{1}\right) c_{2}$ and $c_{1} \uparrow\left(\alpha_{1} \alpha_{2}\right) c_{2}$ implies $\alpha_{2}=\Lambda$;
(ii) $c_{1} \uparrow(\alpha) c_{2}$ and $c_{1} \uparrow(\alpha) c_{3}$ implies that $c_{2} \uparrow(\Lambda) c_{3}$ or $c_{3} \uparrow(\Lambda) c_{2}$;
(iii) there is at most one configuration c^{\prime} with lape word of length n such that $c_{1} \uparrow(\alpha) c^{\prime}$.
Proof. No continuation of the configuration sequence for $c_{1} \uparrow\left(\alpha_{1}\right) c_{2}$ can be used to justify $c_{1} \uparrow\left(\alpha_{1} \alpha_{2}\right) c_{2}$ as c_{2} has the same tape length as itself. Therefore, α_{2} must be Λ. The configuration sequence associated with $c_{1} \uparrow(\alpha) c_{2}$ must be a prefix of that sequence associated with $c_{1} \uparrow$ $(\alpha) c_{3}$ in which case $c_{2} \uparrow(\Lambda) c_{3}$, or the reverse must hold in which case $c_{3} \uparrow(\Lambda) c_{2}$. Configuration c^{\prime} must be the first configuration of length n (if any) resulting from c_{1} under input word α.
Q.E.D.

Finally, we relate the pop-up relation to distinguishing sequences. Input sequence α is said to distinguish configurations c_{1} and c_{2} if α carries exactly one of the configurations into an accepting configuration.

Lemma 6. If α distinguishes between configurations $c_{1}=\left(s, \omega \omega_{1}\right)$ and $c_{2}=\left(s, \omega \omega_{2}\right)$, then there are input sequences α_{1} and α_{2} and state s^{\prime} such that
(a) $c_{1} \uparrow\left(\alpha_{1}\right)\left(s^{\prime}, \omega_{1}\right)$;
(b) $c_{2} \uparrow\left(\alpha_{1}\right)\left(s^{\prime}, \omega_{2}\right)$;
(c) $\alpha_{1} \alpha_{2}=\alpha$.

Proof. Because α must distinguish between c_{1} and c_{2}, it must cause both configurations to pop up enough tape symbols to reach ω_{1} and ω_{2} respectively. Letting α_{1} be the substring which causes c_{1} to do this and letting (s^{\prime}, ω_{1}) be the first configuration with tape length equal to the length of ω_{1}, we have relation (a) immediately. Relation (b) follows from the independence property and (c) follows when we let α_{2} be the remainder of α.
Q.E.D.

NULL TRANSPARENT WORDS

We now consider a special type of tape word which goes into the central proof.

Defintition 6. A word ω in X^{*} is called null transparent if and only if for all s and s^{\prime} in S,

$$
(s, \omega) \uparrow(\Lambda)\left(s^{\prime}, \Lambda\right) \text { implies }\left(s^{\prime}, \omega\right) \uparrow(\Lambda)\left(s^{\prime}, \Lambda\right) .
$$

The key property of null transparent words is that if such a word is popped up by a series of ϵ-moves, any additional copies of the word will be eliminated by additional ϵ-moves and the control state entered will be independent of the number of copies eliminated. Thus all the information as to the number of additional copies is wiped out. In short, if one copy is popped with ϵ-moves, all are popped. This property may be stated more usefully as follows.

Theorem 2. Suppose $c=\left(s, \omega \omega_{1}\right)$ is a configuration and ω is null transparent. For each α in A^{*}, there is an integer ℓ such that α cannot distinguish between

$$
\left(s, \omega^{i} \omega_{1}\right) \quad \text { and } \quad\left(s, \omega^{j} \omega_{1}\right),
$$

for all $i, j \geqq \ell$.
Proof. Choose ℓ to be one greater than the length of α. Assume that $i \geqq j \geqq \ell$ and that α does distinguish between $c_{i}=\left(s, \omega^{i} \omega_{1}\right)$ and $c_{j}=$
$\left(s, \omega^{j} \omega_{1}\right)$. Because

