Constrained Minimization Under Vector-Valued Criteria in Finite Dimensional Spaces*

N. O. Da Cunha** and E. Polak
Department of Electrical Engineering
University of California, Berkeley 94720

Submitted by Lotfi Zadeh

Introduction

In his 1896 treatise "Cours d'Economie Politique" [1], Pareto discussed in the qualitative terms of values and prices the formation of a single, realvalued optimality criterion from a number of essentially noncomparable "elementary" real-valued criteria. It is obvious that these "elementary" criteria can be viewed as the components of a vector-valued optimality criterion. Since then, discussions of vector-valued optimization problems have kept reappearing in the economics literature (see Karlin [2], Debreu [3]), in the literature of nonlinear programming (see Kuhn and Tucker [4]) and, more recently, in the literature of control theory (see Zadeh [5], Chang [6]).

Since a vector-valued criterion usually induces a partial ordering on the set of alternatives, one cannot speak of "optimal" solutions under a vectorvalued criterion as one can in the case of a linear ordering induced by a scalar-valued criterion. Thus, in the case of a partial ordering, the notion of an optimal solution is replaced by that of the set of noninferior (efficient, minimal, nondominated) solutions, that is, the set of solutions which are not inferior to any other solution under the partial ordering. The present paper is devoted to developing a broad theory of necessary conditions for characterizing noninferior points and to determining when a vector-valued criterion problem can be treated as a family of problems with scalar-valued criteria. The necessary conditions presented in this paper extend the results of [13] which dealt with ordinary constrained minimization problems.

I. Necessary Conditions for the Canonical Problem

Let $f: E^{n} \rightarrow E^{p}, r: E^{n} \rightarrow E^{m}$ be continuously differentiable functions and let Ω be a subset of E^{n}.

[^0]1. Canonical Problem. Find a point \hat{x} in E^{n} such that
2. $\hat{x} \in \Omega$ and $r(\hat{x})=0$ and
3. for every x in Ω with $r(x)=0$, the relation $f(x) \leqslant f(\hat{x})^{3}$ (componentwise) implies that $f(x)=f(\hat{x})$.

It can easily be shown [7] that the solutions of the canonical problem (1) usually constitute an uncountable set of points.

Before we can obtain necessary conditions for a point \hat{x} in E^{n} to be a solution to the canonical problem, we must introduce an approximation to the set Ω at \hat{x}.
4. Definition. A subset $C(\hat{x}, \Omega)$ of E^{n} will be called a conical approximation of the set Ω at \hat{x} if
5. $C(\hat{x}, \Omega)$ is a convex cone, and
6. for any finite collection $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ of linearly independent vectors in $C(\hat{x}, \Omega)$, there exist a positive scalar ϵ_{0} and a continuous map ζ from co $\left\{\epsilon x_{1}, \ldots, \epsilon x_{k}\right\}$, the convex hull of $\left\{\epsilon x_{1}, \ldots, \epsilon x_{k}\right\}$, with $0<\epsilon \leqslant \epsilon_{0}$, into $\Omega-\{\hat{x}\}$ of the form:

$$
\zeta(\delta x)=\delta x+o(\delta x) \text { for all } \delta x \in c o\left\{\epsilon x_{1}, \ldots, \epsilon x_{k}\right\}, 0<\epsilon \leqslant \epsilon_{0}
$$

where the function o(\cdot) is such that

$$
\lim _{\|v\| \rightarrow 0} \frac{\|o(y)\|}{\|y\|}=0
$$

An important special case of a conical approximation is one where the map ζ is the identity map, i.e., co $\left\{\epsilon x_{1}, \ldots, \epsilon x_{k}\right\}$ is contained in $\Omega-\{\hat{x}\}$ for $0<\epsilon \leqslant \epsilon_{0}$. We call this special case a conical approximation the first kind.
7. Theorem. Let \hat{x} be a solution to the canonical problem and let $C(\hat{x}, \Omega)$ be a conical approximation for Ω at \hat{x}. Then, there exist a vector μ in E^{p} and a vector η in E^{m} such that
8. $\mu^{i} \leqslant 0, i=1,2, \ldots, p$,
9. $(\mu, \eta) \neq 0$, and
10. $\left\langle\mu, \frac{\partial f(\hat{x})}{\partial x} x\right\rangle+\left\langle\eta, \frac{\partial r(\hat{x})}{\partial x} x\right\rangle \leqslant 0 \quad$ for all $\quad x \in \overline{C(\hat{x}, \Omega)}$,
where $\overline{C(\hat{x}, \Omega)}$ is the closure of $C(\hat{x}, \Omega)$.

[^1]Proof. Let
11. $A(\hat{x})=\left\{y \in E^{p} \left\lvert\, y=\frac{\partial f(\hat{x})}{\partial x} x\right., \quad x \in C(\hat{x}, \Omega)\right\}$,
12. $B(\hat{x})=\left\{z \in E^{\prime} \left\lvert\, z==\frac{\partial r(\hat{x})}{\partial x} x\right., \quad x \in C(\hat{x}, \Omega)\right\}$,
13. $K(\hat{x})=\left\{u \in E^{p} \times E^{m} \left\lvert\, u=\left(\frac{\partial f(\hat{x})}{\partial x} x, \frac{\partial r(\hat{x})}{\partial x} x\right)\right., \quad x \in C(\hat{x}, \Omega)\right\}$.

Since the Jacobian matrices $\partial f(\hat{x}) / \partial x$ and $\partial r(\hat{x}) / \partial x$ define linear maps, $A(\hat{x}), B(\hat{x})$, and $K(\hat{x})$ are convex cones in E^{p}, E^{m}, and $E^{p} \times E^{m}$, respectively. Clearly, $K(\hat{x}) \subset A(\hat{x}) \times B(\hat{x})$.

Let C and R be the convex cones in E^{p} and $E^{p} \times E^{m}$, respectively, defined by
14. $C=\left\{y=\left(y^{1}, \ldots, y^{p}\right) \in E^{p} \mid y^{i}<0, i=1,2, \ldots, p\right\}$, and
15. $R=\left\{(y, 0) \in E^{p} \times E^{m} \mid y \in C, 0 \in E^{m}\right\}$.

Examining (9) and (10), we observe that the claim of the theorem is that the sets $K(\hat{x})$ and R are separated in $E^{p} \times E^{m}$. We now construct a proof by contradiction.
Suppose that $K(\hat{x})$ and R are not separated in $E^{p} \times E^{m}$. We then find that the following two statements must be true.
16. The smallest linear variety containing the union of R and $K(\hat{x})$ is the entire space $E^{y} \times E^{m}$, and $R \cap K(\hat{x}) \neq \phi$, the empty set.
17. The convex cone $B(\hat{x})$ in E^{m}, contains the origin as an interior point and, since $B(\hat{x})$ is a convex cone, $B(\hat{x})=E^{m}$.

This follows from the fact that if 0 is not an interior point of the convex set $B(\hat{x})$, then by the separation theorem, ${ }^{4}$ it can be separated from $B(\hat{x})$ by a hyperplane in E^{m}, i.e., there exists a nonzero vector η_{0} in E^{m} such that

$$
\left\langle\eta_{0}, z\right\rangle \leqslant 0 \text { for all } z \in B(\hat{x}) .
$$

Clearly, the vector ($0, \eta_{0}$) in $E^{p} \times E^{m}$ separates R from $A(\hat{x}) \times B(\hat{x})$ and hence from $K(\hat{x})$ contradicting our assumption that they are not separated.
We now proceed to utilize facts (16) and (17). Since the origin in E^{m} belongs to the nonvoid interior of $B(\hat{x})=F^{m}$ (see (17)), let us construct a simplex Σ in $B(\hat{x})$, with vertices $z_{1}, z_{2}, \ldots, z_{m+1}$ such that
18. 0 is in the interior of Σ;

[^2]19. there exists a set of linearly independent vectors $\left\{x_{1}, x_{2}, \ldots, x_{m+1}\right\}$ in $C(\hat{x}, \Omega)$ satisfying
20. $\quad z_{i}=\frac{\partial r(\hat{x})}{\partial x} x_{i} \quad$ for $i=1,2, \ldots, m+1$,
21. $\zeta(x)=x+o(x) \in\{\Omega-\{\hat{x}\}\}$ for all $x \in \operatorname{co}\left\{x_{1}, x_{2}, \ldots, x_{m+1}\right\}$,
where ζ is the map entering the definition of $C(x, \Omega)$, see (4), and
22. the points $y_{i}=\frac{\partial f(\hat{x})}{\partial x} x_{i}$ are in C for $i=1,2, \ldots, m+1 .{ }^{5}$

