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Abstract

In the Hellinger–Reissner formulation for linear elasticity, both the displacement u and the stress � are
taken as unknowns, giving rise to a saddle point problem. We present new pairings of quadrilateral ‘trunk’
&nite element spaces for this method and prove stability (and optimality) in terms of both h and p. The e5ect
of mesh shape regularity on the stability constant is explicitly tracked. Our results provide a theoretical basis
for recent numerical experiments (in the context of a mixed p formulation for viscoelasticity) that showed
these spaces worked well computationally.
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1. Introduction

The Hellinger–Reissner (HR) principle gives a mixed variational formulation for problems in
elasticity by casting them as &rst-order systems with both the stress � and the displacement u as
unknowns. It is sometimes referred to as the primal mixed method, to di5erentiate it from the dual
mixed method (see e.g. [3]). In the latter method, integration by parts is carried out to shift the
derivatives from the strains �(u) to the stresses � so that the components of � are H (div) functions,
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while those of u are L2 functions.2 In contrast, the HR formulation3 leads to L2 components for �
and H 1 components for u.

The above formulations are particularly useful when applied to problems such as plasticity and
viscoelasticity, where the displacements and stresses are generally approximated separately since
the stresses cannot be straightforwardly recovered from the displacements. In this paper, we are
motivated by a recent solution method for viscoelastic problems using the p &nite element method
on quadrilateral meshes [9,10]. Here, the HR principle turns out to be the most natural method
to use, facilitating easy discretization of the time dependence by the backward Euler method, and
ensuring that the approximate stresses, being in L2, have no continuity constraints that need to be
imposed. At each discrete time step tk , this method requires the solution of a mixed &nite element
method for a linear elasticity problem based on the HR principle. Therefore, one criterion that is
crucial is that the underlying &nite element spaces be stable in the sense of BabuIska–Brezzi.

This is the main goal of our paper—the construction of stable pairs of spaces on quadrilateral
elements for the HR mixed formulation. Since [9,10] deals with the p version, our main objective
is stability with respect to p, the polynomial degree used—but our proof also leads to stability
in terms of h, the mesh spacing. For triangles, the construction of such spaces turns out to be
straightforward. If one use continuous piecewise polynomials of degree p for the displacement
space VN and discontinuous piecewise polynomials of degree p − 1 for the stress space N , then it
is immediate to see that the following inclusion holds:

�(VN )⊂N : (1.1)

This easily leads to the inf–sup condition in terms of both h and p (Theorem 2.1).

The situation is less clear for meshes consisting of parallelograms. Here, one needs to take the
same degree for both N and VN for the Qp (‘product’) and Q′

p (‘trunk’ or ‘serendipity’) spaces
that are usually implemented in &nite element packages to ensure that (1.1) holds. However, this
combination is not optimal in terms of approximation order, since the ideal combination would use
one lower polynomial degree for the L2 stress approximation.

The computational results in [9,10] were tested using the p version with Q′
p (and also Qp) spaces

in the commercial code Stress Check. The experimental results showed that with Q′
p spaces, the

combination of degree p for VN and degree p − 1 for N was stable in terms of p. We prove this
analytically in this paper, establishing stability (and hence optimality) in both p and h (when p¿ 2)
for spaces over parallelograms. Since this combination violates condition (1.1), new techniques of
proof are needed. An interesting feature of our proof is that we track the e5ect of the shape regularity
of the elements on the inf–sup constant.

We also prove that for the above spaces, a local version of the inf–sup constant is zero over
each element when p6 2 (which is why our proof does not extend to the h version for the cases
p = 1; 2). For Qp elements, the p=p − 1 combination also gives a zero local inf–sup constant for

2 We use standard Sobolev Space notation, with Hk(�) denoting the space of k square integrable functions over a
domain �, L2(�) =H 0(�), and H (div; �) denoting L2(�) functions whose divergence is also in L2(�). (·; ·)k;� and ‖·‖k;�

will denote the usual Hk(�) inner product and norm, respectively (with the same notation being used for vectors and
tensors as well). The symbol � will be dropped from the above notations when the domain is understood.