$$
c_{i}=\left(s, \omega^{j}\left(\omega^{i-j} \omega_{1}\right)\right)
$$

it follows from Lemma 6 that there must be α_{1}, α_{2}, and s_{0} such that

$$
\left(s, \omega^{j} \omega_{\mathrm{I}}\right) \uparrow\left(\alpha_{1}\right)\left(s_{0}, \omega_{\mathrm{I}}\right)
$$

and $\alpha_{1} \alpha_{2}=\alpha$. It follows from the factor property (Lemma 4) that there exist α_{k}^{\prime} and s_{k} for $j \geqq k \geqq 1$ such that α_{1} may be written uniquely as

$$
\alpha_{1}=\alpha_{j}^{\prime} \cdots \alpha_{1}^{\prime},
$$

where

$$
\left(s_{k}, \omega^{k} \omega_{1}\right) \uparrow\left(\alpha_{k}^{\prime}\right)\left(s_{k-1}, \omega^{k-1} \omega_{1}\right),
$$

for $j \geqq k \geqq 1$. Since the number of symbols in α is less than j, one of the $\alpha^{\prime}{ }_{i}$ must be null, say $\alpha^{\prime}{ }_{m}$. Applying the concatenation property (Lemma 2) to Definition 6,

$$
\left(s_{m}, \omega^{i-j}\right) \uparrow(\Lambda)\left(s_{m-1}, \Lambda\right) .
$$

Applying the independence property (Lemma 3) gives

$$
\left(s_{m}, \omega^{i-j+m} \omega_{1}\right) \uparrow(\Lambda)\left(s_{m-1}, \omega^{m-1} \omega_{1}\right) .
$$

Also

$$
\left(s, \omega^{i} \omega_{1}\right) \uparrow\left(\alpha_{j}^{\prime} \cdots \alpha_{m}^{\prime}\right)\left(s_{m}, \omega^{i-j+m} \omega_{1}\right),
$$

which together with

$$
\left(s_{m-1}, \omega^{m-1} \omega_{1}\right) \uparrow\left(\alpha_{m-1}^{\prime} \cdots \alpha_{1}^{\prime}\right)\left(s_{0}, \omega_{1}\right), \quad(\text { if } m>1)
$$

yields

$$
c_{\boldsymbol{i}} \uparrow\left(\alpha_{1}\right)\left(s_{0}, \omega_{1}\right),
$$

by concatenation. No proper prefix of α_{1} can distinguish c_{i} and c_{j} because then a proper prefix α_{1}^{\prime} of α_{2} would satisfy

$$
c_{i} \uparrow\left(\alpha_{1}^{\prime}\right)\left(s_{0}, \omega_{1}\right),
$$

in violation of Lemma 5 (i). Since α_{1} carries both c_{i} and c_{j} into (s_{0}, ω_{1}), no continuation of α_{1} can distinguish c_{i} from c_{j}. Thus $\alpha=\alpha_{1} \alpha_{2}$ cannot distinguish c_{i} from c_{j}, contrary to our assumption.
Q.E.D.

A second important property of null transparent words is that they
may be found embedded in any tape word of sufficient length. This may be stated more generally as follows:

Theorem 3. If $x_{n} \cdots x_{1}$ is a tape word and N is a set of at least $q!+1$ distinct integers less than n, then there exist e and f in $N, e>f$, such that $x_{e} \cdots x_{f+1}$ is null transparent.

Proof. We will say that state s has property P with respect to N if and only if
(a) $\left(s, x_{i} \cdots x_{1}\right) \uparrow(\Lambda)\left(s, x_{j} \cdots x_{1}\right)$,
for all i and j in N such that $i>j$.
For purposes of induction, we consider case $m, i \leqq m \leqq q$, where the set of integers N_{m} has at least $m!+1$ elements and at most m states of Q do not have property P. The case $m=q$ is just a statement of the theorem. We will show that in those cases where the max and min of N_{m} are not suitable e and f, the problem may be reduced to solving the case $m-1$ for a subset of N_{m}. The max and \min of N_{1} will be shown to be always suitable and the theorem will therefore be true by induction.
Let e and f be the maximum and minimum of N_{m}. Because N_{m} has at least two members, $e>f$. If $x_{e} \cdots x_{f+1}$ is not null transparent, let s_{e} and s_{f} be the states such that
(b) $\left(s_{e}, x_{e} \cdots x_{f+1}\right) \uparrow(\Lambda)\left(s_{f}, \Lambda\right)$,
but not
(c) $\left(s_{f}, x_{e} \cdots x_{f+1}\right) \uparrow(\Lambda)\left(s_{f}, \Lambda\right)$.