The existence of such a simplex is easily established. First, we construct any simplex Σ^{\prime} in $B(\hat{x})$ with vertices $z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{m+1}^{\prime}$, which contains the origin in its interior. This is clearly possible since $B(\hat{x})=E^{m}$ by (17). Let $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m+1}^{\prime}$ be any set of points in $C(\hat{x}, \Omega)$ which satisfy (20), i.e., $z_{i}^{\prime}=[\partial r(\hat{x}) \mid \partial x] x_{i}^{\prime}, i=1,2, \ldots, m+1$. If $[\partial f(\hat{x}) \mid \partial x] x_{i}^{\prime}<0$ for $i=1,2, \ldots$, $m+1$, then (22) is satisfied and we can satisfy (21) by letting $x_{i}=\epsilon x_{i}^{\prime}$, for some $\epsilon>0$, and still satisfy (18), (20), and (22). But suppose, without loss of generality, that $[\partial f(\hat{x}) / \partial x] x_{1}^{\prime} \geqslant 0$ and $[\partial f(\hat{x}) / \partial x] x_{i}^{\prime}<0$ for $i=2$, $3, \ldots, m+1$. Since by (16) $K(\hat{x}) \cap R \neq \varnothing$, there exists a point

$$
u=\left(\frac{\partial f(\hat{x})}{\partial x} \tilde{x}, 0\right) \in K(\hat{x}) \cap R,
$$

i.e., $[\partial f(\hat{x}) / \partial x] \tilde{x}<0$ and $[\partial \gamma(\hat{x}) / \partial x] \tilde{x}=0$. Choose any scalar $\lambda>0$ such that $[\partial f(\hat{x}) / \partial x]\left(\lambda x_{1}^{\prime}+(1-\lambda) \tilde{x}\right)<0$, and let $x_{1}=\lambda x_{1}^{\prime}+(1-\lambda) \tilde{x}$. Then the simplex Σ with vertices $\epsilon \lambda z_{1}^{\prime}, \epsilon z_{2}^{\prime}, \ldots, \epsilon z_{m+1}^{\prime}$, satisfies conditions (18), (19), (20), (21), and (22) for the corresponding vectors $\lambda x^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, \ldots, x_{m+1}^{\prime}$ and some $\epsilon>0$.
It is easy to show that (18) implies that the vectors $\left(z_{1}-z_{m+1}\right),\left(z_{2}-z_{m+1}\right)$, $\ldots,\left(z_{m}-z_{m+1}\right)$ are linearly independent. Consequently, since $\left[\partial_{r}(\hat{x}) / \partial x\right]$ is a linear map, the vectors $\left(x_{1}-x_{m+1}\right),\left(x_{2}-x_{m+1}\right), \ldots,\left(x_{m}-x_{m+1}\right)$ are also linearly independent. Let Z be the nonsingular $m \times m$ matrix whose columns are $\left(z_{1}-z_{m+1}\right),\left(z_{2}-z_{m+1}\right), \ldots,\left(z_{m}-z_{m+1}\right)$ and let X be the $n \times m$ matrix whose columns are $\left(x_{1}-x_{m+1}\right),\left(x_{2}-x_{m+1}\right), \ldots,\left(x_{m}-x_{m+1}\right)$. Then $z \rightarrow$ $X Z^{-1}\left(z-z_{m+1}\right)+x_{m+1}$ is a continuous map from Σ into co $\left\{x_{1}, x_{2}, \ldots, x_{m+1}\right\}$.

Now, for $0<\alpha \leqslant 1$, let S_{α} be a sphere in E^{m} with radius $\alpha \rho$ (where $\rho>0$), center at the origin, and contained in the interior of the simplex Σ.

[^3]Next we define a continuous map G_{α} from the sphere S_{α} into E^{m} by

$$
\text { 23. } \begin{aligned}
& G_{\alpha}(\alpha z)=r\left(\hat{x}+\zeta\left(\alpha X Z^{-1}\left(z-z_{m+1}\right)+\alpha x_{m+1}\right)\right) \\
& =r\left(\hat{x}+\alpha X Z^{-1}\left(z-z_{m+1}\right)+\alpha x_{m+1}+o\left(\alpha X Z^{-1}\left(z-z_{m+1}\right)+\alpha x_{m+1}\right)\right),
\end{aligned}
$$

where $\|\boldsymbol{z}\|_{\|} \leqslant \rho, \alpha z \in S_{\alpha}$, and ζ is the map associated with the conical approximation $C(\hat{x}, \Omega)$. Since r is continuously differentiable, we can expand the right-hand side of (23) about \hat{x} to obtain
24. $\quad G_{\alpha}(\alpha z)=r(\hat{x})+\alpha \frac{\partial r(\hat{x})}{\partial x}\left(X Z^{-1}\left(z-z_{m+1}\right)+x_{m+1}\right)$

$$
+o\left(\alpha X Z^{-1}\left(z-z_{m+1}\right)+\alpha x_{m+1}\right)
$$

But $r(\hat{x})=0,[\partial r(\hat{x}) / \partial x] X=Z$, and $[\partial r(\hat{x}) / \partial x] x_{m+1}=z_{m+1}$. Hence, (24) becomes
25.

$$
G_{\alpha}(\alpha z)=\alpha z+o\left(\alpha X Z^{-1}\left(z-z_{m+1}\right)+\alpha x_{m+1}\right)
$$

Now, since

$$
\lim _{\alpha \rightarrow 0} \frac{\left\|o\left(\alpha X Z^{-1}\left(z-z_{m+1}\right)+\alpha x_{m+1}\right)\right\|}{\alpha}=0
$$

there exists for $\|\boldsymbol{z}\|=\rho$, an $\bar{\alpha}_{0}, 0<\bar{\alpha}_{0} \leqslant 1$, such that
26. $\left\|o\left(\alpha X Z^{-1}\left(z-z_{m+1}\right)+\alpha x_{m+1}\right)\right\|<\alpha \rho$, for all $0<\alpha \leqslant \bar{\alpha}_{0}$ and $\|z\|=\rho$.

By assumption, f is differentiable, hence we can expand each component of f about \hat{x} as follows:

$$
\text { 27. } \begin{aligned}
f^{i}(\hat{x} & \left.\div \zeta\left(\alpha X Z^{-1}\left(z-z_{m+1}\right)+\alpha x_{m+1}\right)\right) \\
= & f^{i}(\hat{x})+\alpha \frac{\partial f^{i}(\hat{x})}{\partial x}\left[X Z^{-1}\left(z-z_{m+1}\right)+x_{m+1}\right] \\
& +o\left(\alpha X Z^{-1}\left(z-z_{m+1}\right)+\alpha x_{m+1}\right) . \quad i=1,2, \ldots, p .
\end{aligned}
$$

Since by construction, (see (22)), $\left[\partial f^{i}(\hat{x}) / \partial x\right] x_{j}<0$, for $i=1,2, \ldots, p$ and $j=1,2, \ldots, m+1$, and the point $X Z^{-1}\left(z-z_{m+1}\right)+x_{m+1}$ is in $\operatorname{co}\left\{x_{1}, x_{2}, \ldots, x_{m+1}\right\}$, we have $\left[\partial f^{i}(\hat{x}) / \partial x\right]\left[X Z^{-1}\left(z-z_{m+1}\right)+x_{m+1}\right]<0$, with $i=1,2, \ldots, p$. Hence there exist $\bar{\alpha}_{i}, i=1,2, \ldots, p$, such that
28. $f^{i}\left(\hat{x}+\alpha\left(X Z^{-1}\left(z-z_{m+1}\right)+x_{m+1}\right)\right)<f^{i}(\hat{x})$ for all $0<\alpha \leqslant \bar{\alpha}_{i}$, $\|\boldsymbol{z}\|=\rho$ and $i=1,2, \ldots p$.

Let α^{*} be the minimum of $\left\{\bar{\alpha}_{0}, \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}\right\}$. It now follows from Brouwer's fixed point theorem [9] that there exists a point $\alpha^{*} z^{*}$ such that $G_{\alpha^{*}}\left(\alpha^{*} z^{*}\right)=0$.

Now, let $x^{*}=\hat{x}+\zeta\left(\alpha^{*} X Z^{-1}\left(z^{*}-z_{m+1}\right)+\alpha^{*} x_{m+1}\right)$, then
29. $r\left(x^{*}\right)=0$ (since $r\left(x^{*}\right)=G_{\alpha^{*}}\left(\alpha^{*} z^{*}\right)=0$), and
30. $x^{*} \in \Omega$, since $\left(x^{*}-\hat{x}\right) \in \zeta\left(\operatorname{co}\left\{\alpha^{*} x_{1}, \alpha^{*} x_{2}, \ldots, \alpha^{*} x_{m+1}\right\}\right) \subset \Omega-\{\hat{x}\}$ by construction.

But (28), (29), and (30) contradict the assumption that x is a solution to the canonical problem (1). Therefore, the convex cones $K(\hat{x})$ and R are separated in $E^{p} \times E^{m}$, i.e., there exists a nonzero vector (μ, η) in $E^{p} \times E^{m}$ such that
31. $\left\langle\mu, \frac{\partial f(\hat{x})}{\partial x} x\right\rangle+\left\langle\eta, \frac{\partial r(\hat{x})}{\partial x} x\right\rangle \leqslant 0 \quad$ for all $\quad x \in C(\hat{x}, \Omega)$,
and
32. $\langle\mu, y\rangle+\langle\eta, 0\rangle \geqslant 0$ for all $y \in C$.

But (31) implies that

$$
\left\langle\mu, \frac{\partial f(\hat{x})}{\partial x} x\right\rangle+\left\langle\eta, \frac{\partial r(\hat{x})}{\partial x} x\right\rangle \leqslant 0 \quad \text { for all } \quad x \in \overline{C(\hat{x}, \Omega)}
$$

and (32) and (14) implies that $\mu^{i} \leqslant 0, i=1,2, \ldots, p$.
Q.E.D.

II. Reduction of a Vector-Valued Criterion to a Family of Scalar-Valued Criteria

An examination of (9) and (10) indicates that if we had used the scalarvalued criterion $\langle-\mu, f(x)\rangle$ instead of the vector-valued criterion $f(x)$ in the definition of the canonical problem (1), with $\mu \in E^{p}$ specified by theorem (7) for the vector-valued criterion, we would have obtained from theorem (7) exactly the same set of necessary conditions. This observation leads us to the following important question: can we obtain the solutions to the canonical problem (1) by solving a family of scalar-valued criterion problems? A partial answer to this question is given below by theorems (38) and (41).

