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INTRODUCTION 

In his 1896 treatise “Cours d’Economie Politique” [l], Pareto discussed 
in the qualitative terms of values and prices the formation of a single, real- 
valued optima&y criterion from a number of essentially noncomparable 
“elementary” real-valued criteria. It is obvious that these “elementary” 
criteria can be viewed as the components of a vector-valued optimality 
criterion. Since then, discussions of vector-valued optimization problems 
have kept reappearing in the economics literature (see Karlin [2], Debreu [3]), 
in the literature of nonlinear programming (see Kuhn and Tucker [4]) and, 
more recently, in the literature of control theory (see Zadeh [5], Chang [6]). 

Since a vector-valued criterion usually induces a partial ordering on the 
set of alternatives, one cannot speak of “ optimal ” solutions under a vector- 
valued criterion as one can in the case of a linear ordering induced by a 
scalar-valued criterion. Thus, in the case of a partial ordering, the notion 
of an optimal solution is replaced by that of the set of noninferior (efficient, 
minimal, nondominated) solutions, that is, the set of solutions which are 
not inferior to any other solution under the partial ordering. The present 
paper is devoted to developing a broad theory of necessary conditions for 
characterizing noninferior points and to determining when a vector-valued 
criterion problem can be treated as a family of problems with scalar-valued 
criteria. The necessary conditions presented in this paper extend the results 
of [13] which dealt with ordinary constrained minimization problems. 

I. NECESSARY CONDITIONS FOR THE CANONICAL PROBLEM 

Let f : E” + EP, r : En + Em be continuously differentiable functions and 
let Q be a subset of En. 
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1. CANONICAL PROBLEM. Find a point 4 in En such that 

2. SEQ and r(Z) = 0 and 

3. for every x in Q with Y(X) = 0, the relation f(x) <f(G)” (component- 
wise) implies that f(x) =f(Q. 

It can easily be shown [7] that the solutions of the canonical problem (1) 
usually constitute an uncountable set of points. 

Before we can obtain necessary conditions for a point 3 in En to be a solution 
to the canonical problem, we must introduce an approximation to the set 
9 at 4. 

4. DEFINITION. A subset C(S, Q) of En will be called a conical approxima- 
tion of the set D at .4 if 

5. C(& Ll) is a convex cone, and 

6. for any finite collection {x1 , x2 ,..., xk} of linearly independent vectors 
in C(j;, Q), there exist a positive scalar E,, and a continuous map [ from co 

1 l x1 ,..., l xk}, the convex hull of {exI ,..., l x,}, with 0 < l < q, , into J2 - {.G} 
of the form: 

&6x) = 6x + 0(6x) for all 8x E co {q ,..., l xk}, 0 < E < e0 

where the function o(a) is such that 

IiEOllyli = 
. II o(r)ll 0 

* 

An important special case of a conical approximation is one where the 
map { is the identity map, i.e., co (EX~ ,..., rxk} is contained in D - {a} for 
0 <‘E < l () . We call this special case a conical approximation the first hind. 

7. THEOREM. Let x be a solution to the canonical problem and let C(& Q) 
be a conical approximation for 52 at f. Then, there exist a vector u in EP and a 
vector r) in Em such that 

8. pi < 0, i = 1,2 ,..., p, 

9. b-6 77) # 0, and 

10. (P,!Y$~)+(~,$$-~) <O forall xE@GXj, 

where C(2, Q) is the closure of C(.G, Q). 

l We use the following notation. For any vectors yl, yI in E”, yI < y, if and only 
if yl‘ < yL( for i = 1, 2,..., P; y1 < yr if and O~Y if y1 Z Y: and y1 < yx ; YI < YI 
if and only if yl’ < yn’ for i = 1, 2 ,..., p. 
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PROOF. Let 

12. x E C(i, a)/) 

13. K(4) = 1 
( 
q(i) i%(a) 

uEEPx Emiu= xx, -x) XEC(f,R)j. ax ,, 

Since the Jacobian matrices af(;) and 2r(?)/ax define linear maps, 
A(4), B(E), and K( 4 are convex cones in E”, Em, and ED x En’, respectively. ) 
Clearly, K(Z) C A(P) X B(i). 

Let C and R be the convex cones in EP and .!P x Em, respectively, defined 

by 

14. c = {y = (yl,..., r”) E EP ( yi < 0, i = 1, 2 ,..., p}, and 

15. R = {(y, 0) E ED x Em 1 y E C, 0 E E”}. 

Examining (9) and (lo), we observe that the claim of the theorem is that 
the sets K(i) and R are separated in EP x Em. We now construct a proof 
by contradiction. 

Suppose that K(4) and R are not separated in k?’ x Em. We then find that 
the following two statements must be true. 

16. The smallest linear variety containing the union of R and K(P) is the 
entire space EP x Em, and R n K(f) # 4, the empty set. 

17. The convex cone B(4) in Em, contains the origin as an interior 
point and, since B(i) is a convex cone, B(S) = En’. 

This follows from the fact that if 0 is not an interior point of the convex 
set B(f), then by the separation ~heoreq 4 it can be separated from B(4) by a 
hyperplane in Em, i.e., there exists a nonzero vector no in Em such that 

(ICI > z) < 0 for all 2 E B(4). 

