
Linear Algebra and its Applications 431 (2009) 903–925

Contents lists available at ScienceDirect

Linear Algebra and its Applications

j ourna l homepage: www.e lsev ie r .com/ loca te / laa

Tridiagonal pairs and the q-tetrahedron algebra

Darren Funk-Neubauer ∗

Department of Mathematics and Physics, Colorado State University – Pueblo, 2200 Bonforte Boulevard, Pueblo, CO 81001, USA

A R T I C L E I N F O A B S T R A C T

Article history:

Received 9 June 2008

Accepted 26 March 2009

Available online 8 May 2009

Submitted by R.A. Brualdi

AMS classification:

Primary: 17B37

Secondary: 15A21, 16W35, 17B65

Keywords:

Tridiagonal pair

Leonard pair

Tetrahedron algebra

q-Tetrahedron algebra

Quantum group

Quantum affine algebra

The q-tetrahedron algebra �q was recently introduced and has

been studied in connection with tridiagonal pairs. In this paper

we further develop this connection. Let K denote an algebraically

closed field and let q denote a nonzero scalar in K that is not a root

of unity. Let V denote a vector space over K with finite positive

dimension and let A, A∗ denote a tridiagonal pair on V . Let {θi}di=0,

(resp. {θ∗
i }di=0) denote a standard ordering of the eigenvalues of

A (resp. A∗). Ito and Terwilliger have shown that when θi = q2i−d

and θ∗
i = qd−2i(0� i � d) there exists an irreducible �q-module

structure on V such that the �q generators x01, x23 act as A, A∗ re-

spectively. In this paperwe examine the case inwhich there exists a

nonzero scalar c inK such that θi = q2i−d and θ∗
i = q2i−d + cqd−2i

for 0� i � d. In this case we associate to A, A∗ a polynomial P in one

variable and prove the following theorem as our main result.

Theorem. The following are equivalent:

(i) There exists a �q-module structure on V such that x01 acts as

A and x30 + cx23 acts as A∗, where x01, x30, x23 are standard

generators for �q.

(ii) P(q2d−2(q − q−1)−2) /= 0.

Suppose (i) and (ii) hold. Then the �q-module structure on V is

unique and irreducible.
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1. Tridiagonal pairs

We begin by recalling the notion of a tridiagonal pair [16]. Let K denote a field and let V denote a

vector space over K with finite positive dimension. Let A : V → V denote a linear transformation and

letW denote a subspace of V . We sayW is an eigenspace of AwheneverW /= 0 and there exists θ ∈ K
such that

W = {v ∈ V |Av = θv}.
In this case, we call θ an eigenvalue of A. We say A is diagonalizable whenever V is spanned by the

eigenspaces of A.

Definition 1.1 [16, Definition 1.1]. Let V denote a vector space overKwith finite positive dimension. By

a tridiagonal pair on V , wemean an ordered pair of linear transformations A : V → V and A∗ : V → V

that satisfy the following four conditions:

(i) Each of A, A∗ is diagonalizable.

(ii) There exists an ordering {Vi}di=0 of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0� i � d), (1)

where V−1 = 0, Vd+1 = 0.

(iii) There exists an ordering {V∗
i }δi=0 of the eigenspaces of A∗ such that

AV∗
i ⊆ V∗

i−1 + V∗
i + V∗

i+1 (0� i � δ), (2)

where V∗−1 = 0, V∗
δ+1 = 0.

(iv) There does not exist a subspaceW of V such that AW ⊆ W , A∗W ⊆ W ,W /= 0,W /= V .

Note 1.2. According to a common notational convention A∗ denotes the conjugate-transpose of A. We

are not using this convention. For a tridiagonal pair A, A∗ the linear transformations A and A∗ are

arbitrary subject to (i)–(iv) above.

Tridiagonal pairs originally arose in algebraic combinatorics through the study of a combinatorial

object called a P- and Q-polynomial association scheme [16]. Since then they have appeared in many

other areas ofmathematics. For instance, examples of tridiagonal pairs appear in representation theory

[2,6,8,12,21,23], the study of orthogonal polynomials and special functions [39,43,47], the theory of

partially ordered sets [38,42], and statistical mechanics [4,15,40]. The tridiagonal pairs for which the

Vi, V
∗
i all have dimension 1 are called Leonard pairs. The Leonard pairs are classified and correspond to

a family of orthogonal polynomials consisting of the q-Racah polynomials and related polynomials in

the Askey scheme [39,43]. Currently there is no classification of tridiagonal pairs; this paper is largely

motivated by the search for this classification. For further information on tridiagonal pairs and Leonard

pairs see [1,3,5,9,10,13,18,22,24–37,41, 44–46,48–50].

We now recall a few basic facts about tridiagonal pairs. Let A, A∗ denote a tridiagonal pair on V and

let d, δ be as in Definition 1.1(ii) and (iii). By [16, Lemma 4.5]we have d = δ; we call this common value

the diameter of A, A∗. An ordering of the eigenspaces of A (resp. A∗) will be called standard whenever

it satisfies (1) (resp. (2)). We comment on the uniqueness of the standard ordering. Let {Vi}di=0 denote

a standard ordering of the eigenspaces of A. Then the ordering {Vd−i}di=0 is standard and no other

ordering is standard. A similar result holds for the eigenspaces of A∗. An ordering of the eigenvalues of

A (resp. A∗) will be called standardwhenever the corresponding ordering of the eigenspaces of A (resp.

A∗) is standard. Let {θi}di=0 (resp. {θ∗
i }di=0) denote a standard ordering of the eigenvalues of A (resp.

A∗). The θi, θ
∗
i both satisfy a three term recurrence relation that has been solved in closed form [16,

Theorem 11.1, Theorem 11.2]. The following two special cases will be of interest to us. For 0 /= q ∈ K
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we call A, A∗ q-geometricwhenever θi = q2i−d and θ∗
i = qd−2i for 0� i � d. For a study of this case see

[2,3,21,23]. For 0 /= q ∈ KwecallA, A∗ q-mixedwhenever there exists 0 /= c ∈ K such that θi = q2i−d

and θ∗
i = q2i−d + cqd−2i for 0� i � d. The main result of this paper concerns the q-mixed tridiagonal

pairs. These two cases are of interest because of their connection to the q-tetrahedron algebra �q. We

discuss this connection in the next section.

2. The q-tetrahedron algebra

The q-tetrahedron algebra �q was introduced in [20] as part of the continuing investigation of

tridiagonal pairs. It is closely related to a number of well known algebras including the quantum

group Uq(sl2) [20, Proposition 7.4], the Uq(sl2) loop algebra [20, Proposition 8.3], and positive part

of Uq(ŝl2) [20, Proposition 9.4]. The finite dimensional irreducible �q-modules are described in [20].

For further information on �q see [19]. We note that �q is a q-analogue of the tetrahedron algebra �
[7,11,14,15,17].

We now fix some notation and then recall the definition of �q.

Throughout the rest of this paperKwill denote an algebraically closed field.Wefix a nonzero scalar

q ∈ K that is not a root of 1. For an integer n� 0 we define

[n] = qn − q−n

q − q−1
. (3)

We let Z4 = Z/4Z denote the cyclic group of order 4.

Definition 2.1 [20, Definition 6.1]. Let �q denote the unital associative K-algebra that has generators

{xij | i, j ∈ Z4, j − i = 1 or j − i = 2}
and the following relations:

(i) For i, j ∈ Z4 such that j − i = 2,

xijxji = 1.

(ii) For h, i, j ∈ Z4 such that the pair (i − h, j − i) is one of (1, 1), (1, 2), (2, 1),

qxijxhi − q−1xhixij

q − q−1
= 1. (4)

(iii) For h, i, j, k ∈ Z4 such that i − h = j − i = k − j = 1,

x3hixjk − [3]x2hixjkxhi + [3]xhixjkx2hi − xjkx
3
hi = 0. (5)

We call �q the q-tetrahedron algebra. We refer to the xij as the standard generators for �q.

Remark 2.2. Eq. (5) is called the cubic q-Serre relation.

We now recall a few basic facts about �q-modules. Let V denote a finite dimensional irreducible

�q-module. By [20, Theorem12.3] each generator xij of�q is diagonalizable onV .Moreover, there exist

an integer d � 0 and a scalar ε ∈ {1,−1} such that for each generator xij the set of distinct eigenvalues

of xij on V is {εq2n−d|0� n� d}. We call ε the type of V .