To simplify our exposition, we lump the constraint set Ω with the set $\left\{x \in E^{n} \mid r(x)=0\right\}$. We shall therefore consider a subset A of E^{n}, a continuous mapping f from E^{n} into E^{p} and introduce the following definitions.
33. Definition. We shall denote by P the problem of finding a point \hat{x} in A such that for every x in A, the relation $f(x) \leqslant f(\hat{x})$ (component-vise) implies that $f(x)=f(\hat{x})$.
34. Definition. Let Λ be the set of all vectors $\lambda=\left(\lambda^{1}, \lambda^{2}, \ldots, \lambda^{p}\right)$ in E^{p} such that $\sum_{i=1}^{p} \lambda^{i}=1$ and $\lambda^{i}>0, i=1,2, \ldots, p$.
35. Definition. Given any vector λ in E^{p}, we shall denote by $P(\lambda)$ the problem of finding a point \bar{x} in A such that $\langle\lambda, f(\bar{x})\rangle \leqslant\langle\lambda, f(x)\rangle$ for all x in A.

We shall consider the following subsets of E^{n} :
36.

$$
L=\{x \in A \mid x \text { solves } P\}
$$

37.

$$
M=\{x \in A \mid x \text { solves } P(\lambda) \text { for some } \lambda \in A\} .
$$

38. Theorem. The set L contains the set M.

Proof. Suppose that $\bar{x} \in M$ and $\bar{x} \notin L$. Then there must exist a point x^{\prime} in A such that $f\left(x^{\prime}\right) \leqslant f(\bar{x})$. But for any $\lambda \in A$, this implies that $\left\langle\lambda, f\left(x^{\prime}\right)\right\rangle<$ $\langle\lambda, f(\bar{x})\rangle$, and hence \bar{x} is not in M, which is a contradiction.
39. Definition. We shall say that a solution \hat{x} of the problem P is regular if there exists a closed convex neighborhood U of \hat{x} such that for any $y \in A \cap U$ the relation $f(\hat{x})=f(y)$ implies $\hat{x}=y$.
40. Definition. We shall say that the problem P is regular if every solution of P is a regular solution.

It is easy to verify that if f is convex and one of its components is strictly convex then P is regular.
41. Theorem. Suppose that the problem P is regular, that the performance criterion f is convex (component-wise) and that the constraint set A is closed and convex. Then the set L (36) is contained in the closure of the set M (37).

Proof. We shall show that for every $\hat{x} \in L$, there exists a sequence of points in M which converges to \hat{x}.

We begin by constructing a sequence which converges to an arbitrary, but fixed, \hat{x} in L. We shall then show that this sequence is in M.

Let \hat{x} bc any point in L. Since we can translate the origins of E^{n} and E^{p}, we may suppose, without loss of generality, that $\hat{x}=0$ and that $f(\hat{x})=0$.

Let U be a closed convex neighborhood of \hat{x} satisfying the conditions of definition (39), and let $N \subset U$ be a compact convex neighborhood of \hat{x}. For any positive scalar $\epsilon, 0<\epsilon \leqslant(1 / p)$, (where p is the dimension of the space containing the range of $f(\cdot)$), let
42. $\Lambda(\epsilon)=\left\{\lambda=\left(\lambda^{1}, \lambda^{2}, \ldots, \lambda^{p}\right) \mid \sum_{i=1}^{p} \lambda^{i}=1, \lambda^{i} \geqslant \epsilon, \quad i=1,2, \ldots, p\right\}$.

Let g be the real-valued function with domain $A \cap N \times A(\epsilon)$, defined by
43.

$$
g(\lambda, x)==\langle\lambda, f(x)\rangle .
$$

Clearly, since f is convex and hence continuous, g is continuous in $A \cap N \times \Lambda(\epsilon)$, furthermore, g is convex in x for fixed λ and linear in λ for fixed x. Since the sets $A \cap N$ and $\Lambda(\epsilon)$ are compact and convex, the sets
44.

$$
\left\{x \in A \cap N \mid g(\bar{\lambda}, x)=\min _{\eta \in A \cap N} g(\bar{\lambda}, \eta)\right\}
$$

45.

$$
\left\{\lambda \in \Lambda(\epsilon) \mid g(\lambda, \bar{x})=\max _{v \in A(\epsilon)} g(\nu, \bar{x})\right\}
$$

are well defined for every $\bar{\lambda} \in \Lambda(\epsilon)$ and every $\bar{x} \in A \cap N$, respectively. Obviously, the sets defined in (44) and (45) are convex.

By Ky Fan's theorem [10], ${ }^{6}$ there exist a point $\lambda(\epsilon)$ in $\Lambda(\epsilon)$ and a point $x(\epsilon)$ in $A \cap N$ such that
46.

$$
\langle\lambda(\epsilon), f(x)\rangle \geqslant\langle\lambda(\epsilon), f(x(\epsilon))\rangle \geqslant\langle\lambda, f(x(\epsilon))\rangle
$$

for every x in $A \cap N$ and λ in $\Lambda(\epsilon)$.
Since $\hat{x}=0$ is in $A \cap N$ and $f(\hat{x})=0$, we have from (46):
47.

$$
\langle\lambda(\epsilon), f(x(\epsilon))\rangle \leqslant 0 .
$$

And from (46) and (47),
48.

$$
\langle\lambda, f(x(\epsilon))\rangle \leqslant 0 \text { for every } \lambda \text { in } \Lambda(\epsilon) .
$$

Since $A \cap N$ is compact, we can choose a sequence $\epsilon_{n}, n=1,2, \ldots$, with $0<\epsilon_{n} \leqslant 1 / p$, converging to zero in such a way that the resulting sequence of points $x\left(\epsilon_{n}\right)$, satisfying (46), converges, i.e.,
49.

$$
\lim _{n \rightarrow \infty} x\left(\epsilon_{n}\right)=x^{*}, x^{*} \in A \cap N .
$$

Since $g(\lambda, x)$ is continuous, it follows from (48) and (49) that

$$
\left\langle\lambda, f\left(x^{*}\right)\right\rangle \leqslant 0 \quad \text { for all } \quad \lambda \in \Lambda,
$$

[^4]which implies that $f\left(x^{*}\right) \leqslant 0$. But \hat{x} is a solution to P, hence $f\left(x^{*}\right) \leqslant 0=f(\hat{x})$ implies that $f\left(x^{*}\right)=f(\hat{x})$. Consequently, since P is regular, $x^{*}=\hat{x}=0$. Thus, we have constructed a sequence, $\left\{x\left(\epsilon_{n}\right)\right\}$ which converges to \hat{x}.

We shall now show that the sequence $\left\{x\left(\epsilon_{n}\right)\right\}$ contains a subsequence $\left\{x\left(\epsilon_{n}\right)\right\}$ also converging to \hat{x}, which is contained in M.

Since \hat{x} is in the interior of N, there exists a positive integer n_{0} such that the points $x\left(\epsilon_{n}\right) \in A \cap N$ belong to the interior of N for $n \geqslant n_{0}$.

We will show that for $n \geqslant n_{0}, x\left(\epsilon_{n}\right)$ is a solution to $P\left(\lambda\left(\epsilon_{n}\right)\right)$, i.e., that for $n \geqslant n_{0}, x\left(\epsilon_{n}\right) \in M$. By contradiction, suppose that for $n \geqslant n_{0}, x\left(\epsilon_{n}\right)$ is not a solution to $P\left(\lambda\left(\epsilon_{n}\right)\right)$. Then there must be a point x^{\prime} in A such that
51.

$$
\left\langle\lambda\left(\epsilon_{n}\right), f\left(x^{\prime}\right)\right\rangle<\left\langle\lambda\left(\epsilon_{n}\right), f\left(x\left(\epsilon_{n}\right)\right)\right\rangle .
$$

Let $x^{\prime \prime}(\alpha)=(1-\alpha) x\left(\epsilon_{n}\right)+\alpha x_{1}^{\prime}, 0<\alpha<1$; since A is convex, $x^{\prime \prime}(\alpha)$ is an A for $0<\alpha<1$. But for $n \geqslant n_{0}, x\left(\epsilon_{n}\right)$ is in the interior of N and hence there exists an $\alpha^{*}, 0<\alpha^{*}<1$ such that $x^{\prime \prime}\left(\alpha^{*}\right)$ belongs to N.

Now,
52.

$$
\left\langle\lambda\left(\epsilon_{n}\right), f\left(x^{n}\left(\alpha^{*}\right)\right)\right\rangle=\left\langle\lambda\left(\epsilon_{n}\right), f\left(\left(1-\alpha^{*}\right) x\left(\epsilon_{n}\right)+\alpha x^{\prime}\right)\right\rangle
$$

But for $\lambda\left(\epsilon_{n}\right) \in \Lambda\left(\epsilon_{n}\right),\left\langle\lambda\left(\epsilon_{n}\right), f(x)\right\rangle$ is convex in x. Hence (51) and (52) imply that
53.

$$
\left\langle\lambda\left(\epsilon_{n}\right), f\left(x^{n}\left(\alpha^{*}\right)\right)\right\rangle\left\langle\left\langle\lambda\left(\epsilon_{n}\right), f\left(x\left(\epsilon_{n}\right)\right)\right\rangle,\right.
$$

which contradicts (46).
Therefore, for $n \geqslant n_{0}, x\left(\epsilon_{n}\right)$ is a solution to $P\left(\lambda\left(\epsilon_{n}\right)\right)$, i.e., $x\left(\epsilon_{n}\right)$ is in M.
Thus, for any given $\hat{x} \in L$ there exists a sequence $\left\{x\left(\epsilon_{n}\right)\right\}$ contained in M such that $x\left(\epsilon_{n}\right) \rightarrow \hat{x}$ as $n \rightarrow \infty$. This completes our proof.