Clearly, the vector (0, v,,) in EP x Em separates R from A(4) x B(f) and 
hence from K(4) contradicting our assumption that they are not separated. 

We now proceed to utilize facts (16) and (17). Since the origin in Em 
belongs to the nonvoid interior of B(s) = Em (see (17)) let us construct a 
simplex Z in B(4), with vertices z1 , za ,..., z,+~ such that 

18. 0 is in the interior of C; 

‘See [8] p. 118, 2.22. Corollary to the Hahn-Banach Theorem. 
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19. there exists a set of linearly independent vectors {xi , xp ,..., x,+~) 
in C(S, fz) satisfying 

W) zi = -x-xi for i = 1,2 ,..., m+ 1, 

21. c(x) = 1: + o(x) E {Q - (i}} for all x E co{%, , xs ,..., w,+i}, 

where 5 is the map entering the definition of C(r, Sz), see (4) and 

22. the points yr = T Xi are in C for i = 1,2 ,..., m + 1 .5 

The existence of such a simplex is easily established. First, we construct 
any simplex t” in B(4) with vertices z; , z; ,..., zL+, , which contains the 
origin in its interior. This is clearly possible since B(4) = Em by (17). Let 
x; ) x; (..., a&+‘ be any set of points in C(& 12) which satisfy (20), i.e., 
2; = [2+)/2x] x; , i = 1, 2 ,,,., m + 1. If [af(S)/Zk]& < 0 for i = 1,2 ,..., 
m + 1, then (22) is satisfied and we can satisfy (21) by letting xi = EX~ , 
for some l > 0, and still satisfy (i8), (20), and (22). But suppose, without 
loss of generality, that [aj(.?)/ax] xi > 0 and [al(i)/&] A$ < 0 for i = 2, 
3 ,.-et m + 1. Since by (16) K(J3) n R # a, there exists a point 

* = ( ?m - -pO)M(S)n R, 

I.e., [2j(G)/&J5 < 0 and [2r(?)/&]Z = 0. Choose any scalar h > 0 such 
that [iif(P)/2Jcl(hx; + (1 - h)Z) < 0, and let x1 = hr; + (1 - A).% Then 
the simplex L’ with vertices ~ha;, cz; ,..., G&+~, satisfies conditions (18), 
(19), (20), (21), and (22) for the corresponding vectors hr’, z;, &- ,..., &+r 
and some E > 0. 

It is easy to show that (18) implies that the vectors (zl - zm+J, (z~-z,+~), 
.a.> bl - %I+*) are linearly independent. Consequently, since [2r(.3/2x] is a 
linear map, the vectors (wt - xm+J, (x, - JF,+~ ,... ) , (xm - xm+J are also 
linearly independent. Let 2 be the nonsingular m x m matrix whose columns 
are (zl - z,+J, (zs - a,+,),..., (2, - z,,,+J and let X be the n x m matrix 
whose columns are (xl - x,,~), (x2 - x m+l),...r (G, - G+J- Then z - 
-=-Yz - %l,l) + %+1 is a continuous map from Zinto co {x1 , x, ,.., xm+i}. 

Now, for 0 < a < 1, let S, be a sphere in Em with radius up (where 
p > 0), center at the origin, and contained in the interior of the simplex .Z. 

L It is easy to show that (la), (ZO), and (22) imply that the vectors x1 , x, ,..., x,,,+, , 
are linearly independent. 
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Next we define a continuous map G, from the sphere S, into E” b! 

23. G,(u) = ~(a + C(a=% - zm,,) + CWC,+I)) 

= I(2 + a--% - %**) + aLx,,l + o(@‘=% - %%+1) -k a%+dh 

where i( z 11 < p, az E S, , and [ is the map associated with the conical approxi- 
mation C(& 52). Since I is continuously differentiable, we can expand the 
right-hand side of (23) about f to obtain 

24. G,(a) = 4;) + a q (X2-1(2 - zm+J + +.,) 

+ o(aXZ-‘(2 - %+I) + W~+I). 

But r(s) = 0, [a~(;)/&] X = 2, and [&(f)/&] rmfl = zm+r . Hence, (24) 
becomes 

25. G&.4 = a.-~ + o(a-=W - G,,,) + -,+I). 

Now, since 

lim II o(axZ-‘(2 - %n+,) + %+1)ll = o 

a-0 a 

there exists for I] I ]I = p, an 6, , 0 < so < 1, such that 

26. 11 o(oXZ-l(z - z~+~) + a~,,,+~) (I < ap, for all 0 < a < Cu, and 

II 2 Ij = P* 

By assumption, f is differentiable, hence we can expand each component 
off about 53 as follows: 

27. f’(2 + t-(~-T~ - %l,l) + =%+1)) 

z f’(E) f a q [XZml(Z - Z,+l) + x,+1] 

+ Q(-=% - %n+d + ar,,,). i = 1,2 ,,.-, p. 