3 We remark that in the literature, the dual mixed method is also sometimes referred to as arising from the Hellinger–
Reissner principle, but here, we will use HR to signify only the primal mixed formulation.
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any p¿ 1. This agrees well with the results in [9], where it was found computationally that the p
version does not work well in practice for this choice. (Moreover, the inf–sup constant was shown
numerically to be zero in [9] for this choice.) This suggests that for Qp elements, one should use
the same degree for N and VN . When this is done, (1.1) will again hold, proving stability.

Analogs of our results also hold for the primal mixed formulation of the Poisson equation, as de-
scribed in Section 5. We also discuss here the extension of our stability results to curvilinear elements.

2. The Hellinger–Reissner formulation

We consider the elasticity problem on a domain �⊂R2 with boundary @�=�=�D∪�N consisting
of disjoint portions �D �= ∅ and �N : Find u satisfying

−div � = f; � = E�(u) in �;

u = 0 on �D; �n = g on �N :

Here, as usual, �(u) is the symmetric gradient of u, given by

(�(u))ij =
1
2

(
@ui
@xj

+
@uj
@xi

)
:

E is a symmetric nonsingular matrix of elastic constants and � is the (symmetric) stress.
The so-called Hellinger–Reissner principle is given by: Find (�; u) ∈ × V = S((L2(�))4) ×

(H 1
D(�))2 satisfying, for all (�; v) ∈ × V ,

(E−1�; �)0 − (�; �(u))0 = 0; (2.1)

−(�; �(v))0 = −(f; v)0 +
∫
�D

g · v dx: (2.2)

Here, S((X )4) denotes the set of symmetric 2×2 matrices with components in X and H 1
D(�) =

{u∈H 1(�); u = 0 on �D}.
Finite element approximations can now be obtained by choosing &nite-dimensional subspaces

N × VN⊂ × V and &nding (�N ; uN ) ∈N × VN satisfying (2.1) and (2.2) for all (�; v) ∈N × VN .
As mentioned in the introduction, these subspaces should be chosen so that the usual inf–sup or
BabuIska–Brezzi conditions are satis&ed. The &rst of these conditions requires the following:

(E−1�; �)0¿  ‖�‖2
 ∀�∈XN ; (2.3)

where the constant  is independent of � and the discretization parameter N , and

XN = {�∈N ; (�; �(v))0 = 0 ∀v∈VN}:
This coercivity condition is trivially satis&ed for all of  whenever the matrix E−1 is positive
de&nite. We assume this is true, and exclude the case of plane strain conditions with incompressible
(or nearly incompressible) materials. (The latter case can cause Poisson ratio locking similar to that
observed in the standard &nite element method—see e.g. [2]).

The second condition requires that the following be true:

sup
�∈N

(�; �(u))0

‖�‖ ¿ !‖u‖V ∀u∈VN (2.4)
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with !¿ 0 (the ‘inf–sup constant’) independent of N . To this end, we have the following theorem
(noted, e.g. in [3]).

Theorem 2.1. Let the family {N ; VN} satisfy (1.1) for all N . Then (2.4) holds with ! independent
of N .

Proof. The proof follows immediately by taking � = �(u) on each element and using Korn’s
inequality.

As we shall see in the sequel, (1.1) is suNcient, but not necessary for (2.4) to hold.