We now discuss the connection between q-geometric tridiagonal pairs and finite dimensional

irreducible �q-modules. Let V denote a vector space over K with finite positive dimension. Let A, A∗
denote a q-geometric tridiagonal pair on V . Then there exists an irreducible �q-module structure on

V of type 1 such that A acts as x01 and A∗ acts as x23. Conversely, let V denote a finite dimensional

irreducible �q-module of type 1. Then the generators x01, x23 act on V as a q-geometric tridiagonal

pair [47, Theorem 34.14].
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Inspired by the above result we consider the connection between q-mixed tridiagonal pairs and

finite dimensional irreducible �q-modules. In the next section we give a detailed description of the

situation we wish to consider.

3. Assumptions and motivation

Throughout the rest of the paper we will be concerned with the following situation.

Assumption 3.1. LetV denote a vector space overKwith finite positive dimension and letA, A∗ denote

a tridiagonal pair on V . Let {Vi}di=0 (resp. {V∗
i }di=0) denote a standard ordering of the eigenspaces of

A (resp. A∗). For 0� i � d, let θi (resp. θ
∗
i ) denote the eigenvalue of A (resp. A∗) associated with Vi

(resp. V∗
i ). We assume there exists a nonzero c ∈ K such that θi = q2i−d and θ∗

i = q2i−d + cqd−2i for

0� i � d.

To motivate our main result we make some comments.

Lemma 3.2 [16, Theorems 10.1, 11.1]. With reference to Assumption 3.1 we have

(i) A3A∗ − [3]A2A∗A + [3]AA∗A2 − A∗A3 = 0,

(ii) A∗3A − [3]A∗2AA∗ + [3]A∗AA∗2 − AA∗3 + c(q2 − q−2)2(A∗A − AA∗) = 0.

Using (4) and (5) it can be shown that for 0 /= c ∈ K the elements x01 and x30 + cx23 of �q satisfy

the relations in Lemma 3.2. Given this, it is natural to ask the following question. With reference to

Assumption 3.1 when does there exist an irreducible �q-module structure on V of type 1 such that A

acts as x01 and A∗ acts as x30 + cx23? In this paperwe answer this question; ourmain result is Theorem

5.4. In the next section we establish some notation needed to state our main result.

4. A split decomposition and its raising/lowering maps

Wenow recall the notion of a split decomposition of a tridiagonal pair and its corresponding raising

and lowering maps.

Definition 4.1. Let V denote a vector space over K with finite positive dimension. By a decomposition

of V we mean a sequence {Ui}di=0 consisting of nonzero subspaces of V such that V = ∑d
i=0 Ui (direct

sum). For notational convenience we set U−1 := 0,Ud+1 := 0.

Referring to Assumption 3.1 the sequences {Vi}di=0 and {V∗
i }di=0 are both decompositions of V . We

now mention another decomposition of interest.

Lemma 4.2 [16, Theorem 4.6].With reference to Assumption 3.1, for 0� i � d define

Ui = (V∗
0 + · · · + V∗

i ) ∩ (Vi + · · · + Vd).

Then {Ui}di=0 is a decomposition of V . Moreover, for 0� i � d

(A∗ − θ∗
i I)Ui ⊆ Ui−1, (A − θiI)Ui ⊆ Ui+1, (6)

U0 + · · · + Ui = V∗
0 + · · · + V∗

i , Ui + · · · + Ud = Vi + · · · + Vd. (7)

We call {Ui}di=0 the split decomposition of V corresponding to the given orderings {Vi}di=0, {V∗
i }di=0.

Definition 4.3 [16, Definition 5.2]. With reference to Assumption 3.1 and Lemma 4.2 we define the

following. For 0� i � d we define a linear transformation Fi : V → V by
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(Fi − I)Ui = 0,

FiUj = 0 if j /= i, (0� j � d).

In other words, Fi is the projection map from V onto Ui. We call Fi the ith projection map corresponding

to {Ui}di=0.

Definition 4.4 [16, Definition 6.1]. With reference to Assumption 3.1 and Definition 4.3 we define

R = A −
d∑

h=0

θhFh, L = A∗ −
d∑

h=0

θ∗
h Fh. (8)

Combining (6) and (8) we have RUi ⊆ Ui+1 and LUi ⊆ Ui−1 for 0� i � d. We call R (resp. L) the raising

(resp. lowering) map corresponding to {Ui}di=0.

5. The main theorem

In this section we state our main result. We begin with a few comments.

Lemma 5.1 [27, Theorem 1.3]. With reference to Assumption 3.1 and Lemma 4.2 we have dim(U0) = 1.

Definition 5.2. With reference to Definition 4.4 and Lemma 5.1 we find that for 0� i � d U0 is

contained in an eigenspace for LiRi; let ζi denote the corresponding eigenvalue.

With reference to (3) for an integer n� 0 we define

[n]! = [n][n − 1] · · · [1]. (9)

We interpret [0]! = 1.

Definition 5.3. With reference to Assumption 3.1 and Definition 5.2we define a polynomial P ∈ K[λ]
(λ indeterminate) by

P =
d∑

i=0

qi(1−i)ζiλ
i

[i]!2 .

We now state our main result.

Theorem 5.4. With reference to Assumption 3.1 the following are equivalent:
(i) There exists a �q-module structure on V such that x01 acts as A and x30 + cx23 acts as A∗.
(ii) P(q2d−2(q − q−1)−2) /= 0 where P is from Definition 5.3.

Suppose (i) and (ii) hold. Then the �q-module structure on V is unique, irreducible, and has type 1.

6. An outline of the proof of Theorem 5.4

Our proof of Theorem 5.4 will consume the remainder of the paper from Section 7 to Section 18.

Here we sketch an overview of the argument.

We adopt Assumption 3.1. The main idea used in proving Theorem 5.4 is the following. We modify

the linear transformation A∗ : V → V to produce a new linear transformation Ã∗ : V → V and we

show that A, Ã∗ is a q-geometric tridiagonal pair on V if and only if P(q2d−2(q − q−1)−2) /= 0. Then
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we apply [23, Theorem 2.7, 21, Theorem 10.4] to A, Ã∗ to produce the �q-module structure on V as in

Theorem 5.4. The plan for the paper is as follows. In Sections 7 and 8 we present some lemmas and

definitions which will be used as tools throughout the remainder of the paper. In Section 9 we define

the linear transformation Ã∗ : V → V . We show that Ã∗ is diagonalizable on V and the set of distinct

eigenvalues of Ã∗ on V is {qd−2i|0� i � d}. In Section 10we show that A and Ã∗ satisfy Definition 1.1(ii)

and (iii). Sections 11–17 are devoted to showing that A and Ã∗ satisfy Definition 1.1(iv) if and only if

P(q2d−2(q − q−1)−2) /= 0. We note that the arguments given in Sections 11–17 are a modification

of the arguments from [23, Sections 7–12]. In Section 18 we show how to use [23, Theorem 2.7, 21,

Theorem 10.4] applied to the q-geometric tridiagonal pair A, Ã∗ to produce the �q-module structure

on V as in Theorem 5.4.

7. Some more raising/lowering maps

We now present another split decomposition for the tridiagonal pair A, A∗ and its corresponding

raising and lowering maps.

Definition 7.1. With reference to Assumption 3.1 and Lemma 4.2 let {Wi}di=0 denote the split decom-

position of V corresponding to the orderings {Vd−i}di=0, {V∗
i }di=0. With reference to Definition 4.3 for

0� i � d, let Gi denote the ith projection map corresponding to {Wi}di=0. With reference to Definition

4.4 let r (resp. l) denote the raising (resp. lowering) map corresponding to {Wi}di=0.

We make the following three remarks in order to emphasize the similarities and differences be-

tween the two split decompositions {Ui}di=0 and {Wi}di=0.

Remark 7.2. With reference to Definition 7.1 we emphasize the following. For 0� i � d we have

Wi = (V∗
0 + · · · + V∗

i ) ∩ (V0 + · · · + Vd−i).

Moreover, for 0� i � d

(A∗ − θ∗
i I)Wi ⊆ Wi−1, (A − θd−iI)Wi ⊆ Wi+1, (10)

W0 + · · · + Wi = V∗
0 + · · · + V∗

i , Wi + · · · + Wd = V0 + · · · + Vd−i. (11)

Remark 7.3. With reference to Definition 7.1 we emphasize that for 0� i � d

(Gi − I)Wi = 0,

GiWj = 0 if j /= i, (0� j � d).

Remark 7.4. With reference to Definition 7.1 we emphasize that

r = A −
d∑

h=0

θd−hGh, l = A∗ −
d∑

h=0

θ∗
h Gh. (12)

Moreover, for 0� i � d, rWi ⊆ Wi+1 and lWi ⊆ Wi−1.

8. Some linear algebra

In this section we state some linear algebraic results that will be useful throughout the paper.

We use the following notation. Let V denote a finite dimensional vector space over K and let

X : V → V denote a linear transformation. For θ ∈ K we define

VX(θ) = {v ∈ V |Xv = θv}.
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Observe that θ is an eigenvalue ofX if and only ifVX(θ) /= 0, and in this caseVX(θ) is the corresponding
eigenspace.

Lemma 8.1 [20, Lemma 11.2]. Let V denote a vector space over K with finite positive dimension. Let
X : V → V and Y : V → V denote linear transformations. Then for all nonzero θ ∈ K the following are

equivalent:
(i) The expression qXY − q−1YX − (q − q−1)I vanishes on VX(θ).
(ii) (Y − θ−1I)VX(θ) ⊆ VX(q

−2θ).

Lemma 8.2 [20, Lemma 11.3]. Let V denote a vector space over K with finite positive dimension. Let
X : V → V and Y : V → V denote linear transformations. Then for all nonzero θ ∈ K the following are

equivalent:
(i) The expression qXY − q−1YX − (q − q−1)I vanishes on VY (θ).
(ii) (X − θ−1I)VY (θ) ⊆ VY (q

2θ).

Lemma 8.3. Let V denote a vector space over K with finite positive dimension. Let X : V → V and Y :
V → V denote linear transformations. Fix a nonzero c ∈ K. Then for all nonzero θ ∈ K the following are

equivalent:
(i) The expression qXY − q−1YX − (q − q−1)(X2 + cI) vanishes on VX(θ).
(ii) (Y − θ I − cθ−1I)VX(θ) ⊆ VX(q

−2θ).

Proof. For v ∈ VX(θ) we have

(qXY − q−1YX − (q − q−1)(X2 + cI))v = q(X − q−2θ I)(Y − θ I − cθ−1I)v

and the result follows. �

Lemma 8.4 [20, Lemma 11.4]. Let V denote a vector space over K with finite positive dimension. Let
X : V → V and Y : V → V denote linear transformations such that

qXY − q−1YX

q − q−1
= I.

Then for all nonzero θ ∈ K,

∞∑
n=0

VX(q
−2nθ) =

∞∑
n=0

VY

(
q2nθ−1

)
. (13)

9. The linear transformations B and ˜A∗

Definition 9.1. With reference to Assumption 3.1 and Definition 7.1 let B : V → V denote the linear

transformation such that for 0� i � d,Wi is an eigenspace of B with eigenvalue q2i−d.

Lemma 9.2. With reference to Assumption 3.1 and Definition 9.1 we have

qAB − q−1BA

q − q−1
= I, (14)

qBA∗ − q−1A∗B
q − q−1

= B2 + cI. (15)



910 D. Funk-Neubauer / Linear Algebra and its Applications 431 (2009) 903–925

Proof. Recall that {Wi}di=0 is a decomposition of V . By (10) (A − qd−2iI)Wi ⊆ Wi+1 for 0� i � d. Using

this and Lemma 8.2 we obtain (14). By (10) (A∗ − q2i−d − cqd−2iI)Wi ⊆ Wi−1 for 0� i � d. Using this

and Lemma 8.3 we obtain (15). �

Definition 9.3. With reference to Assumption 3.1 and Definition 9.1 let Ã∗ : V → V denote the fol-

lowing linear transformation:

Ã∗ = c−1(A∗ − B).

Lemma 9.4. With reference to Definitions 7.1 and 9.3 we have

(̃A∗ − qd−2iI)Wi ⊆ Wi−1 (0� i � d).

Proof. Let i be given. Recall thatWi is an eigenspace for B with eigenvalue q2i−d. We have

(̃A∗ − qd−2iI)Wi = c−1(A∗ − q2i−dI − cqd−2iI)Wi (by Definition 9.3)

⊆ Wi−1 (by (10)). �

Lemma 9.5. With reference to Definitions 9.1 and 9.3 we have

qBÃ∗ − q−1Ã∗B
q − q−1

= I. (16)

Proof. Immediate from Lemmas 8.1 and 9.4. �

Lemma 9.6. With reference to Definition 9.3 the following holds. Ã∗ is diagonalizable with eigenvalues

{qd−2i}di=0. Moreover, for 0� i � d, the dimension of the eigenspace of Ã∗ associated with qd−2i is equal to

the dimension of Wi.

Proof. We start by displaying the eigenvalues of Ã∗. Notice that the scalars qd−2i(0� i � d) are distinct
since q is not a root of unity. Using Lemma 9.4 we see that, with respect to an appropriate basis

for V , Ã∗ is represented by a upper triangular matrix that has diagonal entries qd, qd−2, . . . , q−d, with

qd−2i appearing dim(Wi) times for 0� i � d. Hence for 0� i � d qd−2i is a root of the characteristic poly-

nomial of Ã∗ with multiplicity dim(Wi). It remains to show that Ã∗ is diagonalizable. To do this we

show that theminimal polynomial of Ã∗ has distinct roots. Recall that {Wi}di=0 is a decomposition of V .

Using Lemma 9.4 we find that
∏d

i=0(̃A
∗ − qd−2iI)V = 0. By this and since qd−2i(0� i � d) are distinct

we see that the minimal polynomial of Ã∗ has distinct roots. We conclude that Ã∗ is diagonalizable

and the result follows. �

Definition 9.7. With reference to Definition 9.3 and Lemma 9.6, for 0� i � d we let Ṽ∗
i denote the

eigenspace for Ã∗ with eigenvalue qd−2i. For notational convenience we set Ṽ∗−1 := 0, Ṽ∗
d+1 := 0. We

observe that {Ṽ∗
i }di=0 is a decomposition of V .

10. The linear transformations A, ˜A∗ satisfy the cubic q-Serre relations

Lemma 10.1. With reference to Assumption 3.1 and Definition 9.3 we have

(i) A3Ã∗ − [3]A2Ã∗A + [3]AÃ∗A2 − Ã∗A3 = 0,

(ii) Ã∗3A − [3]̃A∗2AÃ∗ + [3]̃A∗AÃ∗2 − AÃ∗3 = 0.
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Proof. By Definition 9.3 we have A∗ = cÃ∗ + B. Substitute this into Lemma 3.2(i) and (ii) and simplify

the result using (14) and (16). �

Lemma 10.2. With reference to Assumption 3.1, Definition 9.3, and Definition 9.7 we have

(i) Ã∗Vi ⊆ Vi−1 + Vi + Vi+1, 0� i � d,

(ii) AṼ∗
i ⊆ Ṽ∗

i−1 + Ṽ∗
i + Ṽ∗

i+1, 0� i � d.

Proof. Immediate from Lemma 10.1 and [20, Lemma 11.1]. �

Remark 10.3. Recall that in order to prove Theorem 5.4 we need to show that A, Ã∗ is a q-geometric

tridiagonal pair on V if and only if P(q2d−2(q − q−1)−2) /= 0 (see Theorem 17.2). Combining Assump-

tion 3.1, Lemma 9.6, and Lemma 10.2 we have that A, Ã∗ satisfy Definition 1.1(i)–(iii). Sections 11–17

are devoted to showing that A, Ã∗ satisfy Definition 1.1(iv) if and only if P(q2d−2(q − q−1)−2) /= 0 (see

Theorem 17.1).

11. The linear transformation K

Definition 11.1. With reference to Assumption 3.1 and Lemma 4.2 let K : V → V denote the linear

transformation such that for 0� i � d,Ui is an eigenspace of K with eigenvalue q2i−d.

Remark 11.2. Combining (6) and Definition 11.1 we have

(A − K)Ui ⊆ Ui+1 (0� i � d), (17)

(A∗ − K − cK−1)Ui ⊆ Ui−1 (0� i � d). (18)

The goal for the remainder of this section is to prove a number of relations between the linear

transformations A, A∗, B, K , K−1 which will be used in Section 13.

Lemma 11.3. With reference to Assumption 3.1 and Definition 11.1 we have

qK−1A − q−1AK−1

q − q−1
= I, (19)

qKA∗ − q−1A∗K
q − q−1

= K2 + cI. (20)

Proof. Recall that {Ui}di=0 is a decomposition of V . Combining Definition 11.1, (17), and Lemma 8.1 we

obtain (19). Combining Definition 11.1, (18), and Lemma 8.3 we obtain (20). �

Lemma 11.4. With reference to Lemma 4.2, Definitions 9.1, and 11.1 we have

(B − K)Ui ⊆ Ui−1 (0� i � d), (21)

(A∗ − B − cK−1)Ui ⊆ Ui−1 (0� i � d). (22)

Proof. First we show (21). Using Lemma 8.1 and (14) we have

(B − qd−2iI)Vi ⊆ Vi−1 (0� i � d). (23)
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We have

(B − K)Ui = (B − q2i−dI)Ui (by Definition 11.1)

⊆ (B − q2i−dI)(U0 + · · · + Ui)

= (B − q2i−dI)(W0 + · · · + Wi) (by (7), (11))

⊆ W0 + · · · + Wi−1 (by Definition 9.1)

= U0 + · · · + Ui−1 (by (7), (11))

and also

(B − K)Ui = (B − q2i−dI)Ui (by Definition 11.1)

⊆ (B − q2i−dI)(Ui + · · · + Ud)

= (B − q2i−dI)(Vi + · · · + Vd) (by (7))

⊆ Vi−1 + · · · + Vd (by (23))

= Ui−1 + · · · + Ud (by (7)).

Using this and since {Ui}di=0 is a decomposition of V we have (21). Combining (18) and (21) we obtain

(22). �

Lemma 11.5. With reference to Definitions 9.1 and 11.1 we have

qBK−1 − q−1K−1B

q − q−1
= I. (24)

Proof. Recall that {Ui}di=0 is a decomposition of V . Combining Lemma 8.2 and (21) we obtain (24). �

Lemma 11.6. With reference to Assumption 3.1, Definitions 9.1 and 11.1 for an integer j � 1 we have

qj(B − K)j(A∗ − K − cK−1) − q−j(A∗ − K − cK−1)(B − K)j

qj − q−j
= (B − K)j+1,

(25)

qj(A − K)j(B − K) − q−j(B − K)(A − K)j

qj − q−j
= −(q2−2jK2 − I)(A − K)j−1. (26)

Proof. First we show (25) by induction on j. Multiplying out the left hand side of (25) with j = 1 and

simplifying the result using (15), (20), and (24) we obtain the right hand side of (25) with j = 1. To

prove (25) for j � 2 note that (25) is equivalent to

(B − K)j(A∗ − K − cK−1) = q−2j(A∗ − K − cK−1)(B − K)j + q−j(qj − q−j)(B − K)j+1.

This is shown by a routine induction argument using the j = 1 case. We now show (26) by induction

on j. Multiplying out the left hand side of (26) with j = 1 and simplifying the result using (14), (19),

and (24) we obtain the right hand side of (26) with j = 1. Note that (19) is equivalent to

(A − K)K = q−2K(A − K). (27)

To prove (26) for j � 2 note that (26) is equivalent to

(B − K)(A − K)j = q2j(A − K)j(B − K)

+ q2−j(qj − q−j)(K2 − q2j−2I)(A − K)j−1.

This is shown by a routine induction argument using the j = 1 case and (27). �
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12. The projections Ei , ˜E
∗
i

Definition 12.1. With reference to Assumption 3.1 and Definition 9.7 we define the following linear

transformations.

(i) For 0� i � d, we let Ei denote the linear transformation on V satisfying both

(Ei − I)Vi = 0,

EiVj = 0 if j /= i (0� j � d).

(ii) For 0� i � d, we let Ẽ∗
i denote the linear transformation on V satisfying both

(̃E∗
i − I)Ṽ∗

i = 0,

Ẽ∗
i Ṽ

∗
j = 0 if j /= i, (0� j � d).

In other words, Ei (resp. Ẽ
∗
i ) is the projection map from V onto Vi (resp. Ṽ

∗
i ).

Lemma 12.2. With reference to Assumption 3.1, Definitions 9.3, and 12.1, for 0� i � d we have

Ei = ∏
0� j � d

j /=i

A − q2j−dI

q2i−d − q2j−d
, (28)

Ẽ∗
i = ∏

0� j � d
j /=i

Ã∗ − qd−2jI

qd−2i − qd−2j
. (29)

Proof. Concerning (28), let E′
i denote the expression on the right in that line. Using Assumption 3.1 we

find (E′
i − I)Vi = 0 and E′

i Vj = 0 (0� j � d, j /= i). By this and Definition 12.1(i) we find Ei = E′
i . We

have now proved (28). The proof of (29) is similar. �
Lemma 12.3. With reference to Assumption 3.1, Remark 7.3, and Definition 12.1(i) the following holds for

0� i � d: The linear transformations

Wd−i → Vi Vi → Wd−i

w → Eiw v → Gd−iv

are bijections, and moreover, they are inverses.

Proof. It suffices to show Gd−iEi − I vanishes onWd−i and EiGd−i − I vanishes on Vi. We will use the

following notation. Recall by (11) that for 0� j � d,Wd−j + · · · + Wd = V0 + · · · + Vj; let Zj denote

this common sum.We set Z−1 = 0. By the construction Zi = Wd−i + Zi−1 (direct sum) and Zi = Vi +
Zi−1 (direct sum). Also (I − Gd−i)Zi = Zi−1 and (I − Ei)Zi = Zi−1. We now show Gd−iEi − I vanishes

onWd−i. Pickw ∈ Wd−i. UsingGd−iEi − I = (Gd−i − I)Ei + Ei − I and our preliminary commentswe

routinely find (Gd−iEi − I)w ∈ Zi−1. But (Gd−iEi − I)w ∈ Wd−i by construction and Wd−i ∩ Zi−1 =
0 so (Gd−iEi − I)w = 0. We now show EiGd−i − I vanishes on Vi. Pick v ∈ Vi. Using EiGd−i − I =
(Ei − I)Gd−i + Gd−i − I and our preliminary comments we routinely find (EiGd−i − I)v ∈ Zi−1. But

(EiGd−i − I)v ∈ Vi by construction and Vi ∩ Zi−1 = 0 so (EiGd−i − I)v = 0. We have now shown

Gd−iEi − I vanishes onWd−i and EiGd−i − I vanishes on Vi. Consequently the givenmaps are inverses.

Each of these maps has an inverse and is therefore a bijection. �

13. How ˜E∗
0 , Ed , P are related

The goal of this section is to prove the following theoremwhichwill be used in the proof of Theorem

17.1.
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Theorem 13.1. With reference to Assumption 3.1, Lemma 4.2,Definitions 5.3 and 12.1, for u ∈ U0 we have

Ẽ∗
0Edu = c−dq2d(1−d)P(q2d−2(q − q−1)−2)u. (30)

Before we prove Theorem 13.1 we develop some notation and prove some preliminary lemmas.

With reference to (9) for integers n,m with n� 0 and 0�m� nwe define[
n

m

]
= [n]!

[m]![n − m]! . (31)

Lemma 13.2. For integers n,m with n� 1 and 0�m� n − 1 we have[
n − 1

m

]
+ qn

[
n − 1

m − 1

]
= qm

[
n

m

]
, (32)[

n − 1

m

]
+ q−n

[
n − 1

m − 1

]
= q−m

[
n

m

]
. (33)

Proof. Immediate from (3), (9) and (31). �

The following two lemmas provide key formulas to be used in the proof of Theorem 13.1.

Lemma 13.3. With reference to Assumption 3.1, Definitions 9.1 and 11.1 for an integer i � 0 we have

(A∗ − B − cK−1)i =
i∑

j=0

(−1)jqj−ji

[
i

j

]
(A∗ − K − cK−1)i−j(B − K)j. (34)

Proof. We prove (34) by induction on i. For i = 0 both sides of (34) equal I. Now let i � 1. Abbreviate

Δ = A∗ − K − cK−1 and Γ = B − K . We have

(A∗ − B − cK−1)i = (A∗ − B − cK−1)i−1(Δ − Γ )

=
i−1∑
j=0

(−1)jq2j−ji

[
i − 1

j

]
Δi−j−1(Γ jΔ − Γ j+1) (by induction)

=
i−1∑
j=0

(−1)jq−ji

[
i − 1

j

]
Δi−j−1(ΔΓ j − Γ j+1) (by (25))

=
i−1∑
j=0

(−1)jq−ji

[
i − 1

j

]
Δi−jΓ j

+
i∑

j=1

(−1)jqi−ji

[
i − 1

j − 1

]
Δi−jΓ j

=
i∑

j=0

(−1)jqj−ji

[
i

j

]
Δi−jΓ j (by (32)). �

Lemma 13.4. Fix an integer i � 1. With reference to Definition 11.1, for integers μ, ν � 0, define a polyno-

mial fμ,ν ∈ K[K2] by fμ,ν = ∏μ−1
s=0 (K2 − q2i−2s−2ν I). With reference to Assumption 3.1 and Definition

9.1 for 1� j � i we have
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(B − K)j(A − K)i =
j∑

h=0

qMh,i,jNh,i

[
j

h

]
fh,j(A − K)i−h(B − K)j−h (35)

where Mh,i,j = (h/2)(3h − 1) + hj − 3hi + 2ij and Nh,i =
[
i
h

]
[h]!(q − q−1)h.

Proof. Before we prove (35) we have a comment. Observe that (24) is equivalent to

(B − K)K = q2K(B − K). (36)

To prove (35) we let i be given and use induction on j. For j = 1 (35) is equivalent to (26). Now let j � 2.