State s_{f} cannot have property P because relation (a) with $i=e, j=f$, and $s=s_{f}$ implies relation (c) by the independence property.

Relation (b) implies, by independence, that

$$
\left(s_{e}, x_{e} \cdots x_{1}\right) \uparrow(\Lambda)\left(s_{f}, x_{f} \cdots x_{1}\right)
$$

Factoring this relation according to Lemma 4, we consider some s_{i} for i in N_{m}. Because $\alpha_{i f}=\Lambda$, state s_{i} cannot have property P, as this would imply $s_{f}=s_{i}$ by relation (a) and Lemma 5iii and we have already shown that s_{f} does not have property P. In case $m=1$, all these s_{i} must be the same state, namely the state without property P, and s_{e} must equal s_{f} making relations (b) and (c) identical. This is contrary to the assumption that (b) is true and (c) is false and we conclude that e and f do satisfy the theorem for case $m=1$. In case $m>1$, divide N_{m} into m-equivalence classes according to the relationship

$$
i \equiv j \quad \text { if and only if } s_{i}=s_{j} .
$$

One of these classes must have at least $(m-1)!+1$ elements (since
N_{m} has more than $m(m-1)$! elements) and we call this set N_{m-1}. The m states which had property P with respect to N_{m} also have property P with respect to subset N_{m-1} and the state s which determined the equivalence class N_{m-1} also has property P since

$$
\left(s, x_{i} \cdots x_{f+1}\right) \uparrow(\Lambda)\left(s, x_{j} \cdots x_{j+1}\right)
$$

implies (a) by the independence property. Therefore case m has been reduced to case $m-1$ and the theorem is proven.
Q.E.D.

Corollary 3.1. For pushdown machines without ϵ-moves, Theorem 3 holds whenever N has 2 elements.

Proof. In this case, all words satisfy Definition 6.

ℓ-INVISIBILITY

We now seek a way of finding certain segments in the tape word of a large configuration such that the presence of such a segment cannot be detected by the machine without using non-null input words at least ℓ times to pop up the tape symbols above the segment. Stated formally, we are interested in the following property:

Definition 7. A segment $x_{e} \cdots x_{j+1}$ is said to be f-invisible in the configuration

$$
c=\left(s_{n}, x_{n} \cdots x_{e} \cdots x_{f} \cdots x_{1}\right)
$$

if and only if, for each α and s^{\prime} such that

$$
c \uparrow(\alpha)\left(s^{\prime}, x_{e} \cdots x_{1}\right)
$$

either

$$
c \uparrow(\alpha)\left(s^{\prime}, x_{f} \cdots x_{1}\right)
$$

or there are at least ℓ integers $i, n \geqq i>\ell$ such that the $\alpha_{i, n-1}$ of Lemma 4 (factor property) applied to the relation

$$
c \uparrow(\alpha)\left(s^{\prime}, x_{e} \cdots x_{1}\right)
$$

satisfy $\alpha_{i, i-1} \neq \Lambda$.
The existence of ℓ-invisible segments in large configurations is assured by the following:

Theorem 4. For given integer ℓ, there exists a bound $B(\ell)$ of order $\left(q^{q}\right)^{\ell}($ for $q>1)$ such that, if $c=\left(s, x_{n} \cdots x_{1}\right)$ is a configuration and N is a set of at least $B(\ell)$ distinct integers $i, 1 \leqq i \leqq n$, then there exist e and f in N such that $e>f$ and $x_{e} \cdots x_{f+1}$ is ℓ-invisible in c. This $B(\ell)$
may be defined by the expression

$$
\left[\left(q^{\ell+1}-1\right) /(q-1)+1\right] q^{q}+1
$$

for $q>1$ and by $\ell+3$ if $q=1$.
Proof. For given state s and integer $i \leqq n$, we define $f(s, i)$ to be the smallest j such that

$$
\left(s, x_{i} \cdots x_{1}\right) \uparrow(\Lambda)\left(s_{j}, x_{j} \cdots x_{1}\right)
$$

for some state s_{j}. Since this relation holds for $j=i$ and $s_{j}=s, f(s, i)$ is well defined and $f(s, i) \leqq i$.

Now define I_{k} for $k \geqq 0$ inductively by the following:

$$
\begin{aligned}
I_{0} & =\left\{f\left(s_{n}, n\right)\right\} \\
I_{k+1} & =\left\{m \mid m=f(s, i-1) \text { for some } s \text { in } Q \text { and } i \text { in } I_{k c}\right\}
\end{aligned}
$$

Since each element of set I_{k} determines at most q additions to I_{k+1} (i.e. one for each s in Q) and since I_{0} has one element, I_{k} certainly has no more than q^{k} elements. Let

$$
\mathscr{J}=\bigcup_{0 \leqq k \leqq \ell} I_{k} .
$$

Because \mathfrak{g} has at most $z=\left(q^{\ell+1}-1\right) /(q-1)$ elements (or $z=\ell+1$ if $q=1$) it follows that if N has at least $(z+1) q^{q}+1$ elements, and there must be some i_{0} and j_{0} such that the sct

$$
\bar{N}=\left\{k \mid k \text { in } N \text { and } j_{0} \leqq k<i_{0}\right\}
$$

has at least $q^{q}+1$ elements and k is not in \mathfrak{F} for $j_{0}<k<i_{0}$. For each i in \bar{N}, let Q_{i} be the set of states s_{i} such that either

$$
c \uparrow(\Lambda)\left(s_{i}, x_{i} \cdots x_{1}\right)
$$

or

$$
\left(s_{i^{\prime}}, x_{i^{\prime}}, \cdots x_{1}\right) \uparrow(\Lambda)\left(s_{i}, x_{i} \cdots x_{1}\right)
$$

for some $s_{i^{\prime}}$ in Q and $i^{\prime}+1$ in \mathfrak{G}. By choice of \bar{N}, there must be a $j^{\prime} \leqq j_{0}$ and $s_{j^{\prime}}$ such that

$$
c \uparrow(\Lambda)\left(s_{j^{\prime}}, x_{j^{\prime}} \cdots x_{1}\right)
$$

or

$$
\left(s_{i^{\prime}}, x_{i^{\prime}} \cdots x_{1}\right) \uparrow(\Lambda)\left(s_{j^{\prime}}, x_{j^{\prime}} \cdots x_{1}\right)
$$

Because the elements of \bar{N} are between i^{\prime} and j^{\prime} and because s_{i} is an arbitrary element of Q_{i}, the factor property and Lemma 5iii imply that for all i in \bar{N}, s_{i} in Q_{i}, and j in \bar{N} such that $j<i$, there exists an s_{j} in Q_{j} such that

$$
\left(s_{i}, x_{i} \cdots x_{1}\right) \uparrow(\Lambda)\left(s_{j}, x_{j} \cdots x_{1}\right)
$$

Let m be the $m a x$ of \bar{N} and, for each i in \bar{N} and s_{m} in $Q_{m}, \operatorname{let} g\left(s_{m}, i\right)$ be the s_{i} in Q_{i} such that

$$
\left(s_{m}, x_{m} \cdots x_{1}\right) \uparrow(\Lambda)\left(s_{i}, x_{i} \cdots x_{1}\right)
$$

Function g is unique by Lemma 5iii. Because \bar{N} has $q^{q}+1$ elements, there must be e and f in N such that $e>f$ and

$$
g\left(s_{m}, e\right)=g\left(s_{m}, f\right)
$$

for all s_{m} in Q_{m}. We now wish to show that $x_{e} \cdots x_{f+1}$ is the desired segment.

