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The predicted Exigobacterium sibiricum bacterirhodopsin gene was amplified from an ancient Sibe-
rian permafrost sample. The protein bacteriorhodopsin from Exiguobacterium sibiricum (ESR)
encoded by this gene was expressed in Escherichia coli membrane. ESR bound all-trans-retinal
and displayed an absorbance maximum at 534 nm without dark adaptation. The ESR photocycle
is characterized by fast formation of an M intermediate and the presence of a significant amount
of an O intermediate. Proteoliposomes with ESR incorporated transport protons in an outward
direction leading to medium acidification. Proton uptake at the cytoplasmic surface of these organ-
elles precedes proton release and coincides with M decay/O rise of the ESR.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction findings pose a question about the functional significance of such
Bacteriorhodopsins are bacterial retinal-containing membrane
proteins with various functions including ion transport and photo-
sensory activity [1]. The prototype member of the family, bacterio-
rhodopsin from Halobacterium salinarum (BR), is a photoactivated
proton pump extensively studied by genetic and biophysical meth-
ods [2,3]. Since the first discovery of a proteorhodopsin gene in
metagenomic DNA library from the Red Sea [4] it was found that
diverse groups of microorganisms possess bacteriorhodopsin
homologs [5]. Majority of these new bacterio- and proteorhodop-
sin genes were isolated from marine-derived microbial communi-
ties. The recent studies revealed the presence of proteorhodopsin-
expressing bacteria also in non-marine environments [6,7]. These
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‘‘non-typical” BR representatives.
Siberian permafrost contains the unique microbial community

adapted to extreme conditions including long-term freezing,
cumulative radiation and high water osmolarity [8,9]. Exiguobacte-
rium sibiricum is one of Gram-positive microorganisms widely
present in permafrost samples and withstanding wide range of
growth conditions [10]. Recently the presence of potential bacte-
riorhodopsin gene had been revealed in the genome of E. sibiricum
[11]. However, the functional state of the predicted protein and its
possible role in adaptation to extreme environmental conditions
remained unclear. Here we describe the heterologous expression
of E. sibiricum bacteriorhodopsin gene in Escherichia coli mem-
brane, purification of the protein and the primary investigation
of its functional characteristics.
2. Materials and methods

2.1. Sample collection

The permafrost samples for this study were collected in north-
eastern Arctic tundra (69�290N, 156�590E, Kolyma lowland). The
lsevier B.V. All rights reserved.
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cores were extracted from the mid Pleistocene lake-alluvium san-
dy loam strata buried on 25-m depth. This is a syngenetically fro-
zen horizon formed 200–400 thousand years ago and never
thawed till now. Contamination with organisms non-indigenous
to the frozen sediment sample can be excluded on the basis of pre-
vious method validation [8].

2.2. DNA isolation

Total genomic DNA was extracted from approximately 0.25–
0.5 g of frozen sediment from the interior of subcore using the
UltraClean soil DNA isolation kit (MoBio Laboratories, USA) follow-
ing to the manufacture’s protocol.

2.3. Gene cloning

E. coli strain XL-1 Blue (Stratagene) was used for all DNA manip-
ulations. To amplify bacteriorhodopsin from Exiguobacterium sibir-
icum (ESR) gene from environmental sample two gene-specific
primers ESR1 50ATCATACATATGGAAGAAGTCAATTTACTCG and
ESR2 50ACATCTCGAGGGACGTCAGCGTTTTTCCTT were designed
according to the published genomic DNA sequence of E. sibiricum
[11] and synthesized by Evrogen (Moscow, Russia). NdeI and XhoI
restriction sites (underlined) were introduced at 50 and 30 ends of
the gene respectively. The termination codon was omitted from
the sequence. PCR was carried out with Pfu DNA-polymerase (Fer-
mentas, Lithuania) as recommended by supplier. The amplified
fragment was cloned into NdeI and XhoI sites of pET32a plasmid
(Novagen). DNA sequencing was carried out by Genome Centre
(Moscow, Russia). The resulting plasmid pET-ESR contains entire
ESR gene with LEHHHHHH-coding extension at 30 terminus.