Abbreviate Δ = A − K and Γ = B − K . We have

Γ jΔi = Γ Γ j−1Δi

= Γ

j−1∑
h=0

qMh,i,j−1Nh,i

[
j − 1

h

]
fh,j−1Δ

i−hΓ j−h−1 (by induction)

=
j−1∑
h=0

qMh,i,j q−h−2iNh,i

[
j − 1

h

]
q4hfh,j+1Γ Δi−hΓ j−h−1 (by (36))

=
j−1∑
h=0

qMh,i,j q3h−2iNh,i

[
j − 1

h

]
fh,j+1q

2i−2hΔi−hΓ j−h (by (26))

+
j−1∑
h=0

qMh+1,i,j qh+1−jNh+1,i

[
j − 1

h

]
fh,j+1 (K2 − q2i−2h−2I) Δi−h−1 Γ j−h−1

=
j−1∑
h=0

qMh,i,j qh Nh,i

[
j − 1

h

]
fh−1,j+1 (K2 − q2i−2j−2hI) Δi−h Γ j−h

+
j∑

h=1

qMh,i,j qh−j Nh,i

[
j − 1

h − 1

]
fh−1,j+1 (K2 − q2i−2hI) Δi−h Γ j−h

=
j∑

h=0

qMh,i,j Nh,i

[
j

h

]
fh−1,j+1 (K2 − q2i−2jI) Δi−h Γ j−h (by (32), (33))

=
j∑

h=0

qMh,i,j Nh,i

[
j

h

]
fh,j Δ

i−h Γ j−h. �

We are now ready to prove Theorem 13.1.

Proof of Theorem 13.1. Let u ∈ U0. Using Definition 9.3 and Lemma 12.2 we have

Ẽ∗
0Edu = c−d qd−d2 (q − q−1)−2d [d]!−2

d∏
j=1

(A∗ − B − cqd−2jI)
d−1∏
j=0

(A − q2j−dI)u.

(37)

Applying Definition 11.1, (17), and (22) to (37) we have

Ẽ∗
0Edu = c−d qd−d2 (q − q−1)−2d [d]!−2 (A∗ − B − cK−1)d (A − K)du. (38)

We now express the right hand side of (38) in terms of the maps R, L from Definition 4.4. By (21)

we have (B − K)u = 0. Using Definition 4.3, (8), and Definition 11.1 we have R = A − K and L =
A∗ − K − cK−1. Using Lemma 13.3, Lemma 13.4, and the previous two sentences we have
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(A∗ − B − cK−1)d (A − K)du =
d∑

j=0

Cj L
d−j

j−1∏
s=0

(K2 − q2d−2s−2jI) Rd−ju (39)

where Cj = (−1)j q(j/2)(5j+1)−2dj
[
d
j

]2 [j]! (q − q−1)j .

UsingDefinition4.4wehaveRd−ju ∈ Ud−j for 0� j � d. So byDefinition11.1 (K2 − q2d−4jI)Rd−ju =
0. Using this on the right hand side of (39) and simplifying the result we have

(A∗ − B − cK−1)d (A − K)du =
d∑

j=0

qj−j2 [d]!2 [d − j]!−2 (q − q−1)2j Ld−j Rd−ju. (40)

Changing the index of summation in (40) by letting j = d − t, using Definition 5.2, and simplifying

the result we have

(A∗ − B − cK−1)d(A − K)du

= qd−d2 [d]!2 (q − q−1)2d
d∑

t=0

qt(1−t) [t]!−2 (q2d−2 (q − q−1)−2)t ζtu.

Combining the previous line with (38) and using Definition 5.3 we obtain (30). �

14. The raising/lowering maps revisited

In this sectionwe prove a number of relations between r, l fromDefinition 7.1 and B fromDefinition

9.1. These relations will help to motivate the next section.

Lemma 14.1. With reference to Assumption 3.1, Definitions 7.1, and 9.1 we have

(i) r = A − B−1,

(ii) l = A∗ − B − cB−1.

Proof. (i) Recall by Assumption 3.1 that θi = q2i−d for 0� i � d. Using Remark 7.3 and Definition 9.1

we find
∑d

i=0 θd−iGi = B−1. Using this and (12) we obtain the desired result.

(ii) Similar to (i). �
Lemma 14.2. With reference to Definitions 7.1 and 9.1 we have

(i) Br = q2rB,

(ii) Bl = q−2lB.

Proof. (i) Recall by Definition 7.1 that {Wi}di=0 is a decomposition of V . So it suffices to show Br − q2rB

vanishes onWi for 0� i � d. Let i be given and letw ∈ Wi. Using Remark 7.4 and Definition 9.1 we find

rw is an eigenvector for Bwith eigenvalue q2i+2−d. From this we find (Br − q2rB)w = 0 and the result

follows.

(ii) Similar to (i). �
Lemma 14.3. With reference to Definitions 7.1 and 9.1 we have

(i) r3l − [3]r2lr + [3]rlr2 − lr3 = q−4 (q − q−1)3 [3]! r2B−2,

(ii) rl3 − [3]lrl2 + [3]l2rl − l3r = q−4 (q − q−1)3 [3]! B−2l2.
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Proof. By Lemma 14.1 we have A = r + B−1 and A∗ = l + B + cB−1. Substituting these into Lemma

3.2(i) and (ii) and simplifying using Lemma 14.2 we obtain the desired result. �

15. The algebra Aq(α)

Motivated by Lemmas 14.2 and 14.3 we define an algebra Aq(α). We find a spanning set for Aq(α)
that will be used in the proof of Lemma 16.6 in the next section.

Definition 15.1. Fix a scalar α ∈ K. Let Aq(α) denote the unital associative K-algebra defined by

generators x, y, z, z−1 subject to the relations

zz−1 = 1 = z−1z, (41)

zx = q2xz, (42)

zy = q−2yz, (43)

x3y − [3]x2yx + [3]xyx2 − yx3 = α x2z−2, (44)

xy3 − [3]yxy2 + [3]y2xy − y3x = α z−2y2. (45)

Note 15.2. In the case α = 0 we note that the algebra Aq(0) is the algebra B from [6, Definition 1.10].

The algebra Aq(α) is a special case of a more general algebra called the augmented tridiagonal algebra

developed by T. Ito and P. Terwilliger.

Before we display a spanning set for Aq(α) we have a number of preliminary comments.

For themomentweview x, y as formal symbols and let F denote the freeunital associativeK-algebra

on x, y.

Definition 15.3. Byaword inFwemeananelementofF of the forma1a2 · · · anwheren is anonnegative

integer and ai ∈ {x, y} for 1� i � n. We call n the length of a1a2 · · · an. We interpret the word of length

0 as the identity element of F . We say this word is trivial. Observe F = ∑∞
n=0 Fn (direct sum) where Fn

denotes the subspace of F spanned by all the words of length n. Moreover, FnFm = Fn+m.

Definition 15.4. Leta1a2 · · · an denoteaword inF .Observe thereexistsauniquesequence (i1, i2, . . . , is)
of positive integers such that a1a2 · · · an is one of xi1yi2xi3 · · · yis or xi1yi2xi3 · · · xis or yi1xi2yi3 · · · xis or
yi1xi2yi3 · · · yis . We call the sequence (i1, i2, . . . , is) the signature of a1a2 · · · an.
Example 15.5. Each of the words yx2y2x, xy2x2y has signature (1, 2, 2, 1).

Definition 15.6. Let a1a2 · · · an denote a word in F and let (i1, i2, . . . , is) denote the corresponding

signature. We say a1a2 · · · an is reducible whenever there exists an integer η(2� η � s − 1) such that

iη−1 � iη < iη+1. We say a word in F is irreducible whenever it is not reducible.

Example 15.7. A word in F of length less than 4 is irreducible. The only reducible words in F of length 4 are

xyx2 and yxy2.

In the following lemma we give a necessary and sufficient condition for a given nontrivial word in

F to be irreducible.

Lemma 15.8. Let a1a2 · · · an denote a nontrivial word in F and let (i1, i2, . . . , is) denote the corresponding
signature. Then the following are equivalent:
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(i) The word a1a2 · · · an is irreducible.
(ii) There exists an integer t(1� t � s) such that

i1 < i2 < · · · < it � it+1 � it+2 � · · · � is−1 � is.

Proof. Immediate from Definition 15.6. �

For the moment we view x, y, z, z−1 as formal symbols and let F denote the free unital associative

K-algebra on x, y, z, z−1. We identify F with the subalgebra of F generated by x, y.

We now view Aq(α) as a vector space over K and display a spanning set.

Theorem 15.9. Let π : F → Aq(α) denote the canonical quotient map. Consider the following elements

in F:

wzj , w is an irreducible word in F , j ∈ Z.

Then Aq(α) is spanned by the images of the above elements under π.

To prove Theorem 15.9 we will need the following two lemmas and definition.

