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Abstract 

Berrut, J.-P., A formula for optimal integration in Hz, Journal of Computational and Applied Mathematics 46 
(1993) 199-210. 

The weights bj of the optimal integration formula & = CjBjf(zj) in Hz for given integration points zj are the 
exact integrals of the cardinal functions in the corresponding formula for optimal evaluation. By writing these 
cardinal functions as sums of their principal values, we very easily obtain a closed formula for the weights. In 
the case of real zj’s, this formula makes explicit a series formula of Wilf. We compare numerically the 
accuracy of the optimal formula with that of some well-known integration formulae. For points equidistant on 
a circle of radius r, the formula allows an alternate derivation of a formula obtained by Golomb. We give also 
the barycentric formula for optimal evaluation with these points, as well as an experimentally stable sequence 
of radii r for integrating with an increasing number of points. 

Keywords: Numerical quadrature; optimal quadrature; optimal approximation. 

1. Introduction 

Most numerical rules for approximating the integral If := lrf(t) dz of a function f along a 
path r c C can be written as 

Q = j$oaj.fj> fj :=f(zj), (1.1) 

where the zj’s are distinct points on - or outside - T and aj E @ are the weights associated 
with the points zj. Choosing such an integration rule therefore consists of choosing the zj’s and 
the corresponding ai’s. In some methods (Newton-Cotes, SINC integration, etc.), one chooses 
the points and defines a process for determining the ai’s as functions of the tj’s. In others 
(Gauss quadrature, Wilfs quadrature, etc.), one chooses a criterion for determining simultane- 
ously the zj’s and ai’s. Here we will take the first approach, and assume that the points have 
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been chosen by the user or are imposed upon him; the goal is then to provide him with the 
“best” ai’s, i.e., those aj’s for which the error functional 

E:f++Ef:=If- ka,f, 
;=o 

has minimal norm on some normed linear space. (The corresponding rule (1.1) is then said to 
be optimal with respect to the weights.) 

Among various spaces, the problem has been solved for H*, the Hilbert space of those 
functions which are analytic within the unit disk and square integrable in the Lebesgue sense 
around the unit circle ao, with the scalar product 

(f, g) := &l,,I(z)mldz I 

(see also the more general setting in [17] and the literature cited there). For example, the 
functions of the form 

f(2) = (1 +z)a(l -z)P logY(l-2) logS(l +z)g(z), (Y, p > -;, (1.2) 
where g is analytical in a domain containing D, belong to H*. 

Sard [19] has proved that for an optimal approximation of bounded linear functionals L, the 
aj’s in (1.1) must be chosen in such a way that for every f the linear combination in (1.1) equals 
the result of applying L to the orthogonal projection f 1 of f onto the linear manifold spanned 
by the values 

kj(z) ‘= $L&) j=O,...,n, 
J 

(1.3) 

of the reproducing kernels at the points zj. (H* is the direct sum of this manifold and the 
space of the H*-functions vanishing at all z;‘s.) Larkin [14] noticed that f 1 is independent of 
L and, by choosing L successively as the ordinate evaluation functional at zj (i.e., Lf := f(zj)), 
that 

f ‘(zj)=f(zj), j=O ,..., n. (1.4) 

It follows that solving the optimal linear approximation problem for the aj’s is equivalent to 
solving the interpolation problem of finding that linear combination f l(z) = C~=,cjkj(z), 
cj E C, of the kj’s for which the interpolation condition (1.4) holds. In the words of Larkin, “all 
optimal linear approximation problems are made to depend only on this single interpolation 
problem”. (This result was already known to Richter-Dyn [17, ~5891 and is mentioned also in 
[ml.) f I is the minimal norm interpolant [15, p.1151 - see the remark after the theorem 
below. 

The functional we want to approximate here is the integration between two points of 
5 := D u Xl. To use the above theory, we must first check that this functional is bounded. 

Theorem 1.1. Let f E H*, and let zs and zE be two points of 0. Then the linear functional 
I: f H /ZFf<z> dz is bounded. 
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Proof. Let r denote the segment from ts to tE, 6 the circle with center at the origin and 
passing through ts and zE, and y one of the two circular arcs of 6 that together with r make 
a closed curve. Then by Cauchy’s integral theorem Zf= /,f<z> dt = &jJ(z> dz; moreover, 

l[f(z) dzlq I f(z) I ldz I =G /,I f(z) I ldz 0 

and thus ([M, p.3381 and Schwarz’s inequality) 

IZf I <j--If(z)1 ldzl ddlf 112. 

