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We address the scaling behaviour of contour-shape-dependent ultraviolet singularities of the light-like 
cusped Wilson loops in Yang–Mills and N = 4 super-Yang–Mills theories in the higher orders of the 
perturbative expansion. We give the simple arguments to support the idea that identifying of a special 
type of non-local infinitesimal shape variations of the light-like Wilson polygons with the Fréchet 
differentials results in the combined geometric and renormalization-group evolution equation, which is 
applicable beyond the leading order exponentiated Wilson loops.
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1. Introduction

Wilson loops with light-like parts and obstructions (like cusps 
and/or self-intersections) occurs in a number of important gauge-
invariant hadronic and vacuum correlation functions, among which 
transverse momentum and distance dependent parton distribution 
functions in the theory of strong interaction, multi-gluon scattering 
amplitudes in N = 4 super-Yang–Mills theory, jet quenching and 
transverse-momentum broadening functions in QCD and AdS/CFT 
are worth mentioning (for details, see, e.g., Refs. [1–8] and ref-
erences therein). Calculation of these correlation functions within 
a QFT setting calls for careful treatment of the emerging singu-
larities (ultraviolet, infrared and rapidity). The structure of these 
divergences is normally more involved than the one of the fully 
non-light-like Wilson functionals which results in the highly non-
trivial renormalization properties of the former [9]. On the other 
hand, the (partially) light-like Wilson loops can be treated as el-
ements of a generalized loop space [10], for which the equations 
of motion govern their behaviour under shape variations. One has 
to take into account, however, that in the quantum field-theoretic 
setting the infinitesimal shape variations do not necessary im-
ply infinitesimal variations of the Wilson exponentials defined on 
these paths. The issue of the emerging singularities arises here as 
well [11]. Namely, in the class of smooth paths γ the variations 
of the corresponding Wilson loops resulting from variations in the 
contours can be consistently described by the Makeenko–Migdal 
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loop equations [11–13]. In contrast, the analysis of the cusped con-
tours possessing some light-like segments requires more careful 
approach to introduction of the shape variations because of the 
extra divergences, which affect the renormalization properties of 
the Wilson loops under consideration.

Recently [14] we analyzed the geometric and renormalization 
behaviour of the simplest object possessing the properties under 
consideration, i.e. the planar quadrilateral contour parametrized by 
the light-like vectors �i , i ∈ {1,2,3,4}, Fig. 1. Note that this con-
tour should by considered as a “dual” one to the “original” Wilson 
polygon on the light-cone. The latter, given that the lengths �i are 
allowed to be different, is obviously not planar. In what follows 
we are concerned with the properties of this planar dual ver-
sion unless stated otherwise. We proposed a special class of the 
infinitesimal contour variations which are generated by the differ-
ential operators

Sij
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Fig. 1. Quadrilateral contour γ with the light-like sides �2
i = 0 (left panel); Examples of the shape variations generated by the differential operators (1.1) (right panels).
first studied in Refs. [9]. The differential operator (1.2) does not, 
however, secure the shape scaling by default. The reason is that 
the singularities of the light-like Wilson polygons depend only on 
the Mandelstam variables Sij , which do not determine the shape 
completely. In Ref. [15] we found that these operators arise as a 
particular case of Fréchet differential operator associated with a 
specific diffeomorphism-generating vector field. We demonstrated 
explicitly that at the leading order in αs the operator (1.1) for i = 1, 
j = 2 coincides with the Fréchet derivative associated with a vector 
field defined as

V μ
1 = �

μ
1 + �

μ
2 = (

�+
1 , �−

2 ,0⊥
)

generating the angle-conserving shape variations, Fig. 1 (see also 
Ref. [10] for more details on this association). The logarithmic 
Fréchet derivative then reads

D V [Uγ ] = Uγ ·
1∫

0

dt Uγ t ·Fμν(t)
[
V μ(t) ∧ γ̇ ν(t)

] · U−1
γ t , (1.4)

where

Uγ t = P exp

[
ig

t∫
0

Aμ(x) γ̇ μdσ

]
γ

,

xμ(σ ) = γ̇μσ , σ ∈ [0,1],
xμ(0) = xμ(1), Uγ = Uγ 1 , (1.5)

such that(
S12

δ

δS12
+ S23

δ

δS23

)
Wγ = D V 1Wγ ,

Wγ = 〈0| 1

Nc
Tr Uγ |0〉. (1.6)