Since by construction, (see (22)), [af’(Q/ax]x, < 0, for i = 1,2,..., p 
and j= 1,2 ,..., m+l, and the point X2-‘(2 - z,,,+~) + x,,, is in 

4x1 , x2 ,--*, %+1), we have [af’(~)/&][XP(z - z,+J + x,,,+J < 0, with 
i = 1, 2 ,..., p. Hence there exist Or< , i = 1, 2 ,..., p, such that 

28. fi(5Z + a(XP(z - 2,+1) + x,,,)) < f’(S) for all 0 < a < 6, , 
11 z 11 = p and i = 1, 2,... p. 

Let a* be the minimum of {co, 5, ,..., GLg}. It now follows from Brouwer’s 
fixed point theorem [9] that there exists a point a*z* such that Go*(a*a*) = 0. 
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Sow, let x* = E + [(a*XZ-‘(z* - zm+J + a*~~+~), then 

29. Y(x*) = 0 (since Y(x*) = G,.(a*z*) = 0), and 

30. x* E Q, since (x* - 2) E [(co(a*xl , a*xs ,..., a*~~+~}) C B - {a} by 
construction. 

But (28), (29), and (30) contradict the assumption that x is a solution to the 
canonical problem (1). Therefore, the convex cones K(S) and R are separated 
in Ep x Em, i.e., there exists a nonzero vector (p, 7) in EP x Em such that 

31. (~,?$)~)+(~,-$$z) <O forall xEC(S,9), 

and 

32. (P,Y> +<?I,w 20 

But (31) implies that 

for all y E C. 

(p,~~)+(~,~x) <O forall xECZ 

and (32) and (14) implies that pL’ < 0, i = 1, 2 ,..., p. Q.E.D. 

II. REDUCTION OF A VECTOR-VALUED CRITJZRION TO A FAMILY OF 

SCALAR-VALUED CRITERIA 

An examination of (9) and (10) indicates that if we had used the scalar- 
valued criterion (---CL, f(x)) instead of the vector-valued criterion f(x) in the 
definition of the canonical problem (l), with p E ED specified by theorem (7) 
for the vector-valued criterion, we would have obtained from theorem (7) 
exactly the same set of necessary conditions. This observation leads us to 
the following important question: can WC obtain the solutions to the canonical 
problem (1) by solving a family of scalar-valued criterion problems 7 A partial 
answer to this question is given below by theorems (38) and (41). 

To simplify our exposition, we lump the constraint set Q with the set 
{x E En ) T(X) = O}. We shall therefore consider a subset A of En, a continuous 
mapping f from En into EP and introduce the following definitions. 

33. DEFINITION. We shall denote by P the problem of finding a point E 
in A such that for emery x in A, the relation f(x) <f(2) (component-tie) 
implies that f(x) = f (2). 

34. DEFINITION. Let A be the set of all oecton h = (A*, P,..., hp) in 
E* such that z-r hi = 1 and hi > 0, i = 1, 2 ,..., p. 
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35. DEFINITION. Giwen any vector h in EP, we shall denote by P(X) the 
problem of finding a point f  in A such that (h, f(x)) < (h, f(x)) for all x in A. 

We shall consider the following subsets of En: 

36. L = {x E A ( x solves P>, 

37. M -= (x E A / x solves P(h) for some A E A}. 

38. THEOREM. The set L contains the set M. 

PROOF. Suppose that R E M and f $L. Then there must exist a point x’ 
in A such that f(x’) <f(x). But for any X E A, this implies that (A, f(x’)) < 
(&f(x)), and hence i is not in M, which is a contradiction. 

39. DEFINITION. We shall say that a solution 4 of the problem P is regular 
if there exists a closed convex neighborhood U of P such that for any y  E A A U 

the relation f(x) = f(y) implies .+Z = y. 

40. DEFINITION. We shall say that the problem P is regular if every 
solution of P is a regular solution. 

It is easy to verify that if f  is convex and one of its components is strictly 
convex then P is regular. 

41. THEOREM. Suppose that the problem P is regular, that the performance 
criterion f  is convex (component-wise) and that the constraint set A is closed 
and convex. Then the set L (36) is contained in the closure of the set M (37). 

PROOF. We shall show that for every .G EL, there exists a sequence of 
points in M which converges to i. 

We begin by constructing a sequence which converges to an arbitrary, 
but fixed, S in L. 1Ve shall then show that this sequence is in $2. 

Let .c bc any point in L. Since we can translate the origins of En and EP, 
we may suppose, without loss of generality, that i = 0 and that f(x) = 0. 

Let li be a closed convex neighborhood of f satisfying the conditions of 
definition (39), and let NC U be a compact convex neighborhood of .?. 
For any positive scalar E, 0 < E < (l/p), (where p is the dimension of the 
space containing the range off(.)), let 

42. cl(e) = IA = (A’, h2 ,..., P) i i A’ = 1, hi 3 E, i .= 1, 2,..., 
i=l PI. 

Let g be the real-valued function with domain A n .V x A(r), defined by 

43. g(k 4 y= <&f(x)>. 
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Clearly, since f is convex and hence continuous, g is continuous in 
A n N x A(E), furthermore, g is convex in x for fixed h and linear in h for 
fixed x. Since the sets A r\ N and A( E are compact and convex, the sets ) 

44. 