Lemma 15.10. Let Ω denote the subspace of F spanned by all the irreducible words. Let Λ denote the two

sided ideal of F generated by

x3y − [3]x2yx + [3]xyx2 − yx3, (46)

xy3 − [3]yxy2 + [3]y2xy − y3x. (47)

For an integer n� 0 let Ωn = Ω ∩ Fn and Λn = Λ ∩ Fn. Then the following (i)–(iv) hold:
(i) F = Ω + Λ (direct sum),
(ii) Ω = ∑∞

n=0 Ωn (direct sum),
(iii) Λ = ∑∞

n=0 Λn (direct sum),
(iv) Fn = Ωn + Λn (direct sum) 0� n < ∞.

Proof. (i) View the K-algebra F/Λ as a vector space over K. By [18, Theorem 2.29] F/Λ has a basis

consisting of the images of the irreducible words in F under the canonical quotient map F → F/Λ.

The result follows immediately from this.

(ii) The words in F form a basis for F .

(iii) The generators (46) and (47) of Λ are in F4.

(iv) Recall F = ∑∞
n=0 Fn (direct sum). Combining this with (i)–(iii) above we obtain the desired

result. �

Lemma 15.11. We have Λn = 0 for n� 3. Also

π(Λn) ⊆ π(Fn−2 z
−2) n� 4 (48)

where π : F → Aq(α) is the canonical quotient map.

Proof. The first assertion follows since the generators (46) and (47) of Λ are in F4. For n� 4 we have

by construction that

Λn = ∑
i,j

Fi (x
3y − [3]x2yx + [3]xyx2 − yx3) Fj

+ ∑
i,j

Fi (xy
3 − [3]yxy2 + [3]y2xy − y3x) Fj
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where each sum is over all nonnegative integers i, j such that i + j = n − 4. Applying π and using

(42)–(45) we have

π(Λn) = ∑
i,j

π(Fi x
2 Fj z

−2) + ∑
i,j

π(Fi y
2 Fj z

−2) (49)

where each sum is over all nonnegative integers i, j such that i + j = n − 4. For all such i, j we have

Fi x
2 Fj ⊆ Fn−2 and Fi y

2 Fj ⊆ Fn−2. Simplifying (49) using this we obtain (48). �

Definition 15.12. By a word in F we mean an element of F of the form a1a2 · · · an where n is a

nonnegative integer and ai ∈ {x, y, z, z−1} for 1� i � n. By the (x, y)-length of a1a2 · · · an we mean

the number of x’s plus the number of y’s in a1a2 · · · an.
We are now ready to prove Theorem 15.9.

Proof of Theorem 15.9. Abbreviate

S = Span{π(wzj) |w is an irreducible word in F and j ∈ Z}.
We show S = Aq(α). Since F is spanned by its words and sinceπ : F → Aq(α) is surjective it suffices
to show that S contains the image underπ of every word in F . By a counterexamplewemean aword in

F whose image under π is not contained in S. We assume there exists a counterexample and obtain a

contradiction. Among all counterexamples let v denote a counterexample with minimal (x, y)-length.
Let t denote the (x, y)-length of v. Using (41)–(43) wemay assumewithout loss that v = v′zj where v′
is a word in Ft and j ∈ Z. Recall every word in F of length less than 4 is irreducible. By construction v′
is reducible and so t � 4. By Lemma 15.10(iv) there exists � ∈ Ωt and λ ∈ Λt such that v′ = � + λ.
Now v = � zj + λzj so

π(v) = π(� zj) + π(λzj). (50)

By construction� is a linear combination of irreduciblewords soπ(� zj) ∈ S.Wenowshowπ(λzj) ∈
S. By Lemma15.11 and sinceλ ∈ Λt wehaveπ(λzj) ∈ π(Ft−2 z

j−2). Everyword in Ft−2 z
j−2 has (x, y)-

length t − 2 and is therefore not a counterexample by the minimality assumption. Hence the image

under π of every word in Ft−2 z
j−2 is contained in S. Since Ft−2 z

j−2 is spanned by its words we have

π(Ft−2 z
j−2) ⊆ S. Thereforeπ(λzj) ∈ S.Wehave nowshownπ(� zj) ∈ S andπ(λzj) ∈ S soπ(v) ∈ S

by (50). This is a contradiction and the result follows. �

16. A result concerning (A, ˜A∗)-submodules of V

Referring to Assumption 3.1 and Definition 9.3 let W denote an irreducible (A, Ã∗)-submodule of

V . The goal of this section is to prove Vd ⊆ W (see Lemma 16.7). This fact will be used in the proof of

Theorem 17.1.

We note that the arguments given in this section are a modification of the arguments from [23,

Section 11].

Definition 16.1. With reference to Assumption 3.1 and Definition 9.3 let W denote an irreducible

(A, Ã∗)-submodule of V . Observe that W is the direct sum of the nonzero spaces among {EiW}di=0
where Ei is from Definition 12.1(i). We define

t = max{i | 0� i � d, EiW /= 0}.
We call t the endpoint ofW .

Lemma 16.2. With reference to Assumption 3.1 and Definition 9.3 let W denote an irreducible (A, Ã∗)-
submodule of V and let t denote the endpoint of W . Then dim(EtW) = 1.

Proof. By construction W is an irreducible (A, Ã∗)-module. Using this, Lemma 9.6, and Lemma 10.2

we find that A|W , Ã∗|W is a q-geometric tridiagonal pair onW . Let s denote the diameter of A|W , Ã∗|W .
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Note that {Es−iW}2s−t
i=s−t is a standard ordering of the eigenspaces of A|W . Applying [23, Theorem 9.1]

to A|W , Ã∗|W we find dim(EtW) = 1. �

Lemma 16.3. With reference to Assumption 3.1 and Definition 9.3 let W denote an irreducible (A, Ã∗)-
submodule of V and let t denote the endpoint of W. With reference to Definition 12.1(i) and Definition 7.1

pick v ∈ EtW and write u = Gd−tv. Then lu = 0 where l is the linear transformation from (12).

Proof. Observe u ∈ Wd−t by Remark 7.3. We assume d − t � 1; otherwise lu = 0 since lW0 = 0. Ob-

serve lu ∈ Wd−t−1 by Remark 7.4. In order to show lu = 0 we show lu ∈ Wd−t + · · · + Wd. Using

Lemma 14.1(ii) and Definition 9.3 we have c−1l = Ã∗ − B−1. Thus

c−1lu = Ã∗v − B−1v + c−1l(u − v). (51)

We are going to show that each of the three terms on the right in (51) is contained inWd−t + · · · + Wd.

By the definition of t we have W = E0W + · · · + EtW so W ⊆ V0 + · · · + Vt in view of Definition

12.1(i). By this and (11) we find W ⊆ Wd−t + · · · + Wd. By construction v ∈ W so Ã∗v ∈ W . By

these comments Ã∗v ∈ Wd−t + · · · + Wd. We mentioned v ∈ W so v ∈ Wd−t + · · · + Wd. Each of

{Wi}di=d−t is an eigenspace for B−1 so B−1v ∈ Wd−t + · · · + Wd. Since v ∈ Wd−t + · · · + Wd and

since u = Gd−tv we find u − v ∈ Wd−t+1 + · · · + Wd. Now c−1l(u − v) ∈ Wd−t + · · · + Wd−1 so

c−1l(u − v) ∈ Wd−t + · · · + Wd. We have now shown that each of the three terms on the right in

(51) is contained in Wd−t + · · · + Wd. Therefore lu ∈ Wd−t + · · · + Wd. Recall lu ∈ Wd−t−1. By this

and since {Wi}di=0 is a decomposition of V we find lu = 0. �

Lemma 16.4. With reference to Definitions 7.1 and 12.1(i) for 0� i � d the action of Ei on Wd−i coincides

with

i∑
h=0

rh

(q2i−d − q2i−d−2)(q2i−d − q2i−d−4) · · · (q2i−d − q2i−d−2h)

where r is the linear transformation from (12).

Proof. Pickw ∈ Wd−i. We find Eiw. By (11) and since Eiw ∈ Vi we find Eiw ∈ Wd−i + · · · + Wd. Con-

sequently there exist ws ∈ Ws(d − i � s� d) such that Eiw = ∑d
s=d−i ws. By (10) and Remark 7.4 we

have for 0� j � d that r acts onWj as A − qd−2jI. Using this and since (A − q2i−dI)Ei = 0 we find

0 =
(
A − q2i−dI

)
Eiw

=
(
A − q2i−dI

) d∑
s=d−i

ws

=
d∑

s=d−i

(
r + qd−2s − q2i−d

)
ws.

Rearranging the terms above we find 0 = ∑d
s=d−i+1 w

′
s where

w′
s = rws−1 + (qd−2s − q2i−d)ws (d − i + 1� s� d).