2.4. Protein purification

E. coli BL21(DE3)pLysS cells freshly transformed with pET-ESR
were grown for 2 days at 30 �C in 2XZY5052 autoinduction media
[12] supplied with 100 lg/ml ampicillin and 34 lg/ml chloram-
phenicol. Upon harvesting the cells were resuspended in 100 mM
Tris–HCl, pH 8.0, 20% sucrose and 5 mM EDTA, incubated with
0.2 mg/ml lysozyme and diluted with 5 volumes of cold deionized
water. After ultrasonication the insoluble material was removed by
centrifugation at 6000�g for 30 min. Membrane fraction was sed-
imented at 100 000 � g for 1 h and after addition of 5 lM all-trans-
retinal ESR was extracted by incubation with 50 mM Tris–HCl,
200 mM NaCl, 1% n-dodecyl-b-D-maltopyranoside (DDM), 10 mM
imidazole, pH 8.0, for 18 h at 4 �C. Solubilized fraction was applied
on Ni Sepharose FastFlow resin (GE Healthcare) and extensively
washed with buffer 50 mM NaH2PO4, 200 mM NaCl, 0,1% DDM,
Fig. 1. Alignment of BR and ESR amino acid sequences using BLAST. Positions correspon
(K216) are marked with grey.
30 mM imidazole, pH 6.0. ESR was eluted with buffer 50 mM NaH2-

PO4, 200 mM NaCl, 0,2% DDM, 300 mM imidazole, pH 7.4 and con-
centrated using Amicon centrifugal filter device (10 kDa MWCO).
To obtain protein for reconstitution into liposomes 5% and 1% n-oc-
tyl-b-D-glucopyranoside (OG) was used for the extraction and puri-
fication steps instead of DDM.

2.5. Spectroscopic characterization

Absorption spectra were obtained on Biowave II spectropho-
tometer (WPA). Difference absorption spectra (light minus dark)
were recorded on phosphoroscopic device as described in [13].
Flash-induced absorption changes were detected with home-made
flash-photolysis system as described in [14]. Flash was from Quan-
tel Y6-481 Nd-YAG Q-switched laser (532 nm, 10 ns). Photoin-
duced changes in the protein absorbance at 400 nm were
determined in 1 mM MOPS, 200 mM NaCl, 0,2% DDM, pH 7.0 in
the absence and presence of 60 lM p-nitrophenol. The spectral re-
sponse of the pH indicator itself was obtained by subtraction. Aver-
aging of 10–100 single kinetic responses was used to improve
signal-to-noise ratio.

2.6. Proton transport measurements

ESR in OG micelles was reconstituted into proteoliposomes con-
taining Type II-S phospholipid from soybean (Sigma) as described
in [15]. 150 ll of proteoliposome suspension (0.25 mg/ml of ESR)
was added to 2.1 ml of 2 M NaCl and pH was adjusted to 7.0. The
measurements were conducted in the thermostated cell at 25 �C
under rapid stirring. pH was monitored with Radiometer PHM82
pH-meter.

3. Results and discussion

3.1. Gene cloning, protein expression and purification

ESR gene encodes a protein of 252 aa displaying less than 40%
identity with published sequences of bacterio- and proteorhodop-
sins (excluding bacteriorhodopsin from closely related Exiguobac-
terium sp. AT1b). Alignment of ESR sequence with BR from H.
salinarum revealed conservation of several residues in the retinal-
binding pocket including K225 which corresponds to K216 partic-
ipating in the retinal binding in BR (Fig. 1). It should be noted that
predicted retinal-binding pocket of ESR exhibits relatively high le-
vel of homology with xanthorodopsin and can potentially accom-
modate carotenoid [16]. The question whether ESR contains
additional chromophore(s) in its native host remains for future
investigation.
ding to BR primary proton acceptor (D85), proton donor (D96) and the Schiff base



Fig. 3. (A) Absorption and (B) absorption difference (light minus dark) spectra of
purified ESR in DDM micelles. Protein concentration was 0.4 mg/ml.
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No signal sequence was detected at the ESR N-terminus with
the help of SignalP tool [17]. Therefore we have designed primers
for amplification of the entire coding region of ESR according to
the published genomic DNA sequence. E. sibiricum strain used in
the sequencing project [11] was isolated from the sample which
was preserved in frozen condition for 3 million years. We have
failed to directly amplify ESR gene from this sample, probably be-
cause of the nucleic acids degradation and crosslinking [18]. That’s
why PCR was conducted on the DNA isolated from the younger
geological layer (200 000–400 000 years). Nevertheless sequencing
of the cloned gene revealed 100% conservation of its primary struc-
ture in comparison with the published data probably reflecting the
functional significance of this protein in E. sibiricum metabolism.

To construct an efficient expression system we have cloned ESR
gene into pET32a vector providing for hexahistidine tag at the pro-
tein C-terminus. ESR expression in E. coli cells was independent of
externally added all-trans-retinal and led to the accumulation of
protein with apparent MW of �23 kDa in the membrane fraction
(Fig. 2). The MALDI mass fingerprinting of the fragments obtained
after trypsinolysis of the corresponding gel band revealed the se-
quence coverage �48% with ESR amino acid sequence derived from
genome sequencing data (data not shown). Purity of the ESR ex-
tracted from E. coli membranes in the presence of DDM after Ni2+-
affinity chromatography was about 90% (Fig. 2) with the yield of
10–15 mg/L culture. The absorption maximum of purified ESR at
pH 8.0 was 534 nm (Fig. 3a) without noticeable shