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a b s t r a c t

In this paper, we analyze the propagation of Bleustein–Gulyaev waves in an unbounded piezoelectric
half-space loaded with a viscous liquid layer of finite thickness within the linear elastic theories. Exact
solutions of the phase velocity equations are obtained in the cases of both electrically open circuit and
short circuit by solving the equilibrium equations of piezoelectric materials and the diffusion equation
of viscous liquid. A PZT-5H/Glycerin system is selected to perform the numerical calculation. The results
show that the mass density and the viscous coefficient have different effects on the propagation attenu-
ation and phase velocity under different electrical boundary conditions. In particular, the penetration
depth of the waves is of the same order as the wavelength in the case of electrically short circuit. These
effects can be used to manipulate the behavior of the waves and have implications in the application of
acoustic wave devices.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

One kind of shear horizontal wave (hereinafter abbreviated to
‘‘B–G” wave) can exist along the traction-free surface of piezoelec-
tric materials, which has no counterpart in elastic materials. Fol-
lowing the work by Bleustein (1968) and Gulyaev (1969), many
researchers successively investigated the propagation characteris-
tics of the so-called B–G wave in order to apply it to acoustic wave
devices (Bleustein, 1969; Li, 1996; Yang, 2000; Liu et al., 2003).
Most of the models considered in these works deal with piezoelec-
tric materials. Acoustic wave devices loaded with viscous liquid
layers of finite thickness are also widely encountered. For example,
it is very common to make an IDT (interdigital transducer) on one
side of a piezoelectric crystal, and load viscous liquid on the other
side. In this way, the waves transmit less energy into the liquid and
keep working at the liquid-loaded circumstance, which works to
the traditional surface waves’ disadvantage. Kieiczyhskai and
Plowiec (1989) made use of the perturbation theory to present a
method for measuring the rheological properties of viscoelastic
liquids using B–G waves. Because the B–G wave does not radiate
energy into the contacting liquid and is sensitive to the changes
of liquid density and viscous coefficient, Zhang et al. (2001) pro-
posed that it could be a promising candidate for liquid sensing
applications. However, they did not give a detailed quantitative
ll rights reserved.
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investigation of B–G wave propagation in piezoelectric materials
loaded with viscous liquid. Guo and Sun (2008) investigated B–G
wave propagation in half-space piezoelectric materials loaded with
viscous liquid. The liquid model that Guo et al. adopted in their
work is a half-space, which may not be appropriate because the
thickness of the liquid layer is much less than that of the piezoelec-
tric substrate. To establish the relationship between shifts in wave
frequency and changes in fluid density or viscosity, a coupled prob-
lem of fluid–structure interaction using practical solid–liquid mod-
els needs to be solved. This usually presents complicated
mathematical problems, and only limited theoretical results have
been reported so far.

In this paper, we analyze the propagation of B–G waves in an
unbounded piezoelectric half-space loaded with a viscous liquid
layer of finite thickness. By solving the equilibrium equations of
piezoelectric materials and the diffusion equation of viscous liquid,
the closed-form solutions for the phase velocity equations of B–G
waves are obtained for both the electrically open circuit and short
circuit. This analysis is followed by numerical examples of a PZT-
5H piezoelectric ceramic half-space in contact with a finite-thick-
ness layer of glycerin. The results obtained in this paper are
intended to provide essential data for designing liquid sensing
devices.
2. Statement of the problem

Consider a piezoelectric half-space covered with a finite-thick-
ness layer of liquid, as shown in Fig. 1. The ceramic material is
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Fig. 1. A piezoelectric half-space covered with a finite-thickness layer of viscous
fluid.
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poled in the x3 direction determined by the right-hand rule from
the x1 and x2 axes. The structure allows the following anti-plane
motion (Bleustein, 1969):

u1 ¼ u2 ¼ 0; u3 ¼ uðx1; x2; tÞ; ð1Þ
u ¼ uðx1; x2; tÞ; ð2Þ

where u1, u2 and u3 are the mechanical displacement components
and u is the electric potential. The nontrivial strain and electric field
components are

2S13

2S23

� �
¼ ru;

E1

E2

� �
¼ �ru; ð3Þ

where r = i1@1 + i2@2 is the two-dimensional gradient operator. E1

and E2 are the electric field components. The nontrivial components
of the stress Tij and the electric displacement Di in the piezoelectric
half-space are

T13

T23

� �
¼ cruþ eru;

D1

D2

� �
¼ eru� eru; ð4Þ

where we have denoted the relevant elastic, piezoelectric and
dielectric constants in the piezoelectric half-space by c = c44,
e = e15 and e = e11. The nontrivial equation of motion and the charge
equation of electrostatics take the following forms:

cr2uþ er2u ¼ q€u;

er2u� er2u ¼ 0;

)
ð5Þ

for the piezoelectric half-space occupying 0 6 x2 < +1.
The liquid occupying �h 6 x2 6 0 is assumed to be viscous and

nonconductive. Suppose that the motion of liquid is induced only
by wave propagation in the piezoelectric material and also propa-
gates in the form of harmonic wave. In this case, the governing
equation for the liquid layer is simplified to (Guo and Sun, 2008)

@vL
3

@t
� lL

qLr
2vL

3 ¼ 0; ð6Þ

where vL
3 is the liquid particle velocity along the x3 direction in the

liquid layer. qL is the mass density of the liquid, and lL is the dy-
namic viscous coefficient of the liquid.

The mechanical boundary, continuity and attenuation condi-
tions for the problem under consideration are

TL
23 ¼ 0 at x2 ¼ �h;

T23 ¼ TL
23; v3 ¼ vL

3 at x2 ¼ 0;
u3 ! 0;u! 0 as x2 !1:

ð7Þ

Assume that the liquid is electrically insulated and its permittivity
is much less than that of the piezoelectric substrate material. The
electrical boundary conditions at the solid–liquid interface can thus
be classified into two cases, i.e., (1) an electrically open circuit:
D2jx2=0 = 0, (2) an electrically short circuit: ujx2=0 = 0.

3. Propagating wave solution

The solution of the boundary problem specified in Section 2 can
be found in our previous work (Qian et al., 2007, 2009). The solu-
tion of Eq. (5) as a plane harmonic wave satisfying the attenuation
condition in Eq. (7), is listed directly here:

u ¼ C1e�n2x2 exp iðn1x1 �xtÞ½ �;

u ¼ C2e�n1x2 þ e
e

C1e�n2x2

� �
exp iðn1x1 �xtÞ½ �;

ð8Þ

where C1 and C2 are undetermined constants, x is the wave fre-
quency, and n1 and n2 are wave numbers in the x1 and x2 directions.
Eq. (8) satisfies Eq. (5) when

n2
2 ¼ n2

1 1� v2=v2
T

� �
; ð9Þ

where Re(n1) > 0 and Re(n2) > 0, the wave speed v is given by
Reðn1Þ ¼ x=v; vT ¼ ð�c=qÞ1=2 is the bulk shear wave velocity, and
�c ¼ c þ e2=e is the piezoelectrically-stiffened elastic constant in
the substrate.

Similarly, the solution of Eq. (6) as a plane harmonic wave sat-
isfying the boundary condition at the free surface is written as

vL
3 ¼ C3 cosh nL

2ðx2 þ hÞ exp½iðn1x1 �xtÞ�; ð10Þ

where C3 is an undetermined constant. Eq. (10) satisfies Eq. (6) for

nL
2

� �2 ¼ n2
1 � ixqL=lL: ð11Þ

Substitution of Eqs. (8) and (10) and their corresponding stress
components into the remaining mechanical boundary and continu-
ity conditions in Eq. (7) yields

� ixC1 ¼ C3 cosh nL
2h;

� n2�cC1 � en1C2 ¼ C3lLnL
2 sinh nL

2h:
ð12Þ

For the electrically open-circuit condition, C2 = 0. For the electrically
short-circuit condition, C2 + C1e/e = 0. For nontrivial solutions of the
undetermined constants to exist, the determinant of the coefficient
matrix of the linear algebraic equations has to equal zero, which
leads to the following dispersion relation of the B–G waves:

n2�c � ixlLnL
2 tanh nL

2h ¼ 0; ð13Þ

for an electrically open circuit, and

n2�c � ixlLnL
2 tanh nL

2h� n1e2=e ¼ 0; ð14Þ

for an electrically short circuit.
With Eqs. (9) and (11), we can use Eqs. (13) and (14) to deter-

mine v versus n1 or x versus n1. For the special case when
h ?1, we can separately degenerate Eqs. (13) and (14) into the
following:

n2�c � ixlLnL
2 ¼ 0; ð15Þ

n2�c � ixlLnL
2 � n1e2=e ¼ 0: ð16Þ

Eqs. (15) and (16) are exactly the same as the results obtained by
Guo and Sun (2008).

4. Numerical examples

We consider a PZT-5H piezoelectric ceramic half-space in con-
tact with a layer of viscous liquid. Material properties of PZT-5H,
taken from Fang et al. (2000), are listed as the following:

c ¼ 2:3� 1010 N=m2; q ¼ 7:5� 103 kg=m3;

e ¼ 17:0 C=m2; e ¼ 227:0� 10�10 F=m:
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From the work of Bleustein (1968), we can readily know that the B–
G wave velocities in the PZT-5H piezoelectric ceramic half-space are
vo = 2182.698 m/s (for open circuit) and vs = 2039.446 m/s (for short
circuit).