45. {A E 44 g(k f) = 2% g(h *I), 

are well defined for every A E A(a) and every fl E A n N, respectively. Ob- 
viously, the sets defined in (44) and (45) are convex. 

By Ky Fan’s theorem [1O],6 there exist a point h(e) in A(e) and a point 
X(e) in A n N such that 

46. 0(4f(4) 2 (~(e)J(44)) 2 Gww) 

for every x in A n N and h in A(e). 
Since 4 = 0 is in A n N and f(s) = 0, we have from (46): 

47. <W,f(~(4)) < 0. 

And from (46) and (47), 

48. (h,f(~(d))) < 0 for every h in A(r). 

Since A n N is compact, we can choose a sequence E,, , n = 1,2,..., with 
0 < E,, < l/p, converging to zero in such a way that the resulting sequence 
of points x(c), satisfying (46), converges, i.e., 

49. lim x(c) = x*, x* E A n IV. 
n-t-l 

Since g(& X) is continuous, it follows from (48) and (49) that 

O,f(x*)) < 0 for all h E A, 

8 KY FAN’S THEOREM. Let L, , L, be two separated locally conuex, topologicui heur 
spaces, and ICI , K, be two, compact convex sets in L* , L, , respectively. Let g be a real- 
valued contimfinction on ICI x KS . If, for any x0 E KI , yO E Kz the sets 
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which implies thatf(x*) < 0. But 2 is a solution to P, hencef(x*) < 0 =f(i) 
implies that f(x*) -f(i). C onsequently, since P is regular, x* -= i = 0. 
Thus, we have constructed a sequence, {x(E,J} which converges to 4. 

We shall now show that the sequence {x(E”)} contains a subsequence 
{x(e,)> also converging to f, which is contained in M. 

Since S is in the interior of N, there exists a positive integer no such that 
the points x(+) E A n 5 belong to the interior of A: for n > n, . 

We will show that for n > no, .r(e,) is a solution to P(X(c,)), i.e., that for 
n >, no, x(E,J E M. By contradiction, suppose that for n > no, x(E,) is not a 
solution to P(h(+J). Then there must be a point X’ in A such that 

Let X”(U) = (1 - Ir)X(EJ + ti; ) 0 < a < I; since A is convex, X”(a) 
isanA4forO<or<1.Butforn>no, ~(6~) is in the interior of N and hence 
there exists an a*, 0 < a* < 1 such that ~“(a*) belongs to A’. 

SOW, 

52. (GM~“(a*))> = <GM(l - a*) 44 + c4>. 

But for 44 E 44, G%,),ft~)> is convex in X. Hence (51) and (52) 
imply that 

53. 

which contradicts (46). 
Therefore, for n > n, , x(E,) is a solution to P(A(c,J), i.e., a(~,) is in M. 
Thus, for any given 33 EL there exists a sequence {x(E,,)} contained in M 

such that X(C) -+ 2 as n -+ 00. This completes our proof. 

III. APPLIchTrorvs TO NONLINEAR PROCRAMMIISG 

In nonlinear programming the set R is usually defined by a set of in- 
equalities. Thus, let qi, i = 1, 2 ,..., s be continuously differentiable functions 
from En into El. Then R is defined by 

54. i = 1,2 )..., s}. 

55. THE NONLINEAR PROGRAMMING PROBLEM. We shall refer to the 
particular case of the canonical problem (1) arising when the constraint set 
Q is defined by (54), as the nonlinear programming problem. 
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At each point x in 52, the index set of active constraints is defined as 

56. Z(x) = (i ; qi(x) = 0, iE(1, 2 ,..., s}}. 

Similarly, the index set of inactive constraints is defined as 

57. I(x) = {i ) qi(x) < 0, iE{l, 2 ,...) s>}. 

Let 4 be a solution to the nonlinear programming problem. In order to 
bring the additional structure of the nonlinear programming problem into 
play, it is convenient to begin by allowing the following assumption, which 
will subsequently be removed. 

58. ASSUMPTION. There exists a vector a in En such that [aqi(Q/ax] z < 0 
for ewry i E I(.?). 

Under this assumption, the nonvoid set 

C(i,.Q) = /x~E”Iqx <0, iEZ($)/ 

is a conical approximation of the first kind for Q at i, and 

C(a,) = Ix E En 1 q x < 0, i E I(?)/. 

By theorem (7) there exist vectors p in EP and T] in Em such that 

(9 pi < 0, i = 1, 2 ,..., p, 

(ii) (CL, 17) # 0, 

(iii) 

for every 

XE XEE” 
I I 

aqyq 
-x<o, ax iEZ(E) . I 

And by Farkas’ lemma [II], there exist scalars pi < 0, iE Z(4) such that 

59. i pi afw ax + f vi fiiti$2 + C pi ax = 0. api 
i-l t-1 id(f) 

Defining pf = 0 for i or, we have just proved 
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60. THEOREM. Let 4 be a solution to the nonlinear programming problem 
(55). Zf assumption (58) holds, then there exist scalars pi, i = 1, 2 ,..., p, $, 
j = 1, 2,..., m and pk, k = 1, 2 ,..., s swh that 

61. pi GO, i = 1, 2 ,..., p, 

62. Pk < 0, k := 1, 2 ,..a, s, 

63. (cl, 11) z 0, 

and 

65. kl pkqk(3i) = 0. 