The important property of e and f is that for all s_{e} in Q_{e},

$$
\text { (a) }\left(s_{e}, x_{e} \cdots x_{1}\right) \uparrow(\Lambda)\left(s_{e}, x_{f} \cdots x_{1}\right)
$$

To see this, recall that for s_{e} in Q_{e}, there are i^{\prime} and j^{\prime} defined above such that i^{\prime} is in $\mathfrak{I}, i^{\prime} \geqq m \geqq e>f \geqq j^{\prime}$,

$$
c \uparrow(\Lambda)\left(s_{j^{\prime}}, x_{j^{\prime}} \cdots x_{1}\right)
$$

or

$$
\left(s_{i^{\prime}}, x_{i^{\prime}} \cdots x_{1}\right) \uparrow(\Lambda)\left(s_{j^{\prime}}, x_{j^{\prime}} \cdots x_{1}\right)
$$

and the s_{e} in the factorization of this relation is the given s_{e}. It follows from $\alpha_{m e}=\Lambda$ and $\alpha_{m f}=\Lambda$ that $s_{e}=g\left(s_{m}, e\right)=g\left(s_{m}, f\right)=s_{f}$ and since $\alpha_{e f}=\Lambda$, the desired relation is established.

Consider some α such that
(b) $c \uparrow(\alpha)\left(s_{e}, x_{e} \cdots x_{1}\right)$
for some ε_{e} in S and let the $\alpha_{i j}$ be defined as in Lemma 4 (factor property) and let r be the number of non-null $\alpha_{i, i-1}$ for $n \geqq i>e$. If $r>\ell$, then α automatically satisfies Definition 7. If $r=0$, then

$$
c \uparrow(\Lambda)\left(s_{e}, x_{e} \cdots x_{1}\right)
$$

for some s_{e}, s_{e} is in Q_{e} by definition, and so

$$
c \uparrow(\Lambda)\left(s_{e}, x_{f} \cdots x_{1}\right),
$$

by concatenating (a) and (b), and Definition 7 is again satisfied. Now
suppose that $0<r \leqq \ell$ and for each $k, 0 \leqq k \leqq r$, let i_{k} be the integer such that $\alpha_{i_{k}, i_{k}-1}$ is the $(k+1)$ th non-null input word in the series

$$
\alpha_{n, n-1} \cdots \alpha_{i, i-1} \cdots \alpha_{e+1, e} .
$$

The key property of the i_{k} is that i_{k} is in I_{k}. This follows inductively from the relations

$$
f\left(s_{n}, n\right)=i_{0} \text { and } f\left(s_{i_{k}-1}, i_{k}-1\right)=i_{k+1}
$$

which are derived from the relations

$$
\alpha_{n, i_{0}}=\alpha_{i_{k}-1, i_{k+1}}=\Lambda
$$

and from Lemma 5i. Now observe that

$$
\alpha_{i r-1, e}=\Lambda
$$

and so s_{e} is in Q_{e}. Again,

$$
c \uparrow(\alpha)\left(s_{e}, x_{f} \cdots x_{1}\right)
$$

by concatenating relations (a) and (b). Thus Definition 7 is established for all r and the theorem is proved.
Q.E.D.

Corollary 4.1. If the pushdown machine has no ϵ-moves, then Theorem 4 is true for $B(\ell)=\ell+2$.

Proof. All the $\alpha_{i, i-1}$ are non-null.

MAIN RESULTS

The key to all our solvability results is contained in the following theorem. Two configurations are called equivalent if there are no input sequences which distinguish them.

Theorem 5. If a pushdown machine recognizes a regular set, one can calculate a bound M of order $q^{q^{2}}$ such that if $c_{0} \xrightarrow{\alpha} c$, there is a configuration c^{\prime} equivalent to c such that c^{\prime} has less than M tape word symbols. Bound M may be given by

$$
M=t q B\left(q!\left(q^{2} t\right)+1\right)+1
$$

where B is given in Theorem 4 .
Proof. Assume that $c_{0} \xrightarrow{\alpha} c$ where

$$
c=\left(s_{n}, x_{n} \cdots x_{1}\right)
$$

is a configuration with $n \geqq M$. It is sufficient to show that there is a configuration c^{\prime} equivalent to c which has a shorter tape word than c.