Therefore, one gets the renormalization-group evolution in the 
form [14]

μ
d

dμ
[D V 1 Wγ ] = −

∑
Γcusp, (1.7)

where Γcusp is the light-like cusp anomalous dimension [1,9] and 
the summation runs over the number of cusps affected by the 
shape variation. The Fréchet derivatives for D V i , i = 2, 3, 4, which 
deliver other possible conformal transformations of the contour γ , 
can be constructed in the similar manner. This is not surprising 
since both operators induce the same shape variations that are 
shown in Fig. 1, but it also justifies that the differential operators 
in (1.1) can be made mathematically well-defined. We also checked 
[14] that the evolution equation (1.7) is valid (in the leading or-
der) for a Π -shaped contour (Fig. 2) with finite light-like part [2]. 
This contour is a typical ingredient of the gauge-invariant operator 
Fig. 2. Π -shaped contour with light-like �2
2 = 0 and non-light-like �2

1,3 �= 0 parts.

expressions for various parton distribution functions and its geo-
metric scaling is related to the rapidity evolution of the latter [16].

At this point we would like to emphasize that one can go from 
the local area derivative, used by Makeenko and Migdal in their 
loop equations, to the Fréchet derivative [17]. This can easily be 
seen by identifying the two local vector fields, defining the in-
finitesimal shape variation of the area derivative, with the contour 
tangents and the (local) diffeomorphism generating vector field as-
sociated with the Fréchet derivative. If one now integrates over all 
these local variations along the entire contour, one arrives at the 
Fréchet derivative corresponding to the contour diffeomorphism. 
Moreover, it is worth mentioning that the infinitesimal version of 
the Fréchet derivative (without the integration along the entire 
contour) has also been used by Polyakov (see Eqs. (3.5), (3.6) in 
Ref. [18]) without, however, establishing the relation to the Fréchet 
derivative. These issues will be addressed in a separate work.

In the present Letter we check, making use of the results exist-
ing in the literature and performing only trivial calculations, that 
our conjecture (1.7) is not only valid in the leading perturbative 
order, but can be extended beyond it (even up to the all orders 
for the quadrilateral in N = 4 super-Yang–Mills theory) due to the 
non-abelian exponentiation theorem [19], and explicitly demon-
strate this for the next-to-leading order O (α2

s ) using the two-loop 
result of Ref. [20]. Taking into account the running of the coupling 
constant, we check the validity of our conjecture in the next-to-
leading order in the QCD case for the quadrilateral planar contour 
and for the planar Π -shaped contour. In both cases we relied on 
the results presented in Refs. [2,9].

2. Quadrilateral light-like Wilson loop in N = 4 SYM

Let us consider the fully light-like contour γ shown in Fig. 1. In 
the case of the N = 4 SYM, the non-Abelian exponentiation the-
orem for the Wilson loops [19] allows us to present Wilson loop 
functionals in the form

Wγ = 1 +
∞∑(

αS

π

)n

W(n) = exp

[ ∞∑(
αs

π

)n

c(n)w(n)

]
, (2.1)
n=1 n=1



200 I.O. Cherednikov, T. Mertens / Physics Letters B 734 (2014) 198–202
where W(n) are the perturbative expansion terms of the Wilson 
loop, c(n)w(n) the contribution to W(n) corresponding to the “max-
imally non-Abelian” colour factors c(n) . From this we can write [20]

W(1) = C F w(1), W(2) = C F N w(2) + 1

2
C2

F

(
w(1)

)2
etc., (2.2)

which can be used to write the two-loop expression of the Wilson 
loop functional as:

lnWγ = αs

π
C F w(1) +

(
αs

π

)2

C F C A w(2) +O
(
αs

3). (2.3)

The leading contributions read [20]

w(1) = − 1

ε2

[(−S12μ
2)ε + (−S23μ

2)ε] + 1

2
ln2

(
S12

S23

)