Thus II Z I( < 2~. Notice that if zs and zE are on a diameter through the origin, then II Z II < r 
by the FejCr-Riesz inequality [6, p.461. 0 

Larkin and Golomb have also given the “Lagrange form” of f L (z>, 

f i (z) = k zj(z)“j(z)fj, 
j=O 

(1.5) 

in which the lj’s are the Lagrange cardinal functions 

m,(z) := n;=O(l -‘kzj) 
J r-&(1 -z,z) * 

As noticed by Brachmond [5], who derived 
If(z) and f l(z) = CfjZj’(z>. We remark 

formulae for optimal differentiation, Zj(z)mj(z) = 
that for the optimal evaluation of f (z *>, z * E D, 

the barycentric formula [3, Theorem 2.11 should be used instead of (1.5) to save computing time 
and guarantee stability in the vicinity of the zj’s. 

2. The weights of optimal integration 

The optimal rule e := C~=oa^jfj must be such that 

~= j~o~jfj=zf I= ~ Z(r:)fj, 
j=O 

for all f E Hz. Putting f := I,, k = 0,. . . , II, into (2.1), we see 
by 

(2.1) 

that the optimal weights are given 

a^j=ZZj~= ,I,(Z)mj(Z) dz. 
/ (2.2) 

We shall call f L the optimal interpolant and (2.1) with the weights in (2.2) the optimal 
integration formula. Notice that, as integrals of the cardinal functions Zj(z>mj(z) of optimal 
interpolation, the zj’s do not depend on f; thus, for example, the optimal formula integrates 
functions such as those in (1.2) without using CX, p, y or 6. 

The Zj(z) are entire, whereas the mj(z) have (simple) poles at l/Z,, zk # 0, which all lie 
outside D. The integrands in (2.2) are therefore rational functions with numerator degree n; 
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the degree of their denominators is IZ if one of the zj’s equals 0, n + 1 otherwise. We will 
denote by z, (one of) the zj with minimal modulus; then evidently z, = 0 iff one of the zj’s is 0. 

Let us now factorize out the constant factors in lj and mj as in [3]: 

1 
with wj = 

nZ=O,k + j(‘j -zk) ’ 

with m(z) := kfi,(l -Zkz) 

and vi:= kbO(l -Zkzj) =m(zj). 

To integrate lj(z)mj(z), we will first compute its partial fraction decomposition. In view of the 
degrees mentioned above, the division of the numerator by the denominator is the constant 
lim ,,,lj(z)mj(z). Moreover, as any rational function, lj(z>mj(z) equals the sum of its 
principal values [12, p.2181 and, since its poles are simple, it can be written as 

'jCzlmjCz) = ,co & > 
I 

(2.3) 

where the dj, are given by 

dj,= *~~_,lj(Z)mj(Z)(l -Z,Z). 

(Notice that if z, = 0, the above expression for 1 = n gives the constant term of the integrand: 
lim z ,Jj(z>mj(z> # 0.) Then 

6 = LljWj w, = 
b,b, 

1 -zjz, 1 - Z[Zj ’ 

where bj := vjwj is the weight corresponding to zj in the barycentric formula for f _L [3]. 
Inserted into (2.3), this yields 

- 

lj(z)mj(z) = b, k 
b, 1 

~ 
[=o 1 -Z,Zj 1 -Z,Z ’ 

Recalling (2.21, we see that the optimal weights are given by 

(2.4) 

fij = bj 2 
6 

/ 

1 
pdz, 

I=” 1 -z,zj rl -Z,z 
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and with zs and zn denoting respectively the starting and end points of r, we get the following 
formula for the optimal weights: 

I 

h,k - 
6 

l=a z[(l -z[zj) 

Log 
1 - ZIzs 

1 - ZIZE ’ 
z, + 0, 

fij = ( j=O,...,n. 

ms 

1 - Z,z, 

1 - ZIZE 

Since 1 - Z,z is in the right half-plane VZ~, z ED, we have taken the principal value of the 
logarithm, written with capital L following the usual convention [12, p.1141. For such zI and z, 
we have - $r < arg Log(1 - Z,t) < $T, and therefore Log(1 - Z,z,) - Log(1 - Z,z,) = Log{(l 
- Z,z,)/(l - z[z& 

In view of the degrees of the Zj’s and mj’s and (2.4) with ZI = 0 we have the following 
theorem. 