3. Stability on a single element

Let K̂ = (−1; 1)2 be the reference quadrilateral and T̂ = {(x̂1; x̂2)|0¡x̂1 ¡ 1; 0¡x̂2 ¡ 1 − x̂1} the
reference triangle. Then any parallelogram K (respectively, triangle T ) with coordinates denoted by
(x1; x2) can be represented as the image of K̂ (respectively, T̂ ) under an aNne mapping F given by(

x1

x2

)
= F

(
x̂1

x̂2

)
= A

(
x̂1

x̂2

)
+

(
b1

b2

)
; (3.1)

where A =

(
a b

c d

)
is a 2×2 invertible matrix satisfying

det A = ad − bc = * �= 0:

In this section, we will prove a condition that leads to a local version of (2.4) for three com-
binations of polynomial spaces de&ned on an arbitrary element S = K or T . We will denote, for
M⊂R2; Pp(M) to be the space of polynomials of total degree p on M and Qp;q(M) to be the space
of polynomials of degree p in x1 and q in x2. Then Qp;p(K) =Qp(K) is the usual product space on
K . Also, Q′

p(K) = span{Pp(K); xp1 x2; x1x
p
2 } is the trunk or serendipity space. The three combinations

we consider are the following:

(S1) p = S((Q′
p−1(K))4); Vp = (Q′

p(K))2; p¿ 2.
(S2) p = S((Pp−1(T ))4); Vp = (Pp(T ))2; p¿ 1.
(S3) p = S((Qp(K))4); Vp = (Qp(K))2; p¿ 1.

Cases (S2) and (S3) are included here only for completeness, since the meshes in the hp version
often need elements such as triangles as well.

Associated with each element S, we will de&ne a shape regularity parameter /S by

/S =
hS
0S

; (3.2)

where hS is the diameter of QS (the closure of S) and 0S is the diameter of the largest circle that
can be inscribed within QS. Then the following is the main theorem of this section.
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Theorem 3.1. Let (p; Vp) be given by (S1), (S2) or (S3), with S =K or T denoting the respective
underlying element, which is the image of K̂ or T̂ under an a2ne mapping F with shape regularity
parameter /S . Then given w∈Vp, there exists �∈p such that

(�; �(w))0; S¿
1

(1 + 2p−1
√
/S)2

‖�(w)‖2
0; S and ‖�‖0; S6 ‖�(w)‖0; S ; (3.3)

with 2 a constant independent of w;p.

Noting that combinations (S2) and (S3) satisfy (1.1), we see that Theorem 3.1 follows similarly
to Theorem 2.1 for these cases, by taking � = �(w), which gives (3.3) with 2 = 0. The proof for
(S1) is more involved, and needs a sequence of lemmas, which we now prove. Unless otherwise
stated, p; Vp will refer to the spaces in (S1) de&ned on the element K . Also, ̂p; V̂p will refer to
the same spaces de&ned on the reference square K̂ .

For any function f(x; y) de&ned on K , we will denote its image on K̂ by f̂ = f ◦ F and vice
versa. Also, we will denote the Jacobian of the mapping F by J . (For our aNne mappings, J = A,
and det J = det A = *, a constant.) Then the following lemma follows by the change of variables
formula for integrals.

Lemma 3.2. Given w∈Vp; �∈p, with corresponding images ŵ=w◦F; �̂=�◦F on K̂=F−1(K),
the following relations hold:

‖�‖0;K = ‖�̂
√

|det J |‖0; K̂ ; ‖�(w)‖0;K = ‖�̂(w)
√

|det J |‖0; K̂ ; (3.4)

(�; �(w))0;K = (�̂; �̂(ŵ)|det J |)0; K̂ ; (3.5)

where, using summation notation for repeated indices

(�̂(ŵ))ij =
1
2

(
@ŵi

@x̂k

@x̂k
@xj

+
@ŵj

@x̂k

@x̂k
@xi

)
: (3.6)

Let Lp denote the Legendre polynomial of degree p. Then any ŵ= (ŵ1; ŵ2)T ∈ V̂p may be written
as (we use the equivalent notation (x; y) = (x̂1; x̂2) for convenience)

ŵ1 =
∑

06i+j6p

aijLi(x)Lj(y) + a1pL1(x)Lp(y) + ap1Lp(x)L1(y)

=A + A1 + A2; (3.7)

ŵ2 =
∑

06i+j6p

bijLi(x)Lj(y) + b1pL1(x)Lp(y) + bp1Lp(x)L1(y)

=B + B1 + B2: (3.8)
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Moreover, by (3.6), we have for the case that the mapping F is given by (3.1),

(�̂(ŵ))11 = (d(Ax + A1
x + A2

x) − c(Ay + A1
y + A2

y))=*; (3.9)

(�̂(ŵ))22 = (−b(Bx + B1
x + B2

x) + a(By + B1
y + B2

y))=*; (3.10)

(�̂(ŵ))12 = (�̂(ŵ))21 = (−b(Ax + A1
x + A2

x) + a(Ay + A1
y + A2

y)

+d(Bx + B1
x + B2

x) − c(By + B1
y + B2

y))=2*: (3.11)

Let us de&ne the usual L2 projection from L2(K̂) onto Q′
p−1(K̂) by

(6p(û); ŝ)0; K̂ = (û; ŝ)0; K̂ ∀ŝ∈Q′
p−1(K̂): (3.12)

Then we have the following lemma.

Lemma 3.3. Let A; A1; A2 be as in (3.7). Then

6p(Ax) = Ax; 6p(Ay) = Ay; (3.13)

6p(A1
x) = 0; 6p(A1

y) = A1
y; (3.14)

6p(A2
x) = A2

x ; 6p(A2
y) = 0: (3.15)

Similar equations hold for B; B1; B2 as in (3.8).

Proof. First, it is easy to see that Ax; Ay; A1
y; A

2
x all lie in Q′

p−1(K̂), so that the corresponding equalities
follow. Next, we note that

A1
x = a1pLp(y):

For ŝ(x; y) ∈Q′
p−1(K̂); ŝ(x0; y) is a polynomial in y of degree no larger than p − 1 for each

&xed x0. Hence (3:14)1 follows by the orthogonality of Legendre polynomials. Eq. (3:15)2 follows
similarly.

Suppose now that we are given a w∈Vp. Then its image ŵ∈ V̂p may be written as (3.7) and
(3.8). We then de&ne �̂∈ ̂p by

�̂ = 6p(�̂(ŵ)); (3.16)

where the projection 6p is understood to be made component-wise. We then have the following
result.

Lemma 3.4. For w∈Vp, with ŵ given by (3.7) and (3.8), let �̂∈ ̂p be de7ned by (3.16). Then for
p¿ 2,

‖*�̂11‖2
0; K̂ ¿Kp2(c2‖A1

x‖2
0; K̂ + d2‖A2

y‖2
0; K̂); (3.17)

‖*�̂22‖2
0; K̂ ¿Kp2(a2‖B1

x‖2
0; K̂ + b2‖B2

y‖2
0; K̂); (3.18)

‖*�̂12‖2
0; K̂ = ‖*�̂21‖2

0; K̂ ¿Kp2(‖aA1
x − cB1

x‖2
0; K̂ + ‖ − bA2

y + dB2
y‖2

0; K̂); (3.19)

where K is a constant independent of p.
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Proof. Let us &rst prove (3.17). Using (3.9), (3.16) and Lemma 3.3, we see that

*�̂11 = d(Ax + A2
x) − c(Ay + A1

y)

= d


 ∑

06i+j6p

aijL′
i(x)Lj(y) + ap1L′

p(x)L1(y)




−c


 ∑

06i+j6p

aijLi(x)L′
j(y) + a1pL1(x)L′

p(y)


: (3.20)

We now note that (Eq. (A.4.4) of [8])

L′
p(t) = npLp−1(t) + L′

p−2(t);

where np = 2p − 1, so that

ap1L′
p(x)L1(y) = npap1Lp−1(x)L1(y) + ap1L′

p−2(x)L1(y);

a1pL1(x)L′
p(y) = npa1pL1(x)Lp−1(y) + a1pL1(x)L′

p−2(y):

Substituting in (3.20), we may group together terms in Pp−1(K̂) and write �̂11 as

*�̂11 =P + dnpap1Lp−1(x)L1(y) − cnpa1pL1(x)Lp−1(y)

=P + P1 + P2: (3.21)