+ π2

3
+O(ε), (2.4)

and

w(2) = [(
S12μ

2)2ε + (
S23μ

2)2ε]{
ε−2 π2

48
+ ε−1 7

8
ζ3

}

− π2

24
ln2

(
S12

S23

)
− 37

720
π4 +O(ε). (2.5)

Applying the differential operator (1.2) to this result returns:〈
δ

δ ln S

〉
1

w(2) = [(
S12μ

2)2ε + (
S23μ

2)2ε]{
ε−1 π2

24
+ 7

4
ζ3

}
+ finite. (2.6)

Operating on this result with the mass scale derivative and taking 
the ε → 0 limit we finally arrive at:

μ
d

dμ

〈
δ

δ ln S

〉
1

w(2) = 4 · π2

12
, (2.7)

which becomes 4 · π2

12 C F C A when taking the non-Abelian colour
factors into account. Combining this with the one-loop result (2.4), 
again multiplying with the correct colour factors, this returns:

〈
δ

δ ln S

〉
lnWγ = 4 ·

(
−

(
αs

π

)
C F +

(
αs

π

)2

C F C A
π2

12

)
= −4Γcusp, (2.8)

consistent with our original conjecture (1.7) if one considers Γcusp

as in [20], and where we took into account the 1
N factor in the 

definition of the Wilson loop

Γcusp(g) =
(

αs

π

)
C F −

(
αs

π

)2

C F C A
π2

12
+ O

(
α4

s

)
. (2.9)

3. All order check in the N = 4 SYM theory

In [20] it is also discussed that the Wilson loop can be split up 
in a divergent and a finite part:

lnWn = ln Zn + 1

2
Γcusp(a)Fn +O(ε), (3.1)

where a = αs Nc
π and the divergences are absorbed into the factor 

Zn and depend on the renormalization scale μ, ε . In any gauge 
theory (see [21] and references therein) this factor can be written 
as2:

ln Zn = −1

2

∞∑
l=1

al
(

Γ
(l)

cusp

(lε)2
+ Γ (l)

lε

) n∑
i �= j

(−xi,i+2μ
2)lε

, (3.2)

where Γcusp(a) = ∑∞
l=1 alΓ

(l)
cusp, Γ (a) = ∑∞

l=1 alΓ (l) and n is the 
number of cusps along the contour. The term Fn refers to a finite 
contribution that is parametrized only by the xi (which are now 
combined in the Sij ), i.e. independent of the UV scale μ. Then we 
get

ln Zn = −1

2

∞∑
l=1

al
(

Γ
(l)

cusp

(lε)2
+ Γ (l)

lε

) n∑
i �= j

(−Sijμ
2)lε

. (3.3)

Applying the generalization, to n segments, of the differential op-
erator defined in (1.2) to (3.1) returns

∑
i

〈
δ

δ ln S

〉
i
lnWn = −1

2

∞∑
l=1

al
(

Γ
(l)

cusp

(lε)
+ Γ (l)

) n∑
i �= j

(−Sijμ
2)lε

+O(ε). (3.4)

Now again applying the ultraviolet scale derivative then returns

μ
d

dμ

∑
i

〈
δ

δ ln S

〉
i
lnWn = −

∞∑
l=1

al(Γ (l)
cusp + lεΓ (l)) n∑

i �= j

(−Sijμ
2)lε

+O(ε). (3.5)

Taking the limit ε → 0 we get the final result:

μ
d

dμ

∑
i

〈
δ

δ ln S

〉
i
lnWn = −n

∞∑
l=1

al(Γ (l)
cusp

) = −nΓcusp

= −
∑

cusps

Γcusp, (3.6)

demonstrating that in the SYM theory our conjecture holds to all 
orders. Of course, this result depends strongly on the non-Abelian 
exponentiation theorem and on the behaviour of the Sudakov form 
factor in this theory.