Theorem 2.1. Let {zj: j = 0,. . . , n) be distinct points in the open u&t disk D. Then the weights of 
the optimal integration formula for Zf := /,:Ef(z) dz, zs, zE ED, are given by (2.5) and the 
optimal formula is 

where 

and 

*= 
n, z, f 0, 

bi = uiwi = 
rI;,& - ZkZJ 

II 
n - 1, z, =o, 

nZ=O,k+j(Zi-Zk) ’ 

(2.7) 

Computing the bj’s requires @(n2> operations (notice that when the zj’s are the Chebyshev 
points of the first kind, a closed formula permits the calculation in @(n> operations [4]); 
computing the ii’s also involves @(n2) operations and, therefore, the total complexity of the 
formula is @(n2). 

Remarks 2.2. (1) Notice that cI := Cjdj,fj =b,Cj{b,/(l - ZIZj)}fj is the coefficient of k,(z) (see 
(1.3)) in the orthogonal projection f L of f onto span{k,(z): I = 0,. . . , n]; it is therefore the 
solution of the system of minimal norm interpolation [15, p.1141 

,go 1 -c;,zj =-b 
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(2) If the uj’s are independent of j, i.e., uj = U, Vj, the j-sum in (2.6) can be replaced by a 
value of the interpolating polynomial. Indeed, in that case 

and, since the polynomial interpolating f between the zj’s reads [13, p.2371 

p,(z) =e(z) t JYC 
j=O z - zjf” 

where 

e(z):=(Z-zO)(z-zl)~~*(z-zZ,), 

(2.6) becomes 

(2.8) 

(2.9) 

(2.10) 
j=O 

(3) The problem of optimally choosing the integration points has been solved for the most 
important special cases. 
- For a radius, e.g. zs = 0, zn = 1 (i.e., If = /,‘f<x> dx) and all zj’s in (0, 1) (thus real), Wilf 
[24] (see also [7]) has given the nonlinear system of 2n + 2 equations 

2 a^,=, 1 1 

I=0 (1 _ZIZj)’ 
- -’ Log - 

= Zj(l -zj) ZJF 1 -zjy 

for the set of zj’s and Sj’s minimizing ]I E 11. 
For given points, each of (2.11a) and (2.11b) is a system 

solved for the corresponding ij’s. 

j=O ,***, n, 

j=O,...,n, 

(2.11a) 

(2.11b) 

of n + 1 linear equations that can be 

- The symmetric case of the diameter, zs = - 1, zE = 1, all zj’s real, has been treated similarly 

by Engels and Eckardt (references in [9, p.1681); this yields a system similar to (2.11) [9, p.1361, 
and for given points a linear system with same matrix as (2.11a). 

Wilf [25, p.1411 gave the inverse of the matrix by means of the cofactor formula; this led him 
to (2.5) in series form for the above cases. However, writing uj as z,“e(l/zj), as Wilf does, is not 
necessarily a good idea for the practical application of the formula: at such values l/zj outside 
D, the evaluation of e is often ill-conditioned and not even defined if zj = 0. 

Later Engels [8] also presented a recurrence method for solving (2.11a) for given real zj’s. 
He also made use of the determinant of the matrix but his method appears to be much more 
complicated than Wilf s solution. 



J.-P. Berrut / Optimal integration 205 

3. An example: equidistant points on concentric circles 

Let the points z. be equally distributed on the circle of radius 0 < Y < 1, i.e., zj = rej2=lN, 
j=o,..., N - 1, z,b = rN. For finding the bj’s, note that wj = l/e’(zj) [13, p.2431. Here 
e(z) = zN - rN and therefore wj = l/(Nz,?-‘) =zj/(NrN). Moreover, 

and uj = m(zj> = 1 - r2N = const. Thus 

(3.1) 

Inserting all this into (2.10) and taking into account that here z, # 0 and thus (by (2.7)) 
f’(m)=O, we get 

j=O -rN 

1 _,-2N N-l 1 

= 

N 
2 KpN-l( i’li Log ; 1;;;; - (3 4 

For the special case zs = 0, (3.2) agrees with [lo, formula (5.2011, up to a minus sign that 
appears to be missing there. 

Remarks 3.1. (1) Instead of the classical Lagrange representation for pN_ 1(z), 

one should in general use the corresponding barycentric formula [13, p.2451, [ll, p.511 

N-i z. 