III. Applications to Nonlinear Programming

In nonlinear programming the set Ω is usually defined by a set of inequalities. Thus, let $q^{i}, i=1,2, \ldots$, s be continuously differentiable functions from E^{n} into E^{1}. Then Ω is defined by
54.

$$
\Omega=\left\{x \in E^{n} \mid q^{i}(x) \leqslant 0, \quad i=1,2, \ldots, s\right\}
$$

55. The Nonlinear Programming Problem. We shall refer to the particular case of the canonical problem (1), arising when the constraint set Ω is defined by (54), as the nonlinear programming problem.

At each point x in Ω, the index set of active constraints is defined as
56.

$$
I(x)=\left\{i ; q^{i}(x)=0, \quad i \in\{1,2, \ldots, s\}\right\} .
$$

Similarly, the index set of inactive constraints is defined as
57.

$$
I(x)=\left\{i \mid q^{i}(x)<0, \quad i \in\{1,2, \ldots, s\}\right\} .
$$

Let \hat{x} be a solution to the nonlinear programming problem. In order to bring the additional structure of the nonlinear programming problem into play, it is convenient to begin by allowing the following assumption, which will subsequently be removed.
58. Assumption. There exists a vector z in E^{n} such that $\left[\partial q^{i}(\hat{x}) / \partial x\right] z<0$ for every $i \in I(\hat{x})$.

Under this assumption, the nonvoid set

$$
C(\hat{x}, \Omega)=\left\{x \in E^{n} \left\lvert\, \frac{\partial q^{i}(\hat{x})}{\partial x} x<0\right., \quad i \in I(\hat{x})\right\}
$$

is a conical approximation of the first kind for Ω at \hat{x}, and

$$
\overline{C(\hat{x}, \Omega)}=\left\{x \in E^{n} \left\lvert\, \frac{\partial q^{i}(\hat{x})}{\partial x} x \leqslant 0\right., \quad i \in I(\hat{x})\right\} .
$$

By theorem (7) there exist vectors μ in E^{p} and η in E^{m} such that
(i) $\mu^{i} \leqslant 0, \quad i=1,2, \ldots, p$,
(ii) $(\mu, \eta) \neq 0$,
(iii)

$$
\sum_{i=1}^{D} \mu^{i} \frac{\partial f^{i}(\hat{x})}{\partial x} x+\sum_{i=1}^{m} \eta^{i} \frac{\partial r^{i}(\hat{x})}{\partial x} x \leqslant 0
$$

for every

$$
x \in\left\{x \in E^{n} \left\lvert\, \frac{\partial q^{i}(\hat{x})}{\partial x} x \leqslant 0\right., \quad i \in I(\hat{x})\right\} .
$$

And by Farkas' lemma [11], there exist scalars $\rho^{i} \leqslant 0, i \in I(\hat{x})$ such that
59. $\quad \sum_{i=1}^{p} \mu^{i} \frac{\partial f^{i}(\hat{x})}{\partial x}+\sum_{i=1}^{m} \eta^{i} \frac{\partial r^{i}(\hat{x})}{\partial x}+\sum_{i \in I(\hat{x})} \rho^{i} \frac{\partial q^{i}(\hat{x})}{\partial x}=0$.

Defining $\rho^{i}=0$ for $i \in I(\hat{x})$, we have just proved
60. Theorem. Let \hat{x} be a solution to the nonlinear programming problem (55). If assumption (58) holds, then there exist scalars $\mu^{i}, i=1,2, \ldots, p, \eta^{j}$, $j=1,2, \ldots, m$ and $\rho^{k}, k=1,2, \ldots, s$ such that

$$
\begin{equation*}
\mu^{i} \leqslant 0, \quad i=1,2, \ldots, p \tag{61.}
\end{equation*}
$$

62.

$$
\rho^{k} \leqslant 0, \quad k:=1,2, \ldots, s,
$$

63.

$$
(\mu, \eta) \neq 0,
$$

64. $\quad \sum_{i=1}^{p} \mu^{i} \frac{\partial f^{i}(\hat{x})}{\partial x}+\sum_{j=1}^{m} \eta^{j} \frac{\partial r^{j}(\hat{x})}{\partial x}+\sum_{k=1}^{s} \rho^{k} \frac{\partial q^{k}(\hat{x})}{\partial x}==0$,
and
65.

$$
\sum_{k=1}^{s} \rho^{k} q^{k}(\hat{x})=0 .
$$

When the additional assumption (58) does not hold, we can use the following lemma to obtain somewhat weaker necessary conditions for the nonlinear programming problem, still involving its entire structure.
65. Lemma. Let $\nu_{i}, i=1,2, \ldots, k$ be any k vectors in E^{n}. If the system
66.

$$
\left\langle v_{i}, x\right\rangle<0, \quad i=1,2, \ldots, k
$$

has no solution x in E^{n}, then there exists a nonzero vector $\bar{\rho}$ in E^{k}, with $\bar{\rho}^{i} \leqslant 0$, $i=1,2, \ldots, k$ such that $\sum_{i=1}^{k} \bar{\rho}^{i} \nu_{i}=0$.

Proof. Let

$$
B=\left\{x \in E^{n} \mid x=\sum_{i=1}^{k} \rho^{i} \nu_{i}, \rho^{i} \leqslant 0, \quad \text { not all zero }\right\} .
$$

We want to prove that the origin belongs to B. By contradiction, suppose that the origin does not belong to B. Then 0 does not belong to the convex hull of $\left\{-\nu_{1},-\nu_{2}, \ldots,-\nu_{k}\right\}$ since co $\left\{-\nu_{1},-\nu_{2}, \ldots,-\nu_{k}\right\}$ is a subset of \boldsymbol{B}. But co $\left\{-\nu_{1},-\nu_{2}, \ldots,-\nu_{k}\right\}$ is a closed convex set in E^{n} not containing the origin. Hence, by the strong separation theorem,' there exists a hyperplane in E^{n} strictly separating the set co $\left\{-\nu_{1},-\nu_{2}, \ldots,-\nu_{k}\right\}$ from the origin, i.e., there exists a nonzero vector \bar{x} in E^{n} such that
67.

$$
\langle\bar{x}, x\rangle>0 \text { for every } x \in \operatorname{co}\left\{-\nu_{1},--\nu_{2}, \ldots,-\nu_{k}\right\} .
$$

Hence,
68.

$$
\left\langle\bar{x}, v_{i}\right\rangle<0, \quad \text { for } \quad i=1,2, \ldots, k
$$

[^5]which contradicts the assumption of the lemma. Therefore $0 \in B$, i.e., there exists a nonzero vector $\bar{\rho}$ in $E^{k}, \bar{\rho}_{i} \leqslant 0, i=1,2, \ldots, k$, such that $\sum_{i=1}^{k} \tilde{\rho}^{i} \nu_{i}=0$.

Combining theorem (60), assumption (58), and lemma (65), we obtain the following extension of the Fritz John Theorem [12].
69. Theorem. Let \hat{x} be a solution to the nonlinear programming problem (55). Then, there exist vectors μ in E^{p}, η in E^{m}, and ρ in E^{*} such that
(i) $\mu^{i} \leqslant 0, \quad i=1,2, \ldots, p$,
(ii) $\rho^{i} \leqslant 0, \quad i=1,2, \ldots, s$,
(iii) $(\mu, \eta, \rho) \neq 0$,

$$
\begin{gather*}
\sum_{i=1}^{D} \mu^{i} \frac{\partial f^{i}(\hat{x})}{\partial x}+\sum_{i=1}^{m} \eta^{i} \frac{\partial r^{i}(\hat{x})}{\partial x}+\sum_{i=1}^{k} \rho^{i} \frac{\partial q^{i}(\hat{x})}{\partial x}=0 \tag{iv}\\
\sum_{i=1}^{k} \rho^{i} q^{i}(\hat{x})=0 \tag{v}
\end{gather*}
$$