When the additional assumption (58) does not hold, we can use the follow- 
ing lemma to obtain somewhat weaker necessary conditions for the nonlinear 
programming problem, still involving its entire structure. 

65. LEMMA. Let Y‘ , i = 1, 2 ,..., k be any k oectors in En. If the system 

66. cvi 9 X> < 0, i = 1, 2,..., k 

has no solution x in En, then there exists a nonzero vector j in Ek, with j’ Q 0, 
i = 1, 2,..., k Such that gz, p’vi = 0. 

PROOF. Let 

B = x E En x = i p*vi , pi < 0, 
I I i-l 

We want to prove that the origin belongs to B. By contradiction, suppose 
that the origin does not belong to B. Then 0 does not belong to the convex 
hull of { -vr , -vs ,..., -vk} since co { -vl , -v2 ,..., -vk} is a subset of B. 
But co { -vr , -vs ,..., -vk} is a closed convex set in En not containing the 
origin. Hence, by the strong separation theorem,’ there exists a hyperplane 
in En strictly separating the set co { -vl , -v2 ,..., -vk} from the origin, 
i.e., there exists a nonzero vector ff in En such that 

67. (3, x) > 0 for every x E co{ -vl , --vz ,..., -vk}. 

Hence, 

68. Cay vi> < 0, for i = 1, 2 ,..., k, 

-.- 
’ See Edwards [8], p. 118, 2.2.3 Corollary to the Hahn-Banach Theorem. 

4091r9/1-8 
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which contradicts the assumption of the lemma. Therefore 0 E B, i.e., there 
exists a nonzero vector ji in Ek, j+ < 0, i = I,2 ,..., k, such that ~~&Gi = 0. 

Combining theorem (60), assumption (58), and lemma (65), we obtain 
the following extension of the Fritz John Theorem [12]. 

69. THEOREM. Let .G be a solution to the nonlinear programming problem 
(55). Then, there exist vectors p in EP, 7 in Em, and p in En such that 

(9 tci < 0, i = 1, 2 ,..., p, 

(ii) pi < 0, i = 1, 2 ,..., s, 

(iii) (P, I, P) # 0, 

The following corollaries are immediate consequences of theorem (19): 

75. COROLLARY. If the gradient vectors [W(@/&],..., [&m(.S)/8x] are 
linearly independent; then any vectors p E En, 7 E E”, p E En, satisf$q the 
conditions of theorem (69), aLFo satisfy (p, p) # 0. 

76. COROLLARY. If the gradient vectors [W(a)/&], [%*(4)/l%],..., 
[W’(;)/&] together with the grad&t vectors [l?$(.$)/&], with i EZ(.C), 
are lineady independent, then any vectors TV E EP, 1 E Em, p E E’ satisfring 
the conditions of theorem (69), aLFo satisfr p # 0. 

77. COROLLARY. Zf the set 

I I 
xeE” q aqyi) 

x=0, j=l,2 ,..., m,Xx<O, iEZ($ 
I 

is mm& and the vectors py.q/ax], [aqyax],..., pyqax] are lh4~Zy 
independent, then any vectors ~1 E EP, 1 E Em, p E El satisfying the conditiolLF 
of theorem (69), also satisfy p # 0. 

78. COROLLARY. Ifthesystem 

af w -X-CO, ax iE{{l, L, P} -{i>}, 

a#($) 
7x=0, j = 1, 2,..., m, 

am) -xxo, ax k E Z(E), 
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has u so&ion for some f E { 1,2,..., p} and the g&z& oectofs [W(@/&], 
[aryj;>/ax],..., [&“(.;)/a x cue linemly independent, then uny wectors p E EP, ] 
77 E Em, p E E8 satisfying the conditions of theorem (69), also sati& I*’ < 0. 

IV. APPLICATIONS TO OPTIMAL CONTROL 

79. DEFINITION. Let P be a comex cone in Ea. A subset S of E” is said 
to be P-direction&y convex iffor every z, , z2 in S ad 0 < X < 1, there exists 
a vector z(h) in P such that 

A.21 + (1 - A) a* + s(h) E s. 

80. REMARK. It is very easy to show that a subset S of E8 is P-direction- 
ally convex if and only if for any finite subset (zr , zs ,..., sk} of S and any 
scalars {A, , A, ,..., A,} with x:-i A, = 1, /L > 0, i = 1,2 ,..., k, there exists 
a vector 2(h, , A, ,..., A,) in P such that 

On rereading theorem (7), we observe that it may be rephrased in the 
following equivalent form. 

81. THEOREM. Let f be any feasible solution to the crmonical $mbZem (1), 
i.e., f E Q und r(a) = 0, und let C(Z, sd) be a conical upproximution for Q at f. 
If the sets 

K(a)= 
I 

?fw W) -x,-x), xd(fJ-2)) ax ax 
Utld 

R = ((y, 0) E ED x E” ( yi < 0, i = 1,2 ,..., p, 0 E Em} 

are not separated, then there exists a oector x* in Q, with t(x*) = 0 and 
f(x*) <f(2) (component-wise). 