Consider the term P1 = dnpap1Lp−1(x)L1(y) in (3.21). Clearly, this is L2(K̂) orthogonal to the last
term P2 in (3.21) for p �= 2. Moreover, the presence of Lp−1(x) makes it orthogonal to every term
in P except ap0L′

p(x)L0(y) and ap−1;1Lp−1(x)L′
1(y). But both these latter terms have the factor L0(y)

in them, which makes P1 orthogonal to them as well. Similarly, P2 is orthogonal to every other
term in (3.21). Hence,

‖*�̂11‖2
0; K̂ = ‖P‖2

0; K̂ + ‖P1‖2
0; K̂ + ‖P2‖2

0; K̂

= ‖P‖2
0; K̂ + d2n2

pa
2
p1‖Lp−1‖2

0; K̂‖L1‖2
0; K̂ + c2n2

pa
2
1p‖L1‖2

0; K̂‖Lp−1‖2
0; K̂

¿ (d2a2
p1 + c2a2

1p)(2p − 1)2

(
2
3

)(
2

2p − 1

)

= 4
3 (2p − 1)(d2a2

p1 + c2a2
1p): (3.22)

Next, from (3.7) we have

A1
x = a1pL′

1(x)Lp(y) = a1pL0(x)Lp(y)

so that

‖A1
x‖2

0; K̂ = a2
1p(2)

(
2

2p + 1

)
=

4a2
1p

2p + 1
: (3.23)
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Similarly,

‖A2
y‖2

0; K̂ =
4a2

p1

2p + 1
; (3.24)

so that (3.17) follows from (3.22)–(3.24). Eq. (3.18) can be similarly established.
To prove (3.19), we note that �̂12 may be orthogonally decomposed similarly to (3.21), leading

to the following analog of (3.22):

‖*�̂12‖2
0; K̂ = 4

3 (2p − 1)((−bap1 + dbp1)2 + (aa1p − cb1p)2): (3.25)

Then (3.22) follows by noting that

‖ − bA2
y + dB2

y‖2
0; K̂ = ‖ − bap1Lp(x)L0(y) + dbp1Lp(x)L0(y)‖2

0; K̂ =
4(−bap1 + dbp1)2

2p + 1
(3.26)

with a similar formula holding for ‖aA1
x − cB1

x‖2
0; K̂

.

Corollary 3.4.1. For ŵ given by (3.7) and (3.8) and �̂ de7ned by (3.16) as in the above lemma,
we have, for p¿ 2 and C a constant independent of p,

‖*�̂‖2
0; K̂ ¿Cp2((a2 + c2)(‖A1

x‖2
0; K̂ + ‖B1

x‖2
0; K̂) + (b2 + d2)(‖A2

y‖2
0; K̂ + ‖B2

y‖2
0; K̂)):

Proof. Using the identity

(cA1
x)

2 + (aB1
x)

2 + (aA1
x − cB1

x)
2 = (aA1

x)
2 + (cB1

x)
2 + (cA1

x − aB1
x)

2;

it is easy to show that

c2‖A1
x‖2

0; K̂ + a2‖B1
x‖2

0; K̂ + ‖aA1
x − cB1

x‖2
0; K̂ ¿

1
2 (a2 + c2)(‖A1

x‖2
0; K̂ + ‖B1

x‖2
0; K̂):

The corollary then can be obtained using Lemma 3.4.

We now relate the shape regularity parameter /K to the coeNcients a; b; c; d in the mapping F
given in (3.1).

Lemma 3.5.

max
{
b2 + d2

a2 + c2 ;
a2 + c2

b2 + d2

}
6 /2

K :

Proof. Consider the points Â1 = (−1; 0) and Â2 = (1; 0), which are the midpoints of two opposite
sides of K̂ . Their images under F are points lying in QK given by A1 = (−a + b1;−c + b2) and
A2 = (a + b1; c + b2), respectively, so that the Euclidean norm of A1A2 is given by

‖A1A2‖ = 2
√

a2 + c2:

Since both A1 and A2 lie in QK , we get

2
√
a2 + c26 hK :

Similarly, considering B1 and B2, the images of B̂1 = (0;−1) and B̂2 = (0; 1), respectively, we get

‖B1B2‖ = 2
√

b2 + d26 hK :
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We now observe that A1; A2 and B1; B2 are the midpoints of the opposite sides of the parallelogram
K , so that

0K 6min{‖A1A2‖; ‖B1B2‖}:
The lemma follows easily.