4. Two loop QCD with the running coupling

In this section we investigate the validity of our conjecture at 
the NLO level for the Π -shaped contour γπ , Fig. 2, and quadrilat-
eral on the contour Fig. 1 from before, but now in QCD. In QCD 
we will need to take the running of the coupling constant into ac-
count, given that the β-function reads

β(g) = −
(

11

3
− 2

3
N f

)
g3

16π2
. (4.1)

In other words, in a QCD setting beyond the leading order, the 
evolution equation is conjectured to be(
μ

∂

∂μ
+ β(g)

∂

∂ g

)〈
δ

δ ln S

〉
1

lnWγ = −
∑

cusps

Γcusp. (4.2)

The fact that we need to introduce this modification is not sur-
prising, since Γcusp depends on the coupling constant and hence 

2 In Ref. [20] Γcusp is defined by means of the derivative ∂

∂ ln μ2 , while we define 
it using ∂

∂ ln μ , explaining the factor 2 of difference in (3.2).
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is sensitive to its renormalization which is exactly described by 
the β-function. To demonstrate the validity we use the NLO result 
for the Π -shaped contour from Ref. [2]. Here the authors actually 
already proved (4.2) for this contour, with a bit of different no-
tation,3 but the geometrical interpretation of the derivative ∂

∂(v·y)

remained obscure. We shall explain this derivation in a bit more 
detail starting from the NLO expression for γπ . This will show 
the strategy to follow to demonstrate the validity of (4.2) for the 
quadrilateral contour.

The renormalized NLO expression for the Π -contour is given by 
[2]:

WR
γπ

=
(

αs

π

)
C F

(
−L2 + L − 5

24
π2

)
+

(
αs

π

)2

× C F
(

A1L3 + A2L2 + A3L +O
(
L0)) + finite, (4.3)

where

A1 = −11

18
C A + 1

9
N f , A2 =

(
1

12
π2 − 17

18

)
C A + 1

9
N f , (4.4)

A3 =
(

9

4
ζ(3) − 7

18
π2 − 55

108

)
C A +

(
1

18
π2 − 1

54

)
N f , (4.5)

where the new shape variable S̃12 = (�̃1 · �2) is introduced and

�̃
μ
1 = (

�̃+
1 , �̃−

1 ,0⊥
)
, �̃2

1 �= 0, �
μ
2 = (

0+, �2,0⊥
)
,

�2
2 = 0, L = ln

(
S12μ

2).
Although the length of the non-light-like side is (semi-)infinite, 
this is irrelevant for the issues we are concerned about. If we now 
consider the series coefficients of L, after the application of the dif-
ferential operator (1.2) and the mass scale derivative to (4.3), then 
it is easy to see that the coefficients of L2 get multiplied to powers 
of ( αs

π ) higher than two, due to the presence of the β-function as 
multiplicative factor. Thus, they do not contribute at the NLO level. 
The coefficients of L, on the other hand, come from the L3 term in 
Eq. (4.3) by application of(
μ

∂

∂μ

)〈
δ

δ ln S̃

〉

and from(
β(g)

∂

∂ g

)〈
δ

δ ln S̃

〉(
αs

π

)
C F

(−L2).
Their total contribution becomes (where we use the notation: 
β(g) = β

g3

16π2 ):

6A1 − β = −
(

11

3
C A − 2

3
N f

)
+

(
11

3
C A − 2

3
N f

)
= 0. (4.6)

If our conjecture is now to hold the constant terms should add up 
to −2Γcusp to order O(( αs

π )
3
). The first contribution to the con-

stant terms comes from ( αs
π )C F (−L2):

(
μ

∂

∂μ

)〈
δ

δ ln S̃

〉(
αs

π

)
C F

(−L2) = −2

(
αs

π

)
C F

= −2Γ LO
cusp. (4.7)

3 See Eq. (4.4) in [2] and the discussion below it.
The second contribution comes from the term ( αs
π )

2C F (A2L2):

(
μ

∂

∂μ

)〈
δ

δ ln S̃

〉(
αs

π

)2

C F
(

A2L2)

= 2A2

(
αs

π

)2

C F

= 2

((
1

12
π2 − 17

18

)
C A + 1

9
N f

)(
αs

π

)2

C F . (4.8)

Finally the third contribution comes from the term ( αs
π )C F (L):(

β(g)
∂

∂ g

)〈
δ

δ ln S̃

〉(
αs

π

)
C F (L) = 1

2
β. (4.9)

The first term already contributes to the cusp anomalous dimen-
sion in the correct way, so we only need to focus on the second 
and the third terms. Adding both contributions and extracting a 
−2 factor we get