By Lemma 1, there exist input sequences α^{\prime} and β and state s_{0} such that $\alpha=\alpha^{\prime} \beta$ and

$$
c_{\theta} \xrightarrow{\alpha^{\prime}}\left(s_{0}, \Lambda\right) \downarrow(\beta) c .
$$

We factor this relation according to Lemma 4 using $\beta_{i j}$ to represent the input strings and s_{i} the states. For each x in X and s in S, let

$$
N(x, s)=\left\{i \mid 1 \leqq i \leqq n, x_{i}=x, \text { and } s_{i}=s\right\} .
$$

Because of the size of M, there is some \bar{x} and \bar{s} such that $N(\bar{x}, \bar{s})$ has $B\left(q!\left(q^{2} t\right)+1\right)+1$ elements. Therefore, according to Theorem 4, there are e and f in $N(\bar{x}, \bar{s})$ such that $x_{e} \cdots x_{f+1}$ is $\left(q!\left(q^{2} t\right)+1\right)$-invisible in c. We claim that

$$
c^{\prime}=\left(s_{n}, x_{n} \cdots x_{e+1} x_{f} \cdots x_{1}\right)
$$

is the desired equivalent configuration.
Defining $\beta^{\prime}=\beta_{1 f} \beta_{e n}$, observe that

$$
\left(s_{0}, \Lambda\right) \downarrow\left(\beta^{\prime}\right) c^{\prime} \quad \text { and } \quad c_{0} \xrightarrow{\alpha^{\prime} \beta^{\prime}} c^{\prime},
$$

because

$$
\left(s_{f}, x_{f} \cdots x_{1}\right) \downarrow\left(\beta_{e n}\right) c^{\prime},
$$

by the independence property and because of the concatenation property.

Assume, to the contrary, that c and c^{\prime} are not equivalent. Let γ be the shortest input sequence that distinguishes c and c^{\prime}. Note that γ is therefore the shortest sequence such that $\alpha^{\prime} \beta \gamma \not \approx \alpha^{\prime} \beta^{\prime} \gamma$. By Lemma 6 , γ may be written $\gamma=\Delta \gamma^{\prime}$ where

$$
c \uparrow(\Delta)\left(s_{e}^{\prime}, x_{e} \cdots x_{1}\right)
$$

and

$$
c^{\prime} \uparrow(\Delta)\left(s_{f}^{\prime}, x_{f} \cdots x_{1}\right) .
$$

We factor this first relation using Lemma 4 where $\Delta_{i j}$ is used to represent one of the input sequences and s_{i}^{\prime} to represent one of the states. Since segment $x_{e} \cdots x_{f+1}$ is $\left(q^{2} t(q!)+1\right)$-invisible, the set

$$
N=\left\{i \mid \Delta_{i, i-1} \neq \Lambda \quad \text { and } n \geqq i>e\right\}
$$

has at least $q^{2} t(q!)+1$ elements, for otherwise

$$
c \uparrow(\Delta)\left(s_{f}^{\prime}, x_{f} \cdots x_{1}\right),
$$

by Definition 7 and Lemma 5iii, which would imply that Δ carries c and c^{\prime} into the same configuration contrary to the fact that $\Delta \gamma^{\prime}$ distinguishes c and c^{\prime}.

Because of the size of N, there must be s and s^{\prime} in S and x in X such that

$$
N\left(s, s^{\prime}, x\right)=\left\{i \text { in } N \mid s_{i}=s, s_{i}^{\prime}=s^{\prime}, \quad \text { and } \quad x_{i}=x\right\}
$$

has at least $q!+1$ elements. By Theorem 3, there is an e^{\prime} and f^{\prime} in $N\left(s, s^{\prime}, x\right)$ such that $x_{e} \cdots x_{f+1}$ is null transparent.