I 

N-i z. 

PN-dZ) = c - 
j=o z --zjfj E. t_* (3.4) 

Indeed, as z comes very close to one of the zj’s, say zk, the cancellation effects in zN - rN and 
z - zk will be different, rendering (3.3) unstable. 

(2) In view of (3.1), and since here the conjugate of any node point is also a node point, the 
barycentric formula for optimal evaluation of functions in H2 [3] is given by 

N-1 z. 

f’(z)=1 c ;fj 1 -zziz j-0 z -zj 

where zi can be anyone of the zj’s, say zi = 1. 
Like every barycentric formula, (3.4) and (3.5) are extremely stable in the vicinity of the 

interpolation points. Moreover, since all weights zj have the same modulus, these formulae are 
also very stable with respect to large N [1,2] (as long as the problem is well-conditioned, which 
is not the case if one interpolates far outside the circle of radius r). 
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Computing every value of P+~(z) requires B(N) operations, so that computing an integral 
as in (3.2) costs 6’(N2> operations. If several integrals must be evaluated, it is therefore 
preferable from a complexity point of view to compute the ii’s as in (2.51, 

(1 - r2N)2 Ncl 1 

‘j = N2r2N I=o l/zj -2, 
Log 

1 -zlzs 

1 - z,z, ’ 
w9 

and then Cy<O’a^jfj for every integral to be approximated. 

4. Numerical examples 

We have performed two kinds of tests for our formulae. 
First, we have computed the real integral 

for functions f(x) similar to those optimally evaluated in [3], that is, 
(1) The two entire functions cos x (exact integral 2 sin 1) and e-3Xz (exact integral fi 

erf(x>, where erf is the error function computed here with IMSL [26]). 
(2) The function l/(1 + ax2), which belongs to H2 iff 1 a 1 < 1, and whose exact integral is 

i 

- arctan 6, 
i 

if a>O, a#l, 

Lln ~ 
1+& 

&- I I 1-G ’ 
if a <O. 

(3) The functions faPr (x) :=(l +xja(l -xjp logy(l -xl, which belong to HZ iff (Y and 

P > - +; fnpy is denoted by ((Y, 6, 7) in the tables. Here the exact value has been computed 
with the subroutine DQDAWS of IMSL, an efficient method when (Y, p and y are known. 

As node points, we chose here 
(1) Legendre points computed with the IMSL library in double precision; 
(2) Chebyshev points of the first kind, which all lie inside (- 1, 1); 
(3) Stenger’s SINC points [22, p.226 with p = 21, 

xj=tanh jh, h= G, j=-N 7***> N, n = 2N. 

For this h, a rational approximant of Stenger’s which converges exponentially toward 
f(x)/0 -x2) [221 is optimal (in Sard’s sense) [3]; however, considerable numerical evidence in 
the latter work demonstrates that the optimal interpolant is better in practice. 

As weights, we tried the optimal ones of (2.5) for the three sets of points, as well as the 
Gauss-Legendre weights for the Legendre points and the SINC weights aj = h/cosh2jh (see 
[20] with 4 = eh, [23]) for the SINC points. Exponential convergence of the SINC quadrature is 
shown in [20,21]. 
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Table 1 
Errors with the optimal formula and 21 points 

Points Legendre Chebyshev SINC 

Weights Polynomial Optimal Optimal SINC Optimal 
V= 102, w= 10’ V= 107, w= 106 V=W=107 V=W=104 I/= 104, w= 10s 