Lemma 3.6. For w∈Vp and �̂∈ ̂p de7ned by (3.16),

‖�̂‖0; K̂ ¿
1

(1 + 2p−1
√
/K)

‖�̂(ŵ)‖0; K̂

for a constant 2 independent of p.

Proof. We note that using (3.9)–(3.11) and Lemma 3.3,

*�̂(ŵ) = *�̂ +

[
dA1

x − cA2
y

1
2 (−bA1

x + aA2
y + dB1

x − cB2
y)

1
2 (−bA1

x + aA2
y + dB1

x − cB2
y) −bB1

x + aB2
y

]
;

so that

‖*�̂(ŵ)‖0; K̂ 6 ‖*�̂‖0; K̂ + (|b| + |d|)(‖A1
x‖0; K̂ + ‖B1

x‖0; K̂)

+ (|a| + |c|)(‖A2
y‖0; K̂ + ‖B2

y‖0; K̂)

6

(
1 +

2
p

(
max

{
b2 + d2

a2 + c2 ;
a2 + c2

b2 + d2

})1=2
)

‖*�̂‖0; K̂

using Corollary 3.4.1. The result follows using Lemma 3.5.

Remark 3.1. An analogous but simpler proof to that of Lemma 3.6 above can be used to show that
for either a scalar or vector w with components in Q′

p(K̂),

‖6p∇w‖0; K̂ ¿C‖∇w‖0; K̂ ;

for C a constant independent of p.

Proof of Theorem 3.1. Noting that det J is a constant, we see from Lemma 3.2, (3.16) and Lemma
3.6 that

(�; �(w))0;K = |*|(�̂; �̂(ŵ))0; K̂ = |*|‖�̂‖2
0; K̂

¿
|*|

(1 + 2p−1
√
/K)2

‖�̂(ŵ)‖2
0; K̂ =

1
(1 + 2p−1

√
/K)2

‖�(w)‖2
0;K :

Moreover, since �̂ is the L2 projection of �̂(ŵ), we have, using Lemma 3.2 again that

‖�‖0;K =
√
*‖�̂‖0; K̂ 6

√
*‖�̂(ŵ)‖0; K̂ = ‖�(w)‖0;K :
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Let us now show that Theorem 3.1 cannot hold for certain pairs of local subspaces, i.e. that the
inf–sup constant is zero in a local sense.

Theorem 3.7. Let K = K̂ , the reference quadrilateral. Let (p; Vp) be given by (S1) with p = 1; 2
or by p = S((Qp−1(K̂))4); Vp = (Qp(K̂))2; p¿ 1. Then there exists w∈Vp for which

(�; �(w))0; K̂ = 0 for all �∈p: (3.27)

Proof. First, consider

w =

[
L1(x)L2(y)

−L2(x)L1(y)

]
∈ (Q′

2(K̂))2:

Then

�(w) =

[
L0(x)L2(y) 0

0 −L2(x)L0(y)

]

which is orthogonal to all �∈S((Q′
1(K̂))4), proving (3.27) for this case.

Next, de&ne for p¿ 1,

w =

[
Lp(x)Lp(y)

0

]
∈ (Qp(K̂))2:

Then

�(w) =

[
L′
p(x)Lp(y) 1

2 Lp(x)L′
p(y)

1
2 Lp(x)L′

p(y) 0

]

so that once again (3.27) holds by orthogonality for all �∈S((Qp−1(K̂))4). Noting that Q′
p(K̂) =

Qp(K̂) for p = 1 (and p = 0) completes the proof for all cases.