Since w′
s ∈ Ws for d − i + 1� s� d and since {Wi}di=0 is a decomposition of V we find w′

s = 0 for

d − i + 1� s� d. Consequently

ws = (q2i−d − qd−2s)−1rws−1 (d − i + 1� s� d).

By Lemma 12.3 and since wd−i = Gd−iEiw we find wd−i = w. From these comments we obtain the

desired result. �
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Lemma 16.5. With reference to Assumption 3.1 and Definition 9.3 let W denote an irreducible (A, Ã∗)-
submodule of V and let t denote the endpoint of W . With reference to Definition 12.1(i) and Definition 7.1

pick v ∈ EtW and write u = Gd−tv. Then

liriu ∈ Span(u) (0� i � t) (52)

where r, l are the linear transformations from (12).

Proof. Wemay assume v /= 0; otherwise the result is trivial. Define

Δi = (̃A∗ − q2t−dI)(̃A∗ − q2t−d−2I) · · · (̃A∗ − q2t−d−2i+2I). (53)

Since Δi is a polynomial in Ã∗ we find ΔiW ⊆ W . In particular Δiv ∈ W so EtΔiv ∈ EtW . The vec-

tor v spans EtW by Lemma 16.2 so there exists mi ∈ K such that EtΔiv = miv. By this and since

Etv = v we find Et(Δi − miI)v = 0. Now (Δi − miI)v ∈ E0W + · · · + Et−1W in view of Definition

16.1. Observe E0W + · · · + Et−1W ⊆ V0 + · · · + Vt−1 where theVj are fromAssumption 3.1. By these

comments and (11) we find (Δi − miI)v ∈ Wd−t+1 + · · · + Wd. Consequently Gd−t(Δi − miI)v = 0.

Recall Gd−tv = u so

Gd−tΔiv = miu. (54)

We now evaluate Gd−tΔiv. Observe v = Etu by Lemma 12.3 and since u = Gd−tv. By Lemma 16.4

there exist nonzero scalars γh ∈ K(0� h� t) such that v = ∑t
h=0 γhr

hu. For 0� h� t we compute

Gd−tΔir
hu. Keep in mind rhu ∈ Wd−t+h by Remark 7.4. First assume h < i. Using Lemma 9.4 and

(53) we find Δir
hu is contained inWd−t+h−i + · · · + Wd−t−1 so Gd−tΔir

hu = 0. Next assume h = i.

Using Lemma 14.1(ii) and Definition 9.3 we have c−1l = Ã∗ − B−1 and so c−1l|Wj
= (̃A∗ − qd−2jI)|Wj

(0� j � d). Using this and (53) we find (Δi − c−ili)riu is contained in Wd−t+1 + · · · + Wd−t+i. By

this and since c−iliriu ∈ Wd−t we find Gd−tΔir
iu = c−iliriu. Next assume h > i. Using Lemma 9.4

and (53) we find Δir
hu is contained in Wd−t+h−i + · · · + Wd−t+h. By this and since h > i we find

Gd−tΔir
hu = 0. By these comments we find Gd−tΔiv = γic

−iliriu. Combining this and (54) we obtain

(52). �

Lemma 16.6. With reference to Assumption 3.1 and Definition 9.3 let W denote an irreducible (A, Ã∗)-
submodule of V and let t denote the endpoint of W . Then t = d. Moreover, the following holds. With

reference to Definition 12.1(i) and Definition 7.1 pick a nonzero v ∈ EdW and write u = G0v. Let r, l be the
linear transformations from (12). Then V is spanned by the vectors of the form

li1 ri2 li3 ri4 · · · rinu
where i1, i2, . . . , in ranges over all sequences such that n is a nonnegative even integer, and i1, i2, . . . , in are
integers satisfying 0� i1 < i2 < · · · < in � d.

Proof. Let t is the endpoint ofW . Pick a nonzero v ∈ EtW andwrite u = Gd−tv. Observe 0 /= u ∈ Wd−t

by Lemma 12.3. By Lemma 16.3 and Remark 7.4,

lu = 0, rt+1u = 0. (55)

By Lemma 16.5,

liriu ∈ Span(u) (0� i � t). (56)

Let W ′ denote the subspace of V spanned by all vectors of the form

li1 ri2 li3 ri4 · · · rinu, (57)

where i1, i2, . . . , in ranges over all sequences such that n is a nonnegative even integer, and i1, i2, . . . , in
are integers satisfying 0� i1 < i2 < · · · < in � t. Observe u ∈ W ′ so W ′ /= 0. In order to show t = d

we showW ′ = V andW ′ ⊆ Wd−t + · · · + Wd. We now showW ′ = V . To do this we show thatW ′ is
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invariant under each ofA, A∗. Recall u ∈ Wd−t so u is an eigenvector for B and B−1. Recall theK-algebra

Aq(α) from Definition 15.1. By Lemma 14.2 and Lemma 14.3 there exists an Aq(α)-module structure

on V with α = q−4(q − q−1)3[3]! where x, y, z, z−1 act as r, l, B, B−1 respectively. With respect to this

Aq(α)-module structure we haveW ′ = Aq(α)u in view of Lemma 15.8, Theorem 15.9 and (55), (56). It

follows that W ′ is invariant under each of r, l, B, B−1. By Lemma 14.1 A = r + B−1 and A∗ = l + B +
cB−1. Using this we have thatW ′ is invariant under each of A, A∗. Since A, A∗ is a tridiagonal pair on V

we have W ′ = V . We now show W ′ ⊆ Wd−t + · · · + Wd. By Remark 7.4 the vector (57) is contained

in Wd−t+i where i = ∑n
h=1 ih(−1)h. From the construction 0� i � t so Wd−t+i ⊆ Wd−t + · · · + Wd.

Therefore thevector (57) is contained inWd−t + · · · + Wd soW
′ ⊆ Wd−t + · · · + Wd.Wehaveshown

W ′ = V and W ′ ⊆ Wd−t + · · · + Wd. Since {Wi}di=0 is a decomposition of V we find t = d and the

result follows. �

Lemma 16.7. With reference to Assumption 3.1 and Definition 9.3 let W denote an irreducible (A, Ã∗)-
submodule of V . Then Vd ⊆ W .

Proof. Recall by Lemma16.6 that the endpoint ofW is d. So EdW /= 0 byDefinition 16.1.We haveU0 =
W0 by (7),(11) and so dim(W0) = 1 by Lemma 5.1. Using this and Lemma 12.3 we find dim(Vd) = 1.

We have 0 /= EdW ⊆ Vd so EdW = Vd. But EdW ⊆ W by (28) so Vd ⊆ W . �

17. A, ˜A∗ is a tridiagonal pair

In this section we show A, Ã∗ is a q-geometric tridiagonal pair of V if and only if P(q2d−2(q −
q−1)−2) /= 0. The proof of this depends on the following lemma.

Lemma 17.1. With reference to Assumption 3.1, Definitions 5.3, and 9.3 the following are equivalent:
(i) V is irreducible as an (A, Ã∗)-module.
(ii) P(q2d−2(q − q−1)−2) /= 0.

Proof. (i) ⇒ (ii) We assume P(q2d−2(q − q−1)−2) = 0 and derive a contradiction. Define

Xi = (Vi + · · · + Vd) ∩ (Ṽ∗
d−i+1 + · · · + Ṽ∗

d ) (1� i � d)

where the Vj are from Assumption 3.1 and the Ṽ∗
j are from Definition 9.7. Further define X = X1 +

· · · + Xd. We will show that X is an (A, Ã∗)-submodule of V and X /= V , X /= 0. We first show AX ⊆ X .

For 1� i � dwe have (A − q2i−dI)
∑d

j=i Vj = ∑d
j=i+1 Vj by Assumption 3.1 and (A − q2i−dI)

∑d
j=d−i+1

Ṽ∗
j ⊆ ∑d

j=d−i Ṽ
∗
j by Lemma 10.2(ii). By these comments

(A − q2i−dI)Xi ⊆ Xi+1 (1� i � d − 1) (A − qdI)Xd = 0

and it follows AX ⊆ X . We now show Ã∗X ⊆ X . For 1� i � d we have (̃A∗ − q2i−d−2I)
∑d

j=i Vj =∑d
j=i−1 Vj by Lemma 10.2(i) and (̃A∗ − q2i−d−2I)

∑d
j=d−i+1 Ṽ

∗
j ⊆ ∑d

j=d−i+2 Ṽ
∗
j by Definition 9.7. By

these comments

(̃A∗ − q2i−d−2I)Xi ⊆ Xi−1 (2� i � d − 1) (̃A∗ − q−dI)X1 = 0

and it follows Ã∗X ⊆ X .We have now shown thatX is an (A, Ã∗)-submodule ofV .We now showX /= V .