cos x 0.0 1.8.10-7 8.2.10-s 5.3.1o-5 1.0.10-5 
exp( -3x*} 0.0 3.0.10-3 1.1.10F3 1.4.10p3 1.5.10F3 
(1 -to.5 x2)-’ 0.0 5.3.10-5 2.0.10m5 2.5.10~5 5.7.1OF5 
(l-0.5 x2>-’ 0.0 6.2.10-* 2.1.10-s 2.3.10-4 6.8.10-7 
(l-0.99 XV’ 7.4.10-2 1.5.10-2 7.8.10-3 1.1.10-2 6.0. 1O-6 
(1+ XV’ 0.0 1.2.10-3 4.1.10-4 2.5.10-4 3.3.10-4 
(1+2x2)-’ 2.2.10-12 2.3.10-’ 7.6.10-3 1.8.10P3 1.9.10-3 
(1 +25x2)-’ 2.4.10-4 2.3.10’ 6.4 1.1~10~’ 1.1.10-l 
(3,3,0) 0.0 5.0.10-s 2.1.10-5 4.2.10-4 5.0.10-4 
(i, +, 0) 8.3.10F5 3.6.10p5 1.1.10-5 1.6.10-6 2.0.10-6 
c+, f, 0) 2.5.10-4 1.4.10-4 5.2.10m5 8.2. 1O-6 1.2.10-h 
c:, 0,O) 1.1’ 10-4 6.0. lop5 2.2.10-5 7.1.10-5 4.6.10F7 
c+, +, 1) 3.7.10-4 2.7. 1O-4 1.2.10p4 4.8.10p5 1.4.10-6 
ct, 0, 1) 3.3.10-3 2.3. 1O-3 1.0.10-3 7.3.10-4 3.5.10-5 
c-i, -:,o> 7.2.10-3 5.7.10-3 3.1. 1o-3 1.5.10-3 2.4. 1O-4 
c-i, -+,o, 8.1. 1O-2 7.1.10-2 4.7.10-2 2.2.10-2 8.5.10-3 

c-:,0,0) 7.3.10-l 6.9.10F1 5.6.10-l 3.5.10-l 2.4.10-l 

As noticed in [3], the difficulty with this optimal approximation of bounded functionals lies in 
the extreme difference in the orders of magnitude of the involved quantities. For optimal 
evaluation, the bj’s were the only problem. The difficulty is even accentuated here: in (2.51, the 
extremely different bj’s are multiplied by sums which, containing the bj’s, are themselves very 
different and, moreover, suffer large relative errors due to smearing [13]. As in [3], we have 
largely avoided the problem by computing the bj’s as well as the optimal approximation CLjfj 
with fourfold precision (REAL*16) on our VAX/VMS system. Nevertheless, since parts of the 
computations were done in double precision (unit round-off = lo-?, errors smaller than 
5 * lo- l4 are diplayed as 0.0 in the tables. 

To measure the relative errors that have to be expected, we have recalled I/:= 
max I bj I /min I bj I from [3], and displayed also W := max ) Sj I /min 1 iii I. As V was decisive 
for the instability due to smearing of the barycentric formula for evaluating f I, W is decisive 
for the instability of the optimal integration formula. 

Another way of avoiding the problem seems obvious: compute the weights sj as in (2.2) 
numerically, which must be done only once for all functions to be integrated. For real zj’s, we 
have done it with the IMSL routines DQDAGS and DQDAG, which are respectively imple- 
mentations of the routines QAGS and QAG of QUADPACK [16]. The latter are globally 
adaptive integrators which use a 21-point Gauss-Kronrod rule for estimating the integral over 
each subinterval. The results were disappointing: those integrators require a very large 
computing time to give Zj’s that are no better in practice than those computed with our 
formula. 
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Table 2 
Same errors as in Table 1, but with 101 points 

Points Legendre SINC 

Weights Polynomial SINC Optimal 
I/‘= 103, I/= 1011, I/= w= 

w= 102 w= 10’0 10” 

cos x 0.0 3.9 
exp{ - 3x ‘} 0.0 9.2 
(1 + 0.5 x2)-1 0.0 4.6 
(1 - 0.5 x21-i 0.0 1.4 
(1 - 0.99 X2>~i 8.8 10-9 7.2 
(1 +x2)-’ 0.0 1.1 
(1 +2x2)-’ 0.0 1.2 
(1+ 25x2)-’ 0.0 4.7 
(3, 3, 0) 0.0 2.0 

c:, ;, 0) 7.9 10-7 0.0 

ca, :, 0) 5.2 10-6 3.0 

ca, 0, 0) 2.2 10-6 4.3 

c+, +, 1) 1.6 10-5 3.2 

c+, 0, 1) 1.5 10-4 9.7 

(-$, -+, 0) 7.0 1O-4 1.8 

c-t, -+, 0) 1.7 10-2 5.4 

(- :, 0, 0) 3.4 10-i 1.7 

:;I:: 
lo-lo 
10-9 
10-s 
10-9 
10-7 
10-s 
lOFi2 

1.5 
1.3 
2.3 
0.0 
4.7 
1.5 
1.2 
4.7 
2.6 

0.0 

9.2 

0.0 

9.4 

9.5 

1.6 

1.4 

9.8 

lOF’3 
10-9 
lo-” 