Theorem 3.7 shows that if the p version is used on a single element with the choice p =
S((Qp−1(K̂))4); Vp = (Qp(K̂))2, then for the case �D = ∅ (with appropriate &ltration of rigid body
modes), the method would have a zero inf–sup constant. In [9], it has been computationally shown
that this choice gives a zero inf–sup constant even when �D �= ∅ and more than a single element
is used.

4. Global hp stability and optimality

We assume we are given a sequence of meshes {TN}, consisting of triangles and parallelograms,
and parameterized by N . For instance, these could be meshes with geometric re&nement around
points of singularities such as corners (see e.g. [6,8]). We also assume that there exist aNne maps
FS which map the reference element K (respectively, T ) onto S ∈TN if S is a parallelogram
(respectively, triangle). Then the spaces N ; VN are de&ned by

N = {�∈; �ij|S ∈pS}; VN = {v∈V; vi|S ∈VpS}: (4.1)
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Here, for each S, the corresponding pair of spaces (pS ; VpS ) is chosen to be one of (S1), (S2) or
(S3), so that Theorem 3.1 is satis&ed.

We assume the meshes {TN} are uniformly shape regular, i.e.

/ = sup
N

max
S∈TN

/S ¡∞: (4.2)

Then we have the following stability theorem.

Theorem 4.1. Let the meshes {TN} be uniformly shape regular. Let {N ; VN} be as in (4.1). Then
(2.4) holds with ! independent of N .

Proof. Let u∈VN . Using Theorem 3.1, de&ne, for each S ∈TN ; �|S ∈pS such that (3.3) holds. Using
(4.2) and the fact that pS¿ 1, this gives a �∈N which satis&es

(�; �(u))0;�¿
1

(1 + 2
√
/)2

‖�(u)‖2
0;� and ‖�‖0;�6 ‖�(u)‖0;�:

Eq. (2.4) can now be established by using Korn’s inequality.

Remark 4.1. We see that the stability constant ! more precisely satis&es

!¿ (1 + 2p−1
N

√
/)−2;

where pN is the minimum polynomial degree used over the elements in {TN}. For cases (S2) and
(S3), 2 = 0, so the method is stable with ! = 1 even when very thin elements are used (e.g. at the
boundary, to capture boundary layers). For (S1), the deterioration due to thin elements is still not
serious in the p=hp versions, where pN can be expected to become large (particularly in accordance
with the prescription for capturing boundary layers, see e.g. [7]). In fact, ! → 1 as pN → ∞
for (S1).

The above theorem, together with the coercivity of the form (E−1�; �)0 in (2.1) immediately gives
the following optimality result by the usual theory of mixed methods (see e.g. [3,5]).

Theorem 4.2. Let (�; u) be the exact solution of (2.1), (2.2) and {(�N ; uN )} a sequence of 7nite
element approximations using the spaces {N ; VN} described above. Then there exists a constant
C independent of N such that

‖� − �N‖0;� + ‖u − uN‖1;�6C
{

inf
�∈N

‖� − �‖0;� + inf
v∈VN

‖u − v‖1;�

}
: (4.3)

Theorem 4.2 shows that optimal h and p convergence rates can be obtained when using the above
elements. Moreover, exponential hp convergence can be obtained by using meshes that are properly
re&ned around points of singularities [6,8]. (These often combine quadrilaterals and triangles, which
is why we have carried through the case of triangular elements.) For some computational p version
results obtained using these methods, both in the context of linear elasticity and an application to a
viscoelasticity problem, we refer to [9,10].
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5. Some extensions

In this section, we outline some extensions of our results, remarking only brieSy on the arguments
involved.

We &rst note that our method of proof carries over to the analogous primal method for the Poisson
equation [3]: Find (�; u) ∈ × V = (L2(�))2 × H 1

D(�) satisfying, for all (�; v) ∈ × V ,

(�; �)0 − (�;∇u)0 = 0; (5.1)

−(�;∇v)0 = −(f; v)0 +
∫
�D

gv dx: (5.2)

Once again, the analogs of subspaces (S1)–(S3) lead to stability and optimality results similar to
Theorems 4.1 and 4.2.