In order to consolidate notation, we define

$$
\begin{aligned}
\theta_{1} & =\alpha^{\prime} \beta_{1 f^{\prime}} \\
\theta_{1}^{\prime} & =\alpha^{\prime} \beta_{1 \beta_{1} \beta_{e \prime^{\prime}}} \\
\theta_{2} & =\beta_{f^{\prime} c^{\prime}} \\
\theta_{3} & =\beta_{e^{\prime} n}^{n} \Delta_{e^{\prime}} \\
\theta_{4} & =\Delta_{e^{\prime} f^{\prime}} \\
\theta_{5} & =\Delta_{f^{\prime}, \gamma^{\prime}}
\end{aligned}
$$

By straightforward application of the independence and concatenation properties

$$
\text { (a) } \theta_{1} \theta_{2}{ }^{i} \theta_{3} \theta_{4}{ }^{j} \theta_{0} \approx \theta_{1} \theta_{2}^{i+k} \theta_{3} \theta_{4}^{j+k} \theta_{5}
$$

for all i, j and k since both input sequences lead to the same configuration as each θ_{4} effectively cancels a θ_{2}. Similarly one can verify

$$
\text { (b) } \theta_{1}^{\prime} \theta_{2} \theta_{2} \theta_{3} \theta_{4}{ }_{4}^{j} \theta_{5}=\theta_{1} \theta_{2}^{i+k} \theta_{3} \theta_{4}^{j+k} \theta_{5}
$$

for all i, j and k.
Because γ distinguishes c and c^{\prime},
(c) $\theta_{1} \theta_{2} \theta_{3} \theta_{4} \theta_{5} \not \approx \theta_{1}^{\prime} \theta_{2} \theta_{3} \theta_{4} \theta_{5}$,
(this is a restatement of the relation $\alpha^{\prime} \beta \gamma \not \approx \alpha^{\prime} \beta^{\prime} \gamma$) and since $\Delta_{n e^{\prime}} \Delta_{f^{\prime} e} \gamma^{\prime}$ is shorter than γ (recall $\Delta_{e^{\prime}, e^{\prime}-1} \neq \Lambda$) and cannot distinguish c and c^{\prime}, it follows that
(d) $\theta_{1} \theta_{2} \theta_{3} \theta_{5} \approx \theta_{1}^{\prime} \theta_{2} \theta_{3} \theta_{5}$.

By independence and concatenation,

$$
c_{0} \xrightarrow{\theta_{1} \theta_{2} \theta_{3}}\left(s_{e^{\prime}}^{\prime},\left(x_{e^{\prime}} \ldots x_{f^{\prime}+1}\right)^{i} x_{f^{\prime}} \cdots x_{1}\right)
$$

and

$$
c_{0} \stackrel{\theta^{\prime} \theta_{2} \theta_{2} \theta_{3}}{\longrightarrow}\left(s_{e^{\prime},}^{\prime},\left(x_{e^{\prime}} \cdots x_{f^{\prime}+1}\right)^{i} x_{f^{\prime}} \cdots x_{e+1} x_{f} \cdots x_{1}\right)
$$

and because θ_{4} is null transparent, Theorem 2 implies
(e) $\theta_{1} \theta_{2}{ }^{i} \theta_{3} \theta_{5} \approx \theta_{1} \theta_{2}{ }^{j} \theta_{3} \theta_{5}$
and
(f) $\theta_{1}^{\prime} \theta_{2}^{i} \theta_{3} \theta_{\mathrm{s}} \approx \theta_{1}^{\prime} \theta_{2}^{j} \theta_{\mathrm{s}} \theta_{\mathrm{j}}$,
for all i and j greater than some ℓ.
Relations (c), (d), (e), and (f) imply that one of the following must be true for all $i \geqq \ell$:
(g) $\theta_{1} \theta_{2}{ }^{i} \theta_{3} \theta_{5} \not \approx \theta_{1} \theta_{2} \theta_{3} \theta_{5}$,
(h) $\theta_{1} \theta_{2}{ }^{i} \theta_{5} \theta_{5} \not \approx=\theta_{1} \theta_{2} \theta_{3} \theta_{4} \theta_{5}$,
(i) $\theta_{1}^{\prime} \theta_{2}{ }^{i} \theta_{3} \theta_{5} \neq \theta_{1}^{\prime} \theta_{2} \theta_{3} \theta_{5}$,
(j) $\theta_{1}^{\prime} \theta_{2}^{i} \theta_{3} \theta_{5} \not \approx \theta_{1}^{\prime} \theta_{2} \theta_{3} \theta_{4} \theta_{5}$.