The following corollaries are immediate consequences of theorem (19):
75. Corollary. If the gradient vectors $\left[\partial^{1}(\hat{x}) / \partial x\right], \ldots,\left[\partial r^{m}(\hat{x}) / \partial x\right]$ are linearly independent; then any vectors $\mu \in E^{p}, \eta \in E^{m}, \rho \in E^{s}$, satisfying the conditions of theorem (69), also satisfy $(\mu, \rho) \neq 0$.
76. Corollary. If the gradient vectors $\left[\partial r^{1}(\hat{x}) / \partial x\right],\left[\partial r^{2}(\hat{x}) / \partial x\right], \ldots$, $\left[\partial r^{m}(\hat{x}) / \partial x\right]$ together with the gradient vectors $\left[\partial q^{i}(\hat{x}) / \partial x\right]$, with $i \in I(\hat{x})$, are linearly independent, then any vectors $\mu \in E^{p}, \eta \in E^{m}, \rho \in E^{s}$ satisfying the conditions of theorem (69), also satisfy $\mu \neq 0$.
77. Corollary. If the set

$$
\left\{x \in E^{n} \left\lvert\, \frac{\partial r^{i}(\hat{x})}{\partial x} x=0\right., \quad j=1,2, \ldots, m, \frac{\partial q^{i}(\hat{x})}{\partial x} x<0, \quad i \in I(\hat{x})\right\}
$$

is nonvoid and the vectors $\left[\partial r^{1}(\hat{x}) / \partial x\right],\left[\partial r^{2}(\hat{x}) / \partial x\right], \ldots,\left[\partial r^{m}(\hat{x}) / \partial x\right]$ are linearly independent, then any vectors $\mu \in E^{p}, \eta \in E^{m}, \rho \in E^{\prime}$ satisfying the conditions of theorem (69), also satisfy $\mu \neq 0$.
78. Corollary. If the system

$$
\begin{array}{ll}
\frac{\partial f^{i}(\hat{x})}{\partial x} x<0, & i \in\{\{1,2, \ldots, p\}-\{\hat{i}\}\} \\
\frac{\partial r^{\prime}(\hat{x})}{\partial x} x=0, & j=1,2, \ldots, m \\
\frac{\partial q^{k}(\hat{x})}{\partial x} x<0, & k \in I(\hat{x})
\end{array}
$$

has a solution for some $\hat{i} \in\{1,2, \ldots, p\}$ and the gradient vectors $\left[\partial^{1}(\hat{x}) / \partial x\right]$, $\left[\partial^{2}(\hat{x}) / \partial x\right], \ldots,\left[\partial r^{m}(\hat{x}) / \partial x\right]$ are linearly independent, then any vectors $\mu \in E^{p}$, $\eta \in E^{m}, \rho \in E^{s}$ satisfying the conditions of theorem (69), also satisfy $\mu^{t}<0$.

IV. Applications to Optimal Control

79. Definition. Let P be a convex cone in E^{3}. A subset S of E^{s} is said to be P-directionally convex if for every z_{1}, z_{2} in S and $0 \leqslant \lambda \leqslant 1$, there exists a vector $z(\lambda)$ in P such that

$$
\lambda z_{1}+(1-\lambda) z_{2}+z(\lambda) \in S
$$

80. Remark. It is very easy to show that a subset S of E^{8} is P-directionally convex if and only if for any finite subset $\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$ of S and any scalars $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}$ with $\sum_{i=1}^{k} \lambda_{j}=1, \lambda_{i} \geqslant 0, i=1,2, \ldots, k$, there exists a vector $z\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ in P such that

$$
\sum_{i=1}^{k} \lambda_{1} x_{i}+z\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in S
$$

On rereading theorem (7), we observe that it may be rephrased in the following equivalent form.
81. Theorem. Let \bar{x} be any feasible solution to the canonical problem (1), i.e., $\bar{x} \in \Omega$ and $r(\bar{x})=0$, and let $C(\bar{x}, \Omega)$ be a conical approximation for Ω at \bar{x}. If the sets

$$
K(\bar{x})=\left\{u \in E^{p} \times E^{m} \left\lvert\, u=\left(\frac{\partial f(\bar{x})}{\partial x} x, \frac{\partial r(\bar{x})}{\partial x} x\right)\right., \quad x \in C(\bar{x}, \Omega)\right\}
$$

and

$$
R=\left\{(y, 0) \in E^{p} \times E^{m} \mid y^{i}<0, \quad i=1,2, \ldots, p, \quad 0 \in E^{m}\right\}
$$

are not separated, then there exists a vector x^{*} in Ω, vith $r\left(x^{*}\right)=0$ and $f\left(x^{*}\right)<f(\bar{x})$ (component-wise).

We now make one more observation.
82. Theorem. Let $\Omega^{\prime} \subset E^{n}$ be any set with the property that if $x^{\prime} \in \Omega^{\prime}$, then there is a vector x in Ω with $r\left(x^{\prime}\right)=r(x)$ and $f(x) \leqslant f\left(x^{\prime}\right)$. If \hat{x} is a solution to the canonical problem (1), if $\hat{x} \in \Omega^{\prime}$ and if $C\left(\hat{x}, \Omega^{\prime}\right)$ is a conical approximation
for Ω^{\prime} at \hat{x}, then there exists a vector μ in E^{p} and a vector η in E^{m} such that
83.
84.

$$
\begin{aligned}
\mu^{i} \leqslant 0, \quad i & =1,2, \ldots, p \\
(\mu, \eta) & \neq 0
\end{aligned}
$$

and
85. $\left\langle\mu, \frac{\partial f(\hat{x})}{\partial x} x\right\rangle \div\left\langle\eta, \frac{\partial r(\hat{x})}{\partial x} x\right\rangle \leqslant 0 \quad$ for all $\quad x \in \overline{C\left(\hat{x}, \Omega^{\prime}\right)}$.

Proof. The theorem claims that the cones

$$
K^{\prime}(\hat{x})=\left\{u \in E^{p} \times E^{m} \left\lvert\, u=\left(\frac{\partial f(\hat{x})}{\partial x} x, \frac{\partial r(\hat{x})}{\partial x} x\right)\right., \quad x \in C\left(\hat{x}, \Omega^{\prime}\right)\right\}
$$

and

$$
R=\left\{(y, 0) \in E^{p} \times E^{m} \mid y^{i}<0 \quad \text { for } \quad i=1,2, \ldots, p, \quad 0 \in E^{m}\right\}
$$

must be separated if \hat{x} is a solution to the canonical problem (1). Suppose that $K^{\prime}(\hat{x})$ and R are not separated. Then by theorem (81) with Ω^{\prime} taking the place of Ω, there exists a x^{*} in Ω^{\prime} such that $r\left(x^{*}\right)=0$ and $f\left(x^{*}\right)<f(\hat{x})$. But by assumption, there must exist an \bar{x} in Ω such that $r(\bar{x})=r\left(x^{*}\right)=0$ and $f(\bar{x}) \leqslant f\left(x^{*}\right)<f(\hat{x})$, which contradicts the assumption that \hat{x} is a solution to the canonical problem (1).

Now consider a dynamical system described by the difference equation
86. $x_{i+1}-x_{i}=f_{i}\left(x_{i}, u_{i}\right) \quad$ for $\quad i=0,1,2, \ldots, k-1$,
where $x_{i} \in E^{n}$ is the system state at time $i, u_{i} \in E^{m}$ is the system input at time i, and f_{i} is a function defined in $E^{n} \times E^{m}$ with range in E^{n}.

The optimal control problem is that of finding a control sequence $\hat{\mathscr{U}}=$ ($\hat{u}_{0}, \hat{u}_{1}, \ldots, \hat{u}_{k-1}$) and a corresponding trajectory $\hat{\mathscr{X}}=\left(\hat{x}_{0}, \hat{x}_{1}, \ldots, \hat{x}_{k}\right)$ determined by (86), such that
87.

$$
\hat{u}_{i} \in U_{i} \subset E^{m}, \quad i=0,1,2, \ldots, k-1
$$

88. $\hat{x}_{i} \subset X_{0}=X_{0}^{\prime} \cap X_{0}^{n}$, with $X_{0}^{\prime}=\left\{x \in E^{n} \mid q_{0}(x) \leqslant 0\right\}$, and $X_{0}^{\prime \prime}=$ $\left\{x \in E^{n} \mid q_{0}(x)=0\right\}$, where g_{0} maps E^{n} into $E^{\ell_{0}}$ and q_{0} maps E^{n} into $E^{m_{0}}$,
89. $\hat{x}_{k} \in X_{k}=X_{k}^{\prime} \cap X_{k}^{n}$, with $X_{k}^{\prime}=\left\{x \in E^{n} \mid q_{n}(x) \leqslant 0\right\} \quad$ and $X^{n}=$ $\left\{x \in E^{n} \mid g_{k}(x)=0\right\}$, where g_{k} maps E^{n} into $E^{i_{k}}$ and g maps E^{n} into $E^{m_{k}}$,
90. $\hat{x}_{i} \in X_{i}=X_{i}^{\prime}, X_{i}^{\prime}=\left\{x \in E^{n} \mid q_{i}(x) \leqslant 0\right\}, \quad i=1,2, \ldots, k-1$
where q_{i} maps E^{n} into $E^{m_{i}}$, and
91. for every control sequence $\mathscr{U}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$ and corresponding trajectory $\mathscr{X}=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$, satisfying the conditions (87), (88), (89), and (90), the relation $\sum_{i=0}^{k-1} c_{i}\left(x_{i}, u_{i}\right) \leqslant \sum_{i=0}^{k-1} c_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)$ implies that $\sum_{i=0}^{k-1} c_{i}\left(x_{i}, u_{i}\right)=-\sum_{i=0}^{k-1} c_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)$, where the c_{i} map E^{n} into E^{p} for $i=0,1$, $2, \ldots, k-1$.