For the liquid layer, we select a finite-thickness layer of glyc-
erin. The mass density is qL = 1.2613 � 103 kg/m3 and the viscosity
is lL = 1.5 Ns/m2. The electromechanical coupling factor is defined
as follows:

K2 ¼ 2
copen � cshort

copen
; ð17Þ

where copen and cshort are the phase velocities in the cases of electri-
cally open circuit and short circuit, respectively.
Fig. 4. Electromechanical coupling factor vs. the glycerin layer thickness.
4.1. Effect of the liquid thickness

From Eqs. (13) and (14), we can see that B–G wave propagation
in this structure is closely related to the thickness of the liquid
layer. The results of wave attenuation, velocity and the electrome-
chanical coupling factor with respect to the thickness of the glyc-
erin layer h are shown in Figs. 2–4, respectively. Comparing
Fig. 2(a) with Fig. 2(b), we see that attenuation in the case of the
electrically short circuit is much larger than that in the case of
the electrically open circuit. It can also be seen from Fig. 2 that spe-
cific layer thickness show maximum levels of attenuation. From
Fig. 4, we can infer that the relationship between the electrome-
chanical coupling factor and the thickness of the glycerin layer is
similar to that of attenuation shown in Fig. 2. However, the
thickness of the glycerin layer affects the phase velocity in a way
Fig. 2. Attenuation vs. the glycerin layer thickness: (a) ele

Fig. 3. Phase velocity vs. the glycerin layer thickness: (a) el
different from the attenuation, i.e., there exists a minimum value
when the layer thickness changes in the range 0 < h < 8 lm, as
shown in Fig. 3. The attenuation and the phase velocity keep con-
stant when the liquid layer thickness h > 6 lm. After considering
the effect of the liquid thickness, h = 2 lm is adopted for the fol-
lowing analysis.

If the thickness of liquid layer h ?1 is defined, we can get the
same results as Guo and Sun (2008), which illustrates the validity
of the phase velocity equations obtained in the current work. On
the other hand, when the thickness of the glycerin layer h = 0
(i.e., there is no liquid layer, only the piezoelectric ceramic half-
space exists), the attenuation will be zero and the phase velocity
ctrically open circuit and (b) electrically short circuit.

ectrically open circuit and (b) electrically short circuit.
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will tend to the B–G wave vo and vs in a PZT-5H piezoelectric cera-
mic half-space (Bleustein, 1968), also confirming our calculation to
some extent.

4.2. Effect of the mass density and the viscous coefficient

When the external environment changes (such as a rise or drop
in temperature), the mass density and the viscous coefficient of the
glycerin also change. Because of this, it is important to investigate
the propagation of B–G waves when the mass density and the vis-
cous coefficient of the glycerin change. We assume the mass den-
sity of glycerin is homogeneous when we focus on the effect of the
viscous coefficient, and we assume the viscous coefficient of glyc-
erin is homogeneous when we focus on the effect of the mass den-
sity. We define the wave velocity v corresponding to the case when
the thickness of glycerin layer h = 2 lm, the mass density
qL = 1.2613 � 103 kg/m3 and the viscous coefficient lL = 1.5 Ns/
m2. The velocity corresponding to the case when the mass density
or viscous coefficient changes is denoted by v0. Therefore, the non-
dimensional velocity variation can be defined as dv = (v0 � v)/v.
Terms such as dK2, dqL, dlL and dIm(n1) can be defined similarly.
The nondimensional attenuation variation dIm(n1), the nondimen-
sional velocity variation dv and the nondimensional electrome-
chanical coupling factor variation dK2 are plotted separately in
Figs. 5–9 for selected values of frequency when the glycerin viscos-
Fig. 5. Variation of nondimensional attenuation dIm(n1) vs. dlL:

Fig. 6. Variation of nondimensional attenuation dIm(n1) vs. dqL:
ity dlL and mass density dqL change from �50% to 50%,
respectively.

It can be readily seen from Fig. 5 that the relationship between
the attenuation variation dIm(n1) and the glycerin viscosity varia-
tion dlL is nonlinear no matter if the electrical condition is open
circuit or short circuit. In addition, the case of frequency
f = 50 MHz presents a completely different pattern from that for
the other three frequency values. For f = 50 MHz, with the increase
of the glycerin viscosity in the case of electrically open circuit, the
attenuation variation dIm(n1) increases at first, and then decreases
slowly (shown in Fig. 5(a); while in the case of electrically short
circuit, the attenuation variation dIm(n1) decreases monotonously
with the increase of the glycerin viscosity (shown in Fig. 5(b). From
Fig. 6, we can see that the attenuation variation increases almost
linearly with the increase of the mass density except for the case
when f = 50 MHz, regardless of the electrical conditions. From a
comparison between Fig. 5(a) and (b) and between Fig. 6(a) and
(b), we can see that the attenuation variation caused by a change
of the mass density is larger than that caused by a change of the
glycerin viscosity. Moreover, from the comparison between Figs.
5 and 6, we can also see that the attenuation variation in the case
of electrically open circuit is larger than in the case of electrically
short circuit.