We now make one more observation. 

82. THEOREM. Let Q’ C En be any set with the property that if x’ E a’, 
then there is a vector x in Sa with r(x’) = r(x) &f(x) < f(x’). I f  4 is u solution 
to the catwn.icul problem (1), if 4 E 9’ and if C(2, Q’) b u conical approximation 
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for Q’ at 4, then there exists a vector t.~ in Ep and a vector 7 in Em such that 

83. 

84. 

Pi < 0, i = 1,2 ,..., p, 

(PI 7) z 0, 

85. (p,!?f$~)~(~,~x)<O forall xEm. 

PROOF. The theorem claims that the cones 

K’(i) = 1 8f(% w? -x, - x), 
ax ax 

and 

R ={(y,O)~Epx EmIyt <0 for i = 1, 2 ,..., p, OeEm) 

must be separated if 4 is a solution to the canonical problem (1). Suppose 
that K’(E) and R are not separated. Then by theorem (81) with Q’ taking the 
place of Q, there exists a x* in 8’ such that r(x*) = 0 and f(x*) <f(S). But 
by assumption, there must exist an f in Q such that r(n) = Y(x*) = 0 and 
f(3) <f(x*) <f(% h h w ic contradicts the assumption that 4 is a solution 
to the canonical problem (I). 

Now consider a dynamical system described by the difference equation 

86. xi+1 - Xi =f*Cxi 9 %> for i = 0, 1, 2,..., K - 1, 

where xi E En is the system state at time i, Ui E Em is the system input at 
time i, and ft is a function defined in En x P with range in E”. 

The optimal control problem is that of finding a control sequence 8 = 
(120 , 4 ,***, f&-r) and a corresponding trajectory $ = (Z,, , 4, ,..., 33& de- 
termined by (86), such that 

87. rii E Vi C Em, i = 0, 1, 2 ,..., h - 1, 

88. E, C X,, = X6 n X,l, with Xi = {x E E* 1 q,,(x) < 0}, and Xi = 
(x E E” ) q&x) = 0}, where g,, maps En into EC0 and q. maps En into Em,, 

89. 4, E X, = XL n X,l , with XL = {x E En 1 qn(x) ,( 0} and X” = 
(x E En ) n(z) = 0}, where g, maps En into Elk and g maps En into Em,, 

90. ~2~ E Xi = X; , X; = {x E E” 1 qt(x) < 0}, i = 1, 2,..., h - 1 

where q, maps En into Em<, and 



CONSTRAINED MINIMIZATION INFINITE SPACES 117 

91. for every control sequence % = (z+, , or ,..., uk-r) and corresponding 
trajectory 3 = (x0, x1 ,..., x,), satisfying the conditions (87) (88), (89), 
and (90), the relation xf-,’ ci(xi, ui) < xfzi c,(E, , lip.) implies that 
x;:; ci(xi , ui) :-- 1;:; c& , I&), wh ere the ci map En into Ep for i = 0, 1, 
2,..., k -- 1. 

The following assumptions will be made: 

92. for i := 0, I,2 ,..., k - 1 and for every fixed ui in Vi , the functions 
ft(xi , ui) and ci(xi , ui) are continuously differentiable in xi ; 

93. let R = {(y, 0) E Ep x Em 1 y E E”, yi < 0, i = 1,2 ,..., p, 0 E Em} 
and let fi(x, U) = (ci(x, u),fi(x, u)); h t en f or each N in En, the sets fi(x,, Ui), 
i .= 0, 1, 2 )...) k -- 1 are R-directionally convex; 

94. the functions g,,(x) and gk(X) are continuously differentiable and the 
corresponding Jacobian matrices [Zg,,(x)/&], [agk(z),/i%] are of maximum 
rank for every x in X,, and every x in Xk , respectively; and 

95. for every zt E Xi , i = 0, 1, 2 ,..., k, 

I aqP I ___ j E {j 1 Q:(X) = 0, j = 1,2 ,..., ??Zi} 
I 

is a set of linearly independent vectors. 
In order to transcribe the control problem into the form of the canonical 

problem, we introduce the following definitions: 

96. For i = 0, 1, 2 ,..., k - 1, let Vi = (~3 , Vi) where ai E Ci(xi, Cri) 
and vi Efi(Xi , Vi), i.e., Vi E fi(Xi , Vi). 

97. Let 

98. Let 
k-l 

f(4 = C =f - 
i-0 

99. Let r(a) be the function defined by 
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100. Let 

J2=(rIxcEXi’, i=o,1,2 ,..., k, Vi E ff(X* 9 Vi), i = 0, I,..., K - 1). 

Thus, the optimal control problem is equivalent to the canonical problem 
with z,f, r, and D given by (97), (98), (99), and (lOO), respectively. 

Let us define the set 9’ by 

101. 52’ = (2 1 x,EXi, i = 0, 1,2 ,..., k, 

vf E co ft(xi , U,), i = 0, 1, 2 ,..., k - 11. 