−2

(
αs

π

)2

C F

(
−A2 − 1

2

1

2
β

)

= −2

(
αs

π

)2

C F

((
− 1

12
π2 + 17

18

)
C A − 1

9
N f

+ 11

12
C A − 2

12
N f

)

= −2

(
αs

π

)2

C F

(
C A

(
67

36
− 1

12
π2

)
− 5

18
N f

)

= −2Γ NLO
cusp . (4.10)

Combining all the contributions shows that indeed (4.2) is valid at 
NLO for the γπ contour, with Γcusp as in [2]:

Γcusp(g) = αs

π
C F +

(
αs

π

)2

C F

(
C A

(
67

36
− π2

12

)
− N f

5

18

)
.

(4.11)

Let us now go back to the quadrilateral contour γ . To proceed, 
we make use of the NLO results for γ derived in Refs. [9]. In these 
papers it was shown that using the non-Abelian exponentiation 
theorem [19] that the renormalized quadrilateral Wilson loop can 
be written as

Wγ = exp
(
W(1)

γ +W(2)
γ

)
, (4.12)

where

W(1)
γ = − αs

2π
C F

(
ln2(S12μ

2) + ln2(S23μ
2)) (4.13)

W(2)
γ = −

(
αs

π

)2

C F
[

w1 ln3(S12μ
2) + w2 ln2(S12μ

2)
+ w3 ln

(
S12μ

2) ln
(

S23μ
2)

+ w4 ln
(

S12μ
2) + (S12 ↔ S23) + const

]
(4.14)

and with:

w1 =
(

11

72
C A − N f

36

)
, w2 =

(
67

72
− π2

12

)
C A − 5

36
N f

w3 =
(

π2

C A

)
, w4 =

(
101 − 7

ζ (3)

)
C A − 7

N f . (4.15)

24 54 4 27
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Note that (4.13) is just another way to express w1 from (2.4) in 
the renormalized version. To see how they are related, we take 
into account that

zε = 1 + ε ln z + 1

2
ε2 ln2(z) +O

(
ε3)

and recall that this is multiplied by a factor 1
ε2 in the LO result 

[14]. Subtracting the poles using the MS scheme returns (4.13) if 
one applies the same transformation to (S23μ

2)
ε

. We point out 
that applying our derivative followed by the mass scale derivative 
to (4.13) gives again our conjecture at leading order:

μ
d

dμ

〈
δ

δ ln S

〉
1
W(1)

γ = −8
αs

2π
C F = −4Γ LO

cusp. (4.16)

We want to do the same for the two loop result (4.14), but just as 
for Π -shaped contour we will need to change to our adapted con-
jecture (4.2). Doing this it is again easy to see that the ln2-terms 
after application of our generalized or Fréchet derivative, and the 
mass scale derivative, only contribute to higher orders of αs

π , i.e. 
to NNLO terms. Similarly to the Π -shaped contour case the terms 
contributing to the log-terms cancel:

1

2
β + 2 · 6w1 = −1

2

(
11

3
C A − 2

3
N F

)
+ 12

(
11

72
C A − N f

36

)
= 0.

(4.17)

The total contribution to the constant terms, after application of 
all the derivatives, is given by:

−4

(
αs

π

)2

C F (2w2 + 2w3)

= −4

(
αs

π

)2

C F

[
C A

(
67

36
− 1

12
π2

)
− 5

18
N f

]
= Γ NLO

cusp , (4.18)

which combined with (4.16) proves our conjecture at the NLO level 
for the quadrilateral light-like path γ .

5. Conclusion

We have shown that our original conjecture, Eq. (1.7), is valid 
in the N = 4 super-Yang–Mills theory, not only in the leading and 
next-to-leading orders of the perturbative expansion, but can be 
extended to all orders. The latter is possible since the β-function 
is zero in N = 4 SYM and there is no running of the coupling con-
stant. On the other hand, working in QCD we demonstrated that 
taking into account the running of the strong coupling constant 
αs allows us to verify this conjecture for the Π -shaped and the 
quadrilateral light-like Wilson loops. Further development of the 
Fréchet derivative approach to the study of the geometrical and 
conformal properties of the polygonal Wilson loops with light-like 
segments will be reported elsewhere [22].
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