10-13 
10-a 
10-7 
10-s 
10~” 

Table 3 
Errors of integration with formula (3.2) or (3.6) for 
(4.1) 

N Error D 

10 1.7.10-2 
20 1.4.10-2 0.816 
40 5.5 10-s 0.384 
80 2.2 10-s 0.397 

160 8.8 10-4 0.407 
320 3.7 10-4 0.413 
640 1.5 10-4 0.417 

1280 6.4 10-s 0.419 
2560 2.7 10-s 0.419 
5120 1.1 10-s 0.420 

10 240 4.7 10-6 0.420 

lo-‘2 

10-10 

1OF” 

10-s 

10-7 

10-s 

1o-2 

lo-‘4 

lovia 

1OF” 

10-s 

10-s 

10-s 

Now to the numbers: for the functions which do not show singularities at the endpoints, and 
with 21 integration points (see Table 11, Gauss-Legendre integration is clearly superior to the 
optimal formula. The latter suffers much more when a pole comes close to the interval along 
the imaginary axis and f@ H2, but less when it approaches the interval along the real axis. On 
the other hand, the optimal formula is (slightly) better for all functions that are not differen- 
tiable at the endpoints of the interval of integration. The performance of the SINC formula lies 
somewhere in-between. 

Both the optimal and SINC formulae display their full power only for larger numbers of 
points. With n = 100 (101 points, see Table 2) and for fol,p,y with (Y, /3 < 1, the optimal formula 
has at least twice as many correct digits as Legendre’s formula; and note, in addition, that (like 
the SINC formula) it does not require any knowledge of the singularities at the endpoints. For 
the singular functions in H2 we have integrated, it is even better than the SINC formula. The 
latter is itself slightly better for meromorphic functions with poles approaching the interval 
[ - 1, 11 along the imaginary axis (see f = l/(1 + ax2>, a > 01, but much worse when poles come 
close on the real axis (a < 0). 

For 12 = 100 and Chebyshev or Legendre points, W is too big (102” for Legendre points) for a 
practical use of the coefficients (and nothing much can be done, from the computational point 
of view, about this problem). 

In a second series of experiments, we have applied formulae (3.6) and (3.2) to the 
computation of integrals from values at equidistant points on circles of radius r < 1. Although 
the ij’s are of similar sizes (and, indeed, double precision (COMPLEX “16 on VAXes) is 
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sufficient here), the results were somewhat disappointing. The reason lies in the ill-conditioning 
of the continuation processes: to be interesting as a practical alternative to formulae based on 
polynomial interpolation, the formula must be able to integrate up to the boundary where the 
singularities can lie. Using f 1 on the path of integration r corresponds to continuation from 
the circle of radius r onto r, and such a continuation process may be ill-conditioned in the 
exterior of the circle [lo, p.1311. In order to get good results close to the extremities of the 
interval, one must therefore choose Y close enough to 1. Another reason for this is the fact that 
for fixed Y not close to 1, (3.6) and (3.2) are unstable with respect to increasing N: in (3.61, r2N 
becomes very small, even smaller than machine precision, and so does the sum, which gets 
therefore very unprecise due to smearing; in (3.2), l/Z, is far from the circle of radius r on 
which the interpolation points lie, and so pN_i(l/ZI) is an even more distant continuation than 
before, which makes the formula unstable. 

This is not to say that (3.6) and (3.2) are always inadequate formulae: for f= cos X, Y = 0.8 
and IZ = 51, l!,f(x> dx is approximated with an error of lo-*. This, however, is not of much 
interest, since integrals of such entire functions are better computed by integrating pN_ ,(z> (as 
in Gauss-Legendre integration). For functions like faar, (Y < 1, p < 1, a direct application of 
the formulae with tS and zn on aD never resulted in a fast converging approximation. We 
have, however, obtained stable results when choosing r such that the unstable denominator of 
the factor of Sj in (3.6) is 1, i.e., r = N- ‘IN For this r, there does not seem to be a significant . 

difference between (3.2) and (3.6). Table 3 displays the results of the approximation of 

ll2.5 ~(1 -z*)“~ dz = 25’4, 
i 

(4.1) 

for different values of N, as well as the quotient 

D:= @N-‘fI 

Id N/2 - If 1 ’ 

The latter indicates linear convergence. The efficiency of the method can therefore certainly be 
improved by applying a convergence acceleration algorithm such as Aitken’s extrapolation to 
the sequence @N], 
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