We now show that the sets Sz and 52’ defined in (100) and (lOl), respectively, 
satisfy the conditions stated in theorem (82). Let a* be any point in G’. 
Then for i = 0, 1,2 ,..., k, XT E Xi and vf = &,* &kij, where &*A1 = 
1, h,l > 0, J* a finite set and vt E fi(zl , Vi). But by assumption (93), the 
sets fi(Xi , Vi), i = 0, 1, 2 ,..., k - 1, are R-directionally convex and hence 
there exists a I in Q such that jii = x:, tJ = VT, and d, < a:. 

Now let f be a solution to the optimal control problem. Then P E J2 and, 
since 9’ contains Q, f E 9’. 

In the appendix we prove that the set 

102. C(0, Q) 

= I 62 = (6x0 ,8x, ,...( axi,, sv, ) 6v, )...) 

for all j E {j 1 Qt(Si) = 0} and 

+ Rfqf , co 4Vf , U,))/’ 

is a conical approximation for the set Sz’ at 0. 
It now follows from theorem (82) that there exists a nonzero vector 

4 = (PO, r), 9” E ED, p” < 0, 

p. E E’o, pk E Elk such that 
fl = (-PI , --A ,..., -pk , PO, ok), Pi E E”, 

103. pock* +r23.$ 62 < 0 for all 62 E c(a,. 

7 DJWINITION. G&n a subset A of an Euclidean space, we akjine the radial cone to 
Aatf~Atobethecom 

RC(%A) = {xl@+ a+)~‘4 f or all 0 < a < c(#, x), where c > O} 
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Substituting (98) and (99) into (103) we obtain 

104. 
i-0 i=O 

for every 62 E C(f, Sz’). 

Now, by interpreting (104) we obtain the following theorem: 

105. THEOREM. Zf the control sequence ‘4? = (d,, , a, ,..., 6kwI) and the 

corresponding trajectory 9 = (.& ,4, ,..., &.) constitute a sohdn to the optimal 

control problem, then there exists a vector p” E EP, p” < 0, vectors p. , p, ,..., pk 
in En, vectors &, , h, ,..., hk , hi E E”r, i = 0, l,..., k, vectors pot ECo, pk E ECk 
such that8 

106. (i) (PO, PO, Pl s*-*, Pk 9 PO s pk) f OS 

A 1 

107. (ii> Pi - Pi+1 = Pi+1 
aCi(i’ tii) ar,C:; 4). + po ix9 + A, a%(ii) 

1 ax ' 

i = 0, l,..., k - 1. 

108. (iii) p. = --Po!?&$, 

109. (iv) pk=Pk!id.$+X,~, 

110. (v) Aiqi(?i) = 0, i = 0, l,..., k, 

and 

111. (vi) the Hamiltonian 

H(x, 4 P, PO9 i) = <PO, G(% U)> + <P,fiCx* U)> 
satis$es the maxinnrm principle 

H(&,z21,p,po,i)>H(4,,u,,p,po,i) fMdl~,EUi, i=O,l,..., k-l. 

PROOF. 

(i) This was established in theorem (82) 

(ii) Let 
6" 

i 
= &la, s 4) ax 

ax i* 
Then (104) becomes 

s Note that the p, and X, are row vectors. 
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for every 6.~~ satisfying [aq~(2,),‘2x] Sxi < 0, with ql’(.G’,) = 0. Applying 
Farkas’ lemma [II] we obtain (107) and that Agqz(ii) = 0 for i = 0, I,..., 
k- 1. 

(iii) This is seen to be merely an arbitrary but consistent definition. 

(iv) and (v). We select Sz = (0,O ,..., 0, 8x,, 0,O ,..., 0), with 6x, such 
that [a&‘/ax] &xl, < 0 whenever qej(i,) = 0. Again applying Farkas’ lemma, 
we get (109) and &qk(&.) = 0. 

(vi) For i = 0, I, 2 ,..., k - 1, let vi be an arbitrary point in co f,(& , Vi), 
which is convex by construction. Then 6vi = vi’ - vi is in RC(rJi, cof,(&, Vi)) 
and, choosing 6~ = (0,O ,..., 0, 6vi , 0 ,..., 0), we find that 62 E C(5, Q’), and 
hence we obtain from (104), 

112. PO 6Ui + pi+1 6Wi < 0. 

Substituting vi’ - v, for &vi in (112) we obtain 

113. p”(4 - ci(zi 9 Oi)) + pi+l(vU; --fi(f* 9 4)) < 0. 

Clearly (113) also holds for every (a: , vi) E fi(& , Vi). Therefore, 

pO(Ci(Zi 9 Ui) - Ci(Si 9 tli)) + pi+*(ji(Zi 3 Ui) -fi(?Zi ) a{)) < 0 for all Ui E Ui 9 

which completes our proof of (11 I). 