The following assumptions will be made:
92. for $i:=0,1,2, \ldots, k-1$ and for every fixed u_{i} in U_{i}, the functions $f_{i}\left(x_{i}, u_{i}\right)$ and $c_{i}\left(x_{i}, u_{i}\right)$ are continuously differentiable in x_{i};
93. let $R=\left\{(y, 0) \in E^{p} \times E^{m} \mid y \in E^{p}, y^{i} \leqslant 0, i=1,2, \ldots, p, 0 \in E^{m}\right\}$ and let $\mathrm{f}_{i}(x, u)=\left(c_{i}(x, u), f_{i}(x, u)\right)$; then for each x in E^{n}, the sets $\mathrm{f}_{i}\left(x_{i}, U_{i}\right)$, $i=0,1,2, \ldots, k-1$ are R-directionally convex;
94. the functions $g_{0}(x)$ and $g_{k}(x)$ are continuously differentiable and the corresponding Jacobian matrices $\left[\partial g_{0}(x) / \partial x\right],\left[\partial g_{k}(x) / \partial x\right]$ are of maximum rank for every x in X_{0} and every x in X_{k}, respectively; and
95. for every $x_{i} \in X_{i}^{\prime}, i=0,1,2, \ldots, k$,

$$
\left\{\left.\frac{\partial q_{i}^{j}(x)}{\partial x} \right\rvert\, j \in\left\{j \mid q_{i}^{j}(x)=0, \quad j=1,2, \ldots, m_{i}\right\}\right\}
$$

is a set of linearly independent vectors.
In order to transcribe the control problem into the form of the canonical problem, we introduce the following definitions:
96. For $i=0,1,2, \ldots, k-1$, let $\mathbf{v}_{i}=\left(a_{i}, v_{i}\right)$ where $a_{i} \in c_{i}\left(x_{i}, U_{i}\right)$ and $v_{i} \in f_{i}\left(x_{i}, U_{i}\right)$, i.e., $\mathbf{v}_{i} \in \mathbf{f}_{i}\left(x_{i}, U_{i}\right)$.
97. Let

$$
\approx=\left(x_{0}, x_{1}, \ldots, x_{k}, \mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right)
$$

98. Let

$$
f(z)=\sum_{i=0}^{k-1} a_{i}
$$

99. Let $r(z)$ be the function defined by

$$
r(x)=\left[\begin{array}{c}
x_{1}-x_{0}-v_{0} \\
\vdots \\
x_{k}-x_{k-1}-v_{k-1} \\
g_{0}\left(x_{0}\right) \\
g_{k}\left(x_{k}\right)
\end{array}\right] .
$$

100. Let
$\Omega=\left\{s \mid x_{i} \in X_{i}^{\prime}, \quad i=0,1,2, \ldots, k, \quad v_{i} \in f_{i}\left(x_{i}, U_{i}\right), \quad i=0,1, \ldots, k-1\right\}$.
Thus, the optimal control problem is equivalent to the canonical problem with z, f, r, and Ω given by (97), (98), (99), and (100), respectively.

Let us define the set Ω^{\prime} by
101.

$$
\begin{aligned}
\Omega^{\prime}= & \left\{z \mid x_{i} \in X_{i}^{\prime}, \quad i=0,1,2, \ldots, k,\right. \\
& \left.v_{i} \in \operatorname{cof} f_{i}\left(x_{i}, U_{i}\right), \quad i=0,1,2, \ldots, k-1\right\} .
\end{aligned}
$$

We now show that the sets Ω and Ω^{\prime} defined in (100) and (101), respectively, satisfy the conditions stated in theorem (82). Let z^{*} be any point in Ω^{\prime}. Then for $i=0,1,2, \ldots, k, x_{i}^{*} \in X_{i}^{\prime}$ and $\mathbf{v}_{i}^{*}=\sum_{j \in J *} \lambda_{i}{ }^{j} v_{i}{ }^{j}$, where $\sum_{j \in J *} \lambda_{i}^{j}=$ $1, \lambda_{i}{ }^{j} \geqslant 0, J^{*}$ a finite set and $\mathbf{v}_{i}{ }^{j} \in f_{i}\left(x_{i}, U_{i}\right)$. But by assumption (93), the sets $f_{i}\left(x_{i}, U_{i}\right), i=0,1,2, \ldots, k-1$, are R-directionally convex and hence there exists a \tilde{z} in Ω such that $\tilde{x}_{i}=x_{i}^{*}, \tilde{v}_{i}=v_{i}^{*}$, and $\tilde{a}_{i} \leqslant a_{i}^{*}$.

Now let \hat{z} be a solution to the optimal control problem. Then $\hat{z} \in \Omega$ and, since Ω^{\prime} contains $\Omega, \hat{z} \in \Omega^{\prime}$.

In the appendix we prove that the set
102. $C\left(\hat{z}, Q^{\prime}\right)$

$$
\begin{aligned}
= & \left\{\delta z=\left(\delta x_{0}, \delta x_{1}, \ldots, \delta x_{k}, \delta \mathbf{v}_{0}, \delta \mathbf{v}_{1}, \ldots, \delta \mathbf{v}_{k-1}\right) \left\lvert\, \frac{\partial q_{i}^{j}\left(\hat{x}_{i}\right)}{\partial x_{i}} \delta x_{i}<0\right.\right. \\
& \text { for all } j \in\left\{j \mid q_{i}^{j}\left(\hat{x}_{i}\right)=0\right\} \quad \text { and } \quad \delta \mathbf{v}_{i} \in\left\{\frac{\partial f_{i}\left(\hat{x}_{i}, \mathfrak{u}_{i}\right)}{\partial x_{i}} \delta x_{i}\right\} \\
& \left.+R C\left(\hat{\mathbf{v}}_{i}, \cos f_{i}\left(\hat{x}_{i}, U_{i}\right)\right)\right\}^{7}
\end{aligned}
$$

is a conical approximation for the set Ω^{\prime} at \hat{z}.
It now follows from theorem (82) that there exists a nonzero vector $\psi=\left(p^{0}, \pi\right), p^{0} \in E^{p}, p^{0} \leqslant 0, \pi=\left(-p_{1},-p_{2}, \ldots,-p_{k}, \mu_{0}, \mu_{k}\right), p_{i} \in E^{n}$, $\mu_{0} \in E^{\ell_{0}}, \mu_{k} \in E^{\ell_{k}}$ such that
103. $p^{0} \frac{\partial f(\hat{z})}{\partial z} \delta_{z}+\pi \frac{\partial r(\hat{z})}{\partial z} \delta z \leqslant 0 \quad$ for all $\quad \delta z \in \overline{C\left(\hat{z}, \Omega^{\prime}\right)}$.

[^6]Substituting (98) and (99) into (103) we obtain
104.

$$
\begin{aligned}
p^{0} \sum_{i=0}^{k-1} \delta a_{i} & -\sum_{i=0}^{k-1} p_{i+1}\left(\delta x_{i+1}-\delta x_{i}-\delta v_{i}\right) \\
& +\mu_{0} \frac{\partial g_{0}\left(\hat{x}_{0}\right)}{\partial x} \delta x_{0}+\mu_{k} \frac{\partial g_{k}\left(\hat{x}_{k}\right)}{\partial x} \delta x_{k} \leqslant 0
\end{aligned}
$$

for every $\delta z \in \overline{C\left(\hat{z}, \Omega^{\prime}\right)}$.
Now, by interpreting (104) we obtain the following theorem:
105. Theorem. If the control sequence $\hat{\mathscr{l}}=\left(\hat{u}_{0}, \hat{a}_{1}, \ldots, \hat{\mathfrak{u}}_{k-1}\right)$ and the corresponding trajectory $\hat{\mathscr{X}}=\left(\hat{x}_{0}, \hat{x}_{1}, \ldots, \hat{x}_{k}\right)$ constitute a solution to the optimal control problem, then there exists a vector $p^{0} \in E^{p}, p^{0} \leqslant 0$, vectors $p_{0}, p_{1}, \ldots, p_{k}$ in E^{n}, vectors $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}, \lambda_{i} \in E^{n_{i}}, i=0,1, \ldots, k$, vectors $\mu_{0} \in E^{\ell_{0}}, \mu_{k} \in E^{\ell_{k}}$ such that ${ }^{8}$
106. (i) $\quad\left(p^{0}, p_{0}, p_{1}, \ldots, p_{k}, \mu_{0}, \mu_{k}\right) \neq 0$,
107.
(ii) $p_{i}-p_{i+1}=p_{i+1} \frac{\partial f_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x}+p^{0} \frac{\partial c_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x}+\lambda_{i} \frac{\partial q_{i}\left(\hat{x}_{i}\right)}{\partial x}$, $i=0,1, \ldots, k-1$.
108. (iii)

$$
p_{0}=-\mu_{0} \frac{\partial g_{0}(\hat{x})}{\partial x}
$$

109. (iv)

$$
p_{k}=\mu_{k} \frac{\partial g_{k}\left(\hat{x}_{k}\right)}{\partial x}+\lambda_{k} \frac{\partial g_{k}\left(\hat{x}_{k}\right)}{\partial x}
$$

110. (v)

$$
\lambda_{i} q_{i}\left(\hat{x}_{i}\right)=0, \quad i=0,1, \ldots, k
$$

and
111. (vi) the Hamiltonian

$$
H\left(x, u, p, p^{0}, i\right)=\left\langle p^{0}, c_{i}(x, u)\right\rangle+\left\langle p, f_{i}(x, u)\right\rangle
$$

satisfies the maximum principle
$H\left(\hat{x}_{i}, \hat{u}_{i}, p, p^{0}, i\right) \geqslant H\left(\hat{x}_{i}, u_{i}, p, p^{0}, i\right)$ for all $u_{i} \in U_{i}, i=0,1, \ldots, k-1$.
Proof.
(i) This was established in theorem (82)
(ii) Let

$$
\delta \mathbf{v}_{i}=\frac{\partial \mathbf{f}_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial \boldsymbol{x}} \delta x_{i}
$$