For 1� i � d we have Xi ⊆ Vi + · · · + Vd so Xi ⊆ V1 + · · · + Vd. It follows X ⊆ V1 + · · · + Vd and so

X /= V .Wenow showX /= 0. To do thiswe display a nonzero vector inXd. Pick a nonzero vector u ∈ U0.

Applying Theorem 13.1 we find Ẽ∗
0Edu = 0. Write v = Edu and notice v ∈ Vd. By (7) and (11) we find

U0 = W0 and so v /= 0 by Lemma 12.3. Observe Ẽ∗
0v = 0 so v ∈ Ṽ∗

1 + · · · + Ṽ∗
d by Definition 12.1(ii).

From these comments v ∈ Xd. We have displayed a nonzero vector v contained in Xd. Of course Xd ⊆ X

so X /= 0.We have now shown that X is an (A, Ã∗)-submodule of V and X /= V , X /= 0. This contradicts

our assumption that V is irreducible as an (A, Ã∗)-module. We conclude P(q2d−2(q − q−1)−2) /= 0.
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(ii) ⇒ (i) Let W denote an irreducible (A, Ã∗)-submodule of V . We show W = V . To do this we

show W is invariant under each of A, A∗. By construction W is invariant under A. In order to show W

is invariant under A∗ we showW is invariant under B. We defineW = {w ∈ W | Bw ∈ W } and show

W = W . Using (14)wefindAW ⊆ W . Using (16)wefind Ã∗W ⊆ W .WenowshowW /= 0. Let 0 /= v ∈
Vd. By Lemma 16.7 v ∈ W . Combining (7) and (11) we find U0 = W0. Using this and Lemma 12.3 (with

i = d) we have that Ed : U0 → Vd is a bijection. So there exists a nonzero u ∈ U0 such that Edu = v.

Using Theorem 13.1 we find Ẽ∗
0v = q2d(1−d)c−dP(q2d−2(q − q−1)−2)u. Since P(q2d−2(q − q−1)−2)

and u are both nonzero we find Ẽ∗
0v /= 0. Using (29) and since v ∈ W we have Ẽ∗

0v ∈ W . Using Lemma

9.4 and Lemma 9.6 we find Ṽ∗
0 = W0. Hence Ẽ∗

0v ∈ W0 and so Ẽ∗
0v ∈ W . By these comments we find

W /= 0. We have now shownW is nonzero and invariant under each of A, Ã∗. ThereforeW = W since

W is an irreducible (A, Ã∗)-module. We have now shown W is invariant under B. By construction W

is invariant under Ã∗. So by Definition 9.3 W is invariant under A∗. We now know that W is nonzero

and invariant under each of A, A∗. Since A, A∗ is a tridiagonal pair on V we find W = V and the result

follows. �

Lemma 17.2. With reference to Assumption 3.1, Definitions 5.3, and 9.3 the following holds. A, Ã∗ is a

q-geometric tridiagonal pair on V if and only if P(q2d−2(q − q−1)−2) /= 0.

Proof. Immediate from Assumption 3.1, Lemmas 9.6, 10.2, and 17.1. �

18. The proof of Theorem 5.4

In this section we give a proof of our main result by providing the required action of �q on V .

Proof of Theorem 5.4. (i) ⇒ (ii) By [20, Theorem 12.3] the action of x30 on V is diagonalizable

and the set of distinct eigenvalues is {q2i−d | 0� i � d }. For 0� i � d let Xi denote the eigenspace of

x30 corresponding to the eigenvalue q2i−d. First we show x30 acts on V as B from Definition 9.1. By

Definition 2.1 qx01x30 − q−1x30x01 = (q − q−1)I and sowe have (x01 − qd−2iI)Xi ⊆ Xi+1 for 0� i � d

in view of Lemma 8.2. Using Definition 2.1 we find qx30(x30 + cx23) − q−1(x30 + cx23)x30 = (q −
q−1)(x230 + cI) and so (x30 + cx23 − q2i−dI − cqd−2iI)Xi ⊆ Xi−1 for 0� i � d in view of Lemma 8.3.

Recall by construction x01 acts as A and x30 + cx23 acts as A
∗. Using these comments and [16, Theorem

4.6] (with Vi replaced by Vd−i) we find Xi = (V∗
0 + · · · + V∗

i ) ∩ (V0 + · · · + Vd−i) for 0� i � d. Using

this and Remark 7.2 we find Xi = Wi for 0� i � d. In view of Definition 9.1 we have now shown

x30 acts on V as B. Using this and Definition 9.3 we find x23 acts as Ã∗. By [20, Theorem 10.3, 24,

Theorem 2.7] we find A, Ã∗ is a q-geometric tridiagonal pair of V . So P(q2d−2(q − q−1)−2) /= 0 by

Lemma 17.2.

(ii)⇒ (i) By Lemma17.2 A, Ã∗ is a q-geometric tridiagonal pair on V . Using this, [23, Theorem2.7, 21,

Theorem 10.4] there exists a unique irreducible �q-module structure on V such that x01 acts as A and

x23 acts as Ã∗. It remains to show that x30 + cx23 acts as A∗. To do this we show x30 acts on V as B from

Definition 9.1. By [20, Theorem 12.3] the action of x30 on V is diagonalizable and the set of distinct

eigenvalues is {q2i−d | 0� i � d }. For 0� i � d let Xi denote the eigenspace of x30 corresponding to

the eigenvalue q2i−d. Using [20, Theorem 16.4] we find Xi = (Ṽ∗
0 + · · · + Ṽ∗

i ) ∩ (V0 + · · · + Vd−i)
for 0� i � d. Recall by Definition 9.1 that for 0� i � d,Wi is the eigenspace of B with eigenvalue

q2i−d. We show Xi = Wi for 0� i � d. Combining Lemmas 8.4 and (16) we find W0 + · · · + Wi =
Ṽ∗
0 + · · · + Ṽ∗

i for 0� i � d. Using this and (11) we find V∗
0 + · · · + V∗

i = Ṽ∗
0 + · · · + Ṽ∗

i for 0� i � d.

Using this and Remark 7.2 we find Xi = Wi for 0� i � d. We have now shown x30 acts on V as B.

Recall by construction x23 acts as Ã∗. Therefore by Definition 9.3 x30 + cx23 acts as A∗ and the result

follows. �
For the sake of completeness we now make a few comments regarding the �q-module structure

on V given in Theorem 5.4.
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Lemma 18.1. With reference to Assumption 3.1, Theorem 5.4, and Definition 9.7 the following holds. For
each generator xij of �q and for 0� n� d the eigenspace of xij corresponding to the eigenvalue q2n−d is

given as follows.

Generator Eigenspace corresponding to eigenvalue q2n−d

x01 Vn

x23 Ṽ∗
d−n

x30 (Ṽ∗
0 + · · · + Ṽ∗

n ) ∩ (V0 + · · · + Vd−n)

x12 (Ṽ∗
n + · · · + Ṽ∗

d ) ∩ (Vd−n + · · · + Vd)

x31 (Ṽ∗
0 + · · · + Ṽ∗

n ) ∩ (Vn + · · · + Vd)

x13 (Ṽ∗
0 + · · · + Ṽ∗

d−n) ∩ (Vd−n + · · · + Vd)

x20 (Ṽ∗
d−n + · · · + Ṽ∗

d ) ∩ (V0 + · · · + Vd−n)

x02 (Ṽ∗
n + · · · + Ṽ∗

d ) ∩ (V0 + · · · + Vn)

Proof. The first row of the table follows immediately from Theorem 5.4. In the proof of Theorem 5.4

we showed x23 acts on V as Ã∗. Using this we immediately obtain the second row of the table. The

remaining six rows of the table follow from the first two rows and [20, Theorem 16.4]. �

Lemma 18.2. With reference to Assumption 3.1 and the �q-module structure on V given in Theorem 5.4

the following holds.

(i) x30 acts on V as B.
(ii) x23 acts on V as Ã∗.
(iii) x31 acts on V as K.
(iv) x13 acts on V as K−1.

where B, Ã∗, K are from Definitions 9.1, 9.3, and 11.1, respectively.

Proof. (i) and (ii): These were shown in the proof of Theorem 5.4.

(iii) and (iv): Recall for 0� i � d thatUi is the eigenspace forK corresponding to the eigenvalue q2i−d.

In the proof of Theorem 5.4 we showed for 0� i � d that V∗
0 + · · · + V∗

i = Ṽ∗
0 + · · · + Ṽ∗

i . Using this

and Lemma 4.2 we find Ui = (Ṽ∗
0 + · · · + Ṽ∗

i ) ∩ (Vi + · · · + Vd) for 0� i � d. The result now follows

from rows five and six of the table in Lemma 18.1. �
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