In [5] it is noted that the combination

p = Qp−1;p(K) × Qp;p−1(K); Vp = Qp(K)

also satis&es the analogous inclusion property for this Poisson case, and is hence immediately stable.
An analogous modi&cation can be made for the components �11 and �22 in the HR case, though �12

and �21 would still have to belong to Qp.
We also note that in [5], the case of curved elements for problems (5.1) and (5.2) is treated.

The idea is based on the following de&nition of N ; VN which turns out to be equivalent to the one
analogous to (4.1) when the mappings FS are aNne:

N = {�∈; JFSDF
−1
S (�|S ◦ FS) ∈ ̂pS}; (5.3)

VN = {v∈V; v|S ◦ FS ∈ V̂pS}: (5.4)

Here JFS is the Jacobian of the mapping FS and DF−1
S is the derivative of its inverse. The spaces

̂pS ; V̂pS contain the same choice of polynomials as pS ; VpS , but on the reference element.
When FS is not aNne, choosing polynomials in ̂pS ; V̂pS will lead to nonpolynomial basis functions

in pS ; VpS . The stability proof can still be carried through, however, as indicated in [5] for the choice
(S2) (and by extension (S3)). The idea is as follows. Given w∈VN we let ŵ =w|S ◦FS denote the
image of w|S on the reference element Ŝ. We now de&ne

�̃ = ∇ŵ; (5.5)

which is clearly a polynomial on Ŝ. Then we de&ne �|S to be the Piola transform of the polynomial �̃,

�|S =
1
JFS

DFS �̃ ◦ F−1
S : (5.6)

It may be seen by (5.3) that this elementwise de&nition yields a �∈N . Moreover, a property of
the Piola transform (see e.g. [5]), gives the key relation

(�;∇w)0; S = (�̃;∇ŵ)0; Ŝ : (5.7)

Eqs. (5.5) and (5.7) then yield an analog of Theorem 3.1 (and hence Theorem 4.1) provided suitable
assumptions on the mappings and the mesh are satis&ed.
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This idea can easily be extended to the case (S1) as well. We simply modify (5.5) to

�̃ = 6pS∇ŵ:

Then de&ning �|S by (5.6) again, the relation (5.7) will hold as before. This gives, by Remark 3.1,

(�;∇w)0; S = ‖6ps∇ŵ‖2
0; Ŝ¿C‖∇ŵ‖2

0; Ŝ ;

from which the analog of Theorem 3.1 follows (again with suitable assumptions on FS).
We remark that a somewhat related Piola mapping idea was used to construct stable curvilinear

elements in [4] for the dual elasticity formulation. Requirements on the mappings for h and p
stability are discussed in that reference, from which analogs can be formulated for the HR problem
as well. Let us point out, however, that even when the stability is not an issue, there can be a
degradation of the h approximability properties of the spaces when general quadrilateral elements
(rather than rectangles or parallelograms) are used. See [1] for more details.

For the HR formulation, the above idea (used component-wise) will once more lead to stability
over curved (S1) elements. However, using spaces of form (5.3) will now lead to a nonsymmetric
�, necessitating the use of a N which allows the possibility of �12 �= �21. (This is why, for the
symmetric spaces considered here, we were not able to use the Piola transform to give a simpler
proof of local stability in Section 3.) We remark that in [9,10], the (S1) spaces used were the usual
mapped symmetric spaces, de&ned by

N = {�∈; �|S ◦ FS ∈ ̂pS}: (5.8)

These were shown to work well numerically for the p version, so that the Piola-transformed non-
symmetric spaces (of form (5.3)) may not be needed in practice. Similar numerical results were
observed for the dual formulation in (see [4]), where it was shown that a certain class of curvilinear
spaces of form (5.8) worked as well as those of form (5.3) (both for the p and h versions).
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