Then (104) becomes

$$
p^{0} \frac{\partial c_{i}\left(\hat{x}_{i}, \hat{a}_{i}\right)}{\partial x} \delta x_{i}+p_{i+1} \frac{\partial f_{1}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x} \delta x_{i}+p_{i+1} \delta x_{i}-p_{i} \delta x_{i} \leqslant 0
$$

[^7]for every δx_{i} satisfying [$\left.\partial q_{i}{ }^{j}\left(\hat{x}_{i}\right) / \partial x\right] \delta x_{i} \leqslant 0$, with $q_{i}{ }^{j}\left(\hat{x}_{i}\right)=0$. Applying Farkas' lemma [11] we obtain (107) and that $\lambda_{i} q_{i}\left(\hat{x}_{i}\right)=0$ for $i=0,1, \ldots$, $k-1$.
(iii) This is seen to be merely an arbitrary but consistent definition.
(iv) and (v). We select $\delta z=\left(0,0, \ldots, 0, \delta x_{k}, 0,0, \ldots, 0\right)$, with δx_{k} such that $\left[\partial q_{k}^{j} / \partial x\right] \delta x_{k} \leqslant 0$ whenever $\left.q_{k}{ }^{3} \hat{x}_{k}\right)=0$. Again applying Farkas' lemma, we get (109) and $\lambda_{k} q_{k}\left(\hat{x}_{k}\right)=0$.
(vi) For $i=0,1,2, \ldots, k-1$, let \mathbf{v}_{i}^{\prime} be an arbitrary point in co $f_{i}\left(\hat{x}_{i}, U_{i}\right)$, which is convex by construction. Then $\delta \mathbf{v}_{i}=\mathbf{v}_{i}{ }^{\prime}-\mathbf{v}_{i}$ is in $R C\left(\hat{v}_{i}, \operatorname{cof} \hat{f}_{i}\left(\hat{x}_{i}, U_{i}\right)\right)$ and, choosing $\delta z=\left(0,0, \ldots, 0, \delta v_{i}, 0, \ldots, 0\right)$, we find that $\delta z \in C\left(\hat{z}, \Omega^{\prime}\right)$, and hence we obtain from (104),
112.
$$
p^{0} \delta a_{i}+p_{i+1} \delta v_{i} \leqslant 0 .
$$

Substituting $\mathbf{v}_{\boldsymbol{i}}{ }^{\prime}-\mathbf{v}_{\boldsymbol{i}}$ for $\delta \mathbf{v}_{\boldsymbol{i}}$ in (112) we obtain
113. $\quad p^{0}\left(a_{i}^{\prime}-c_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)\right)+p_{i+1}\left(v_{i}^{\prime}-f_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)\right) \leqslant 0$.

Clearly (113) also holds for every $\left(a_{i}^{\prime}, v_{i}^{\prime}\right) \in \mathrm{f}_{i}\left(\hat{x}_{i}, U_{i}\right)$. Therefore,
$p^{0}\left(c_{i}\left(\hat{x}_{i}, u_{i}\right)-c_{i}\left(\hat{x}_{i}, u_{i}\right)\right)+p_{i+1}\left(f_{i}\left(\hat{x}_{i}, u_{i}\right)-f_{i}\left(\hat{x}_{i}, u_{i}\right)\right) \leqslant 0$ for all $u_{i} \in U_{i}$, which completes our proof of (111).

Conclesion

In this paper we have concerned ourselves with two important aspects of vector-valued criterion optimization problems. The first was that of developing necessary conditions for the characterization of noninferior points. The necessary conditions we have obtained do not depend on the commonly made, but rather restrictive, convexity assumptions. The second was that of examining the possibility of "scalarization," i.e., of reducing a vector-valued criterion optimization problem to a family of optimization problems with scalar-valued criteria. Since it is known that scalarization by convex weighting of the components of the vector criterion function is not always possible, we have exhibited the relation between the solutions sets of certain vector-criterion problems and scalar-criteria problems derived from then by convex weighting. Finally, we have demonstrated that our results are of a very general nature by showing that they apply with equal ease to a broad class of nonlinear programming problems as well as to optimal control problems.

Since the conditions presented in this paper are considerably more general than hitherto available in the literature, it is hoped that they will open up important classes of optimization problems.

Appendix

A1. Given a subset B of a Euclidean space, defined by inequalities, i.e., $B=\left\{x \mid q^{i}(x) \leqslant 0, i=1,2, \ldots, m\right\}$, where the q^{i} are continuously differentiable scalar-valued functions, we define the internal cone to B at $\bar{x} \in B$ to be the cone

A2. $I C(\bar{x}, B)=\left\{x \left\lvert\, \frac{\partial q^{i}(\hat{x})}{\partial x} x<0\right.\right.$ whenever $q^{i}(\bar{x})=0, \quad i \in\{1,2, \ldots, m\}$.
We now return to the set Ω^{\prime}, which was defined in (101) as
A3. $\Omega^{\prime}=\left\{z=\left(x_{0}, x_{1}, \ldots, x_{k}, \mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right) \mid x_{i} \in X_{i}^{\prime}, \quad i=0,1,2, \ldots k\right.$,

$$
\left.\mathbf{v}_{j} \in \cos _{j}\left(x_{j}, U_{j}\right), \quad j=0,1,2, \ldots, k-1\right\} .
$$

We shall prove that the set $C\left(\hat{z}, \Omega^{\prime}\right)$ defined in (102), as shown below, is a conical approximation for the set Ω^{\prime} at $\hat{\boldsymbol{z}} \in \Omega^{\prime}$.

A4. $C\left(\hat{z}, \Omega^{\prime}\right)=\left\{\delta z=\left(\delta x_{0}, \ldots, \delta x_{k}, \delta \mathbf{v}_{0}, \ldots, \delta \mathbf{v}_{k-1}\right) \mid \delta x_{i} \in I C\left(\hat{x}_{i}, X_{i}^{\prime}\right)\right.$
for $i=0,1, \ldots, k$,
and

$$
\begin{aligned}
& \delta \mathbf{v}_{i}-\frac{\partial \mathbf{f}_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x} \delta x_{i} \in R C\left(\hat{\mathbf{v}}_{i}, \operatorname{cof}\left(\hat{f}_{i}\left(\hat{x}_{i}, U_{i}\right)\right)\right. \\
& \qquad \text { for } i=0,1, \ldots, k-1\}
\end{aligned}
$$

A5. Lemma. The set $C\left(z, \Omega^{\prime}\right)$ is a conical approximation for the set Ω^{\prime} at \hat{z}.

Proof. First of all it is clear that $C\left(\hat{z}, \Omega^{\prime}\right)$ is a convex cone. Now, for $j=1,2, \ldots, N$, let

A6.

$$
\delta z_{j}=\left(\delta x_{0 j}, \ldots, \delta x_{k j}, \delta v_{0 j}, \ldots, \delta v_{k-1 j}\right)
$$

be N linearly independent vectors in $C\left(\hat{z}, \Omega^{\prime}\right)$, and let $S=\operatorname{co}\left\{\bar{\epsilon} \delta z_{1}, \bar{\epsilon} \delta z_{2}, \ldots\right.$, $\left.\bar{\epsilon} \delta z_{N}\right\}$ where $\bar{\epsilon}$ is a positive scalar, defined below.

For any δz in S we can uniquely write

A7.

$$
\delta z=\bar{\epsilon} \sum_{i=1}^{N} \mu_{i}(\delta z) \delta z_{i},
$$

where

$$
\sum_{i=1}^{N} \mu_{i}(\delta z)=1, \mu_{i}(\delta z) \geqslant 0, \quad i=1,2, \ldots, N
$$

Therefore,

A8.

$$
\delta x_{i}=\bar{\epsilon} \sum_{j=1}^{N} \mu_{j}(\delta z) \delta x_{i j}
$$

and

A9.

$$
\delta \mathbf{v}_{i}=\bar{\epsilon} \sum_{j=1}^{N} \mu_{j}(\delta z) \delta \mathbf{v}_{i j}
$$

But by definition:

A10.

$$
\delta \mathbf{v}_{i j}=\frac{\partial \mathbf{f}_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x} \delta x_{i j}+\mathbf{v}_{i j}
$$

where $\mathbf{v}_{i j} \in R C\left(\hat{\mathbf{v}}_{i}, \operatorname{co} \mathbf{f}_{i}\left(\hat{x}_{i}, U_{i}\right)\right)$
From (A8), (A9), and (A10),

All.

$$
\delta \mathbf{v}_{i}=\frac{\partial \mathbf{f}_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x} \delta x_{i}+\bar{\epsilon} \sum_{j=1}^{N} \mu_{j}(\delta z) \mathbf{v}_{i j}
$$

Now, let us define the positive scalar $\bar{\epsilon}$.
(a) For $j=1,2, \ldots, N$ and $i=0,1, \ldots, k, \delta x_{i j}$ belongs to the convex cone $I C\left(\hat{x}_{i}, X_{i}^{\prime}\right)$. Hence from (A7), $\sum_{j=1}^{N} \mu_{f}(\delta z) \delta x_{i j}$ is also in $I C\left(\hat{x}_{i}, X_{i}^{\prime}\right)$ for $i=0,1, \ldots, k$. Therefore there exist positive scalars $\bar{\epsilon}_{i}, i=0,1, \ldots, k$, possible depending on $\delta z_{1}, \delta z_{2}, \ldots, \delta z_{N}$, such that

A12. $\quad\left(\hat{x}_{i}+\epsilon_{i} \sum_{j=1}^{N} \mu_{j}(\delta z) \delta x_{i j}\right) \in X_{i}^{\prime} \quad$ for all $\quad 0 \leqslant \epsilon_{i} \leqslant \bar{\epsilon}_{i}$
(b) Similarly, for $i=0,1, \ldots, k-1$,

A13.

$$
\sum_{j=1}^{N} \mu_{j}(\delta z) v_{i j} \in R C\left(\hat{v}_{i}, \cot f_{i}\left(\hat{x}_{i}, U_{i}\right)\right),
$$

and hence there exist positive scalars ϵ_{i}, possible depending on $\delta z_{1}, \delta z_{2}, \ldots$, δz_{N}, such that

A14. $\quad \hat{\mathbf{v}}_{i}+\epsilon_{i} \sum_{j=1}^{N} \mu_{j}\left(\delta_{z}\right) v_{i j} \in \operatorname{co} f_{i}\left(\hat{x}_{i}, U_{i}\right) \quad$ for all $\quad 0 \leqslant \epsilon_{i} \leqslant \epsilon_{i}$.
We now define $\bar{\epsilon}$ to be minimum of the scalars $\bar{\epsilon}_{i}, i=0,1, \ldots, k$, and $\boldsymbol{\epsilon}_{j}$, $j=0,1, \ldots, k-1$.