If relation (g) holds, relations (a) and (g) satisfy Theorem 1 with $\alpha_{1}=\theta_{1} \theta_{2}, \alpha_{2}=\theta_{2}, \alpha_{3}=\theta_{3}, \alpha_{4}=\theta_{4}$, and $\alpha_{5}=\theta_{5}$. If relation (h) holds, relation (a) implies

$$
\theta_{1} \theta_{2}^{i+1} \theta_{3} \theta_{4} \theta_{5} \not \approx \theta_{1} \theta_{2} \theta_{3} \theta_{4} \theta_{5}
$$

and Theorem 1 holds with $\alpha_{1}=\theta_{1} \theta_{2}, \alpha_{2}=\theta_{2}, \alpha_{3}=\theta_{3}, \alpha_{4}=\theta_{4}, \alpha_{5}=$ $\theta_{4} \theta_{5}$, and $\ell=\ell+1$. Similarly, (b) and (i) or (b) and (j) also satisfy Theorem 1. In any case, Theorem 1 says that the set recognized is not regular, contrary to our assumption, and the theorem is proved. Q.E.D.

Corollary 5.1. If the pushdown machine has only one state, M may be taken to be $t^{2}+4 t+1$.
Proof. This is true by direct substitution into the expression for B.
Corollary 5.2. If the pushdown machine has no ϵ-moves, then M may be given by $q^{3} t^{3}+q t+1$.

Proof. This is obtained by using the bounds of corollaries 3.1 and 4.1.
Corollary 5.3. The set L recognized by a pushdown machine is regular if and only if the intersection of L with every regular set of the form $\left\{\alpha_{1} \alpha_{2}{ }^{i} \alpha_{3} \alpha_{4}{ }^{i} \alpha_{5}\right\}$ is regular.

Proof. In the proof of Theorem 5, we found such a set when L was non-regular.

Corollary 5.4. A reduced finite state machine which recognizes the same set as a pushdown machine cannot have more than $q t^{H}$ states if $t>1$ or $q M$ states if $t=1$.

Proof. The number of states cannot be larger than the number of configurations with tape word of length less than or equal to M.

This last corollary implies that the order of magnitude of the number of states is $t^{q^{q} q^{q}}$ as stated in the introductory paragraph. Because the suitable ℓ-invisible segments can in fact be obtained constructively, it is possible to construct this machine without enumeration, but this is of little comfort in view of the orders of magnitude involved. If this bound cannot be improved significantly, then it would appear profitable in some cases to maintain a pushdown design for a recognizer even if a finite state design is possible. We can now state the main result:

Theorem 6. It is recursively decidable whether or not the set recognized by a given (deterministic) pushdown machine is regular.

Proof. Enumerate all the finite state machines which do not have more states than the bound given in Corollary 5.4 and test each of these to see if it is equivalent to the pushdown machine. If one of these machines is equivalent to the pushdown machine, then the set is regular and otherwise it is not. A proof that the equivalence of a finite state machine and a pushdown machine is solvable may be found in Ginsburg and Greibach (1966). This problem reduces to the better-known emptiness problem by constructing the pushdown machine which recognizes the proper difference of the two sets in question and testing the resulting set to see if it is empty.
Received: March 6, 1967; revised: August 14, 1967
REFERENCES
Ginsburg, S. and Spanier, E. H. (1964), Bounded algol-like languages. Trans. Am. Math. Soc. Vol. 113, No. 2, 333-368.
Ginsburg, S. and Greibaci, S. (1966), Deterministic context free languages. Inform. Control 9, 620-648.