Figs. 7 and 8 present the variation patterns of nondimensional
velocity dv as a function of viscosity variation dlL and mass density
(a) electrically open circuit and (b) electrically short circuit.

(a) electrically open circuit and (b) electrically short circuit.



Fig. 7. Variation of nondimensional velocity dv vs. dlL: (a) electrically open circuit and (b) electrically short circuit.

Fig. 8. Variation of nondimensional velocity dv vs. dqL: (a) electrically open circuit and (b) electrically short circuit.

Fig. 9. Variation of nondimensional electromechanical coupling factor dK2 as a function of: (a) viscosity variation dlL and (b) mass density variation dqL.
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variation dqL for selected values of frequency. It can be seen from
Fig. 7 that the variation patterns of dv vs. dlL for different fre-
quency values differ from each other very much in the case of elec-
trically open circuit. In the case of electrically short circuit, dv
decreases with the increase of dlL for all of the selected frequency
values. Phenomena similar these exist in the variation patterns of
dv vs. dqL for different frequency values, as shown in Fig. 8. How-
ever, the frequency in the latter has negligible influence on the var-
iation of dv vs. dqL in the case of the electrically short circuit.
Further observation of Figs. 7 and 8 reveals that the total change
of nondimensional velocity dv in the case of the electrically open
circuit is less than one tenth of that in the case of the electrically
short circuit.

Fig. 9 shows the variation of the nondimensional electrome-
chanical coupling factor dK2 as a function of the viscosity variation
dlL and the mass density variation dqL for selected values of fre-
quency. The electromechanical coupling factor variation dK2 in-
creases with the increase of the viscous coefficient or the mass



Fig. 10. Distribution of mechanical displacement in the piezoelectric half-space with the glycerin layer: (a) electrically open circuit and (b) electrically short circuit.
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density, regardless of the frequency value. The frequency value can
speed up or slow down the change of electromechanical coupling
factor in the case of the electrically open circuit. In the case of
the electrically short circuit, however, the frequency value has a
negligible effect on this change.

4.3. Penetration depth

Fig. 10 gives the distribution of the relative amplitude of the
mechanical displacement u in the piezoelectric substrate for se-
lected frequency values. The mechanical displacement tends to
zero within two wavelengths in the case of the electrically short
circuit, while in the case of electrically open circuit the mechanical
displacement does not approach zero until several tens of wave-
lengths. This means the penetration depth in the case of electri-
cally open circuit is much greater than in the case of electrically
short circuit. It can also be seen that the penetration depth does
not significantly change for different frequency values in the case
of electrically short circuit (shown in Fig. 10(b). In the case of elec-
trically open circuit (shown in Fig. 10(a), the frequency value has
an important effect on the penetration depth. Specifically, low fre-
quency waves have larger penetration depth and high frequency
waves have smaller penetration depth. This observation agrees
with physical intuition, validating the correctness of our calcula-
tion to some extent.
5. Conclusions

In this paper, we studied the propagation of B–G waves in a pie-
zoelectric half-space of 6mm symmetry in contact with a viscous
liquid layer of finite thickness. The explicit dispersion relations in
the cases of both an electrically open circuit and a short circuit
are obtained analytically. A numerical example is calculated for a
PZT-5H piezoelectric ceramic loaded with a finite-thickness glyc-
erin layer. Some conclusions are drawn below:

(1) A change of the attenuation and velocity is evident when the
thickness of the glycerin layer changes within the range
0 < h < 6 lm, while the effect of the thickness of the liquid
layer on the change of phase velocity and attenuation of
B–G waves is negligible for h > 6 lm.

(2) The relationship between attenuation and viscosity is non-
linear, while the relationship between attenuation and the
mass density is approximately linear except for the case of
f = 50 MHz for both electrically open and short circuits.
Moreover, the effect of mass density on attenuation is larger
than that of viscosity.

(3) The penetration depth in the case of an electrically open cir-
cuit is much greater than in the case of an electrically short
circuit. Specifically, the penetration depth of B–G waves is
on the same order as the wavelength in the case of the elec-
trically short circuit.

The results reported in this paper can be used as a benchmark
for further investigation of wave propagation in piezoelectric cou-
pled structures, and it is also theoretically significant to the design
of wave propagation in piezoelectric coupled structures loaded
with viscous liquid layers of finite thickness.
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