From (A14), there exists a finite set A_{i} and scalars $\lambda_{\alpha}{ }^{i}$ such that
A15. $\bar{\epsilon} \sum_{j=1}^{N} \mu_{j}\left(\delta_{z}\right) \mathbf{v}_{i j}=\sum_{\alpha \in \mathcal{A}_{i}} \lambda_{\alpha}{ }^{i} \mathbf{f}_{i}\left(\hat{x}_{i}, u_{i}{ }^{\alpha}\right)-\hat{\mathbf{v}}_{i}$,
where $u_{i}{ }^{\alpha} \in U_{i}, \alpha \in A_{i}$, and $\sum_{\alpha \in A_{i}} \lambda_{\alpha}{ }^{i}=1, \lambda_{\alpha}{ }^{i} \geqslant 0$.
Combining (A15) and (Al1) we obtain
A16.

$$
\delta \mathbf{v}_{i}=\frac{\partial \mathbf{f}_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x} \delta x_{i}+\sum_{\alpha \in A_{i}} \lambda_{x}{ }^{i} \mathbf{f}_{i}\left(\hat{x}_{i}, u_{i}^{\alpha}\right)-\hat{\mathbf{v}}_{i}
$$

We can define a map ζ from S into $\Omega^{\prime}-\{\hat{z}\}$ by
A17.

$$
\zeta(\delta z)=\left(y_{0}, y_{1}, \ldots, y_{K}, \mathbf{w}_{0}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{k-1}\right)
$$

where
A18. $y_{i}(\delta z)=\delta x_{i}=\bar{\epsilon} \sum_{j=1}^{N} \mu_{j}(\delta z) \delta x_{i j}, \quad i=0,1, \ldots, k$,
and
A19. $\quad w_{i}(\delta z)=\sum_{\alpha \in A_{i}} \lambda_{\alpha}{ }^{i} f_{i}\left(\hat{x}_{i}+\delta x_{i}, u_{i}{ }^{\alpha}\right)-\hat{v}_{i}, \quad i=0,1, \ldots, k-1$.
From (A12), (A15), (A18), and (A19) it is clear that ζ maps S into $\Omega^{\prime}-\{\hat{z}\}$.
Expanding (A19) in a Taylor series about $\hat{\boldsymbol{z}}$ we find that
A20. $\quad w_{i}(\delta z)=\frac{\partial f_{i}\left(\hat{x}_{i}, \hat{u}_{i}\right)}{\partial x} \delta x_{i}+\sum_{\alpha \in A_{i}} \lambda_{\alpha}{ }^{i} f_{i}\left(\hat{x}_{i}, u_{i}{ }^{\alpha}\right)-\hat{v}_{i}+o_{i}(\delta z)$,
where

$$
\frac{\left\|o_{i}(\delta z)\right\|}{\|\delta z\|} \rightarrow 0 \quad \text { as } \quad\|\delta z\| \rightarrow 0
$$

Combining (A20), (A13), (A17), and (A18), we see that

$$
\zeta(\delta z)=\delta z+o(\delta z),
$$

where

$$
\lim _{\| \delta z i \rightarrow 0} \frac{\|o(\delta z)\|_{i}}{\|\delta z\|}=0
$$

Since ζ is obviously continuous, $C\left(\hat{z}, \Omega^{\prime}\right)$ is a conical approximation for Ω^{\prime} at \hat{z}.

References

1. V. Pareto. "Cours d'Économie Politique." Lausanne, Rouge, 1896.
2. S. Karlin. "Mathematical Methods and Theory in Games, Programming and Economics," Vol. 1. Addison-Wesley, Massachusetts, 1959.
3. G. Debreu. "Theory of Value." Wiley, New York, 1959.
4. H. W. Kuth and A. W. Tucker. "Nonlinear Programming, Proc. of the Second Berkeley Symposium on Mathematic Statistics and Probability," pp. 481-492. Univ. of California Press, Berkeley, California, 1951.
5. L. A. Zadeh. Optimality and nonscalar-valued performance criteria. IEEE Trans. Automat. Control AC-8 (1963), 59-60.
6. S. S. L. Chang. General theory of optimal processes. J. SIAM Control 4 (1966), 46-55.
7. A. Klinger. Vector-valued Performance Criteria. IEEE Trans. Automat. Control (1964), 117-118.
8. R. E. Edwards. "Functional Analysis Theory and Applications." Holt, Rinehart and Winston, New York, 1965.
9. J. Dieudonné. "Foundations of Modern Analysis." Academic Press, New York, 1960.
10. K. Fan. Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Natl. Acad. Sci., U. S. 38 (1952), 121-126.
11. J. Farkas. Über die Theorie der einfachen Ungleichungen. J. Reine Angew. Math. 124 (1901), 1-27.
12. F. John. Extremum problems with inequalities as side conditions. In "Studies and Essays, Courant Anniversary Volume" (K. O. Friedrichs, O. E. Neugebauer, and J. J. Stoker, eds.) pp. 187-204. Wiley, New York, 1948.
13. M. Canon, C. Cullem, and E. Polak. Constrained minimization problems in finite dimensional spaces. J. SIAM Control 4 (1966), 528-547.
14. J. M. Holtzman. On the maximum principle for nonlinear discrete-time systems. IEEE Trans. AC-11, No. 2 (1966), 273-274.
15. H. Halkin. A maximum principle of the pontryagin type for systems described by nonlinear difference equations. J. SIAM Control 4 (1966), 90-111.
16. O. L. Mangasarian and S. Fromowitz. The Fritz John necessary conditions of optimality in the presence of equality and inequality constraints. Shell Dev. Co. Paper P1433, 1965.

[^0]: * The research reported herein was supported wholly by the National Aeronautics and Space Administration under Grant NsG-354, Supplement 3.
 ** On leave from the Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, Brazil.

[^1]: ${ }^{2}$ We use the following notation. For any vectors y_{1}, y_{2} in $E^{p}, y_{1}<y_{2}$ if and only if $y_{1}{ }^{1}<y_{2}{ }^{\star}$ for $i=1,2, \ldots, p ; y_{1}<y_{2}$ if and only if $y_{1} \neq y_{2}$ and $y_{1}<y_{2} ; y_{1}<y_{2}$ if and only if $y_{1}{ }^{i}<y_{2}{ }^{d}$ for $i=1,2, \ldots, p$.

[^2]: ${ }^{4}$ See [8] p. 118, 2.22. Corollary to the Hahn-Banach Theorem.

[^3]: ${ }^{6}$ It is easy to show that (18), (20), and (22) imply that the vectors $x_{1}, x_{2}, \ldots, x_{m+1}$, are linearly independent.

[^4]: ${ }^{6}$ Ky Fan's Theorrm. Let L_{1}, L_{2} be two separated locally convex, topological linear spaces, and K_{1}, K_{2} be two, compact convex sets in L_{1}, L_{2}, respectively. Let g be a realvalued continuous function on $K_{1} \times K_{2}$. If, for any $x_{0} \in K_{1}, y_{0} \in K_{2}$ the sets

 $$
 \left\{x \in K_{1} \mid g\left(x, y_{0}\right)=\max _{v \in K_{1}} g\left(v, y_{0}\right)\right\}
 $$

 and

 $$
 \left\{y \in K_{\mathbf{a}}, g\left(x_{0}, y\right)=\min _{\eta \in K_{\mathbf{a}}} g\left(x_{0}, \eta\right)\right\}
 $$

 are convex, then

 $$
 \max _{x \in K_{1}} \min _{v \in K_{2}} g(x, y)=\min _{v \in K_{1}} \max _{x \in K_{2}} g(x, y)
 $$

[^5]: ${ }^{7}$ See Edwards [8], p. 118, 2.2.3 Corollary to the Hahn-Banach Theorem.

[^6]: ${ }^{7}$ Depinition. Given a subset A of an Euclidean space, we define the radial cone to A at $x \in A$ to be the cone

 $$
 R C(\bar{x}, A)=\{x \mid(\bar{x}+\alpha x) \in A \text { for all } 0<\alpha<\epsilon(x, x), \text { where } \epsilon>0\}
 $$

[^7]: ${ }^{8}$ Note that the p_{i} and λ_{i} are row vectors.