CONCLUSION 

In this paper we have concerned ourselves with two important aspects 
of vector-valued criterion optimization problems. The first was that of 
developing necessary conditions for the characterization of noninferior 
points. The necessary conditions we have obtained do not depend on the 
commonly made, but rather restrictive, convexity assumptions. The second 
was that of examining the possibility of “scalarization,” i.e., of reducing a 
vector-valued criterion optimization problem to a family of optimization 
problems with scalar-valued criteria. Since it is known that scalarization by 
convex weighting of the components of the vector criterion function is 
not always possible, we have exhibited the relation between the solutions 
sets of certain vector-criterion problems and scalar-criteria problems derived 
from then by convex weighting. Finally, we have demonstrated that our 
results are of a very general nature by showing that they apply with equal 
ease to a broad class of nonlinear programming problems as well as to optimal 
control problems. 
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Since the conditions presented in this paper are considerably more general 
than hitherto available in the literature, it is hoped that they will open up 
important classes of optimization problems. 

APPENDIX 

Al. Given a subset B of a Euclidean space, defined by inequalities, 
I.e., B = {x 1 qi(x) < 0, i -= 1, 2 ,..., m}, where the q’ are continuously 
differentiable scalar-valued functions, we define the internal cone to B at 
f E B to be the cone 

A2. ZC($, B) = lx 1 vx < 0 whenever q’(2) = 0, iE{l, 2 ,..., mj(. 

We now return to the set Q’, which was defined in (101) as 

A3. Q’ =- {a = (x,,, ,..., x1 xk, v,,, vr ,..., v&l xieX;, i = 0, 1, 2 ,... I(. 

Vj E CO fj(Xj 3 Uj), j = 0, 1, 2,..., k - 1). 

We shall prove that the set C(0, Q’) defined in (102), as shown below, is a 
conical approximation for the set Q’ at 2 E Sz’. 

A4 

and 

C(S, J-z) = 182 = (6x, )...) ax,, 6v, ,...) 6v,-,)I sxi E ZC(2i) Xl) 

for i = 0, I,..., k, 

svi _ W:; $1 SXi E RC(3i 9 CO fi(Si p Vi)) 

for i = 0, I,..., k - 11. 

A5. LEMMA. The set C(.z, 52’) is a conical approximation for the set Q’ 
at f. 

PROOF. First of all it is clear that C(& 52’) is a convex cone. Sow, for 
j --: I, 2 ,..., N, let 

A6. 82, = (6x,, )..., 6x,5 ) av,, ,...) 6v,-,j) 

be N linearly independent vectors in C(0, Q’), and let S = co {i8.s1, &a,..., 
&x,} where ? is a positive scalar, deiined below. 
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For any &z in S we can uniquely write 

N 
Al. 

where 

Therefore, 

A8 

and 

A9. 

But by definition: 

AlO. 

62 = If 2 /.Li(BZ) 6Zi , 

i-l 

8V( = B $, /Lj(82) 6Vij 

j-1 

sv,j = &(G 9 4) axi, + 
ax 

v 
fj ) 

where vu E RC(Gi , CO fi(4i , Vi)) 
From (A8), (A9), and (AIO), 

All. 

Now, let us define the positive scalar & 

(a) For j = 1,2 ,..., N and i = 0, I,..., k, 6xij belongs to the convex 
cone ZC(& , Xi). Hence from (Al), xz1 pf(Ga)Sx, is also in ZC($, , Xj) 
for i = 0, l,..., k. Therefore there exist positive scalars 4 , i = 0, l,..., k, 
possible depending on 621 , 62, ,..., 62, , such that 

(b) Similarly, for i = 0, I,..., k - 1, 

A13. f Pelt Vtf E RC(e, 9 CO %(ai 3 vi)>, 
f-l 
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and hence there exist positive scalars q , possible depending on &z, ,6z, ,..., 
62, , such that 

~414. iri -‘- ‘i $, pj(hz) Vij E co fi(2i 1 vi) for all 0 < bi B ei . 
j-l 

W’e now dejine < to be minimum of the scalars Ei , i = 0, l,..,, k, and q, 

j = 0, 1 ,...) k - I. 
From (A14), there exists a finite set Ai and scalars A,’ such that 

A15 

where up E Cri , a E Ai , and x:p+ hai = 1, A,’ > 0. 
Combining (A15) and (All) we obtain 

A16 avi =; afi(%, 4) 

ax 
SXi + C X’fi(si 8 U*O) - +i * 

Oc4i 

We can define a map 5 from S into Sz’ - {a} by 

A17. r;(W = (Yo 9 Yl a..., YK 9 wo , Wl s**** %-d, 

where 

A18. 

and 

yi(S.2) = 6X* = i $ /Lj(SZ) 6Xij ) 
j-1 

i = 0, l,..., k, 

A19. W<(82) = C cfi,(% + 6x1 9 Up) - G‘ ) i = 0, l,..., k - 1. 
a.54, 

From (A12), (AU), (A18), and (A19) it is clear that 5 maps S into Q’-{a}. 
Expanding (A19) in a Taylor series about P we find that 

where 

Combining (A20), (A13), (A17), and (A18), we see that 

5(Sa) = 62 + 0(82), 
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where 
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Since 5 is obviously continuous, C(5, J2’) is a conical approximation for 
L?’ at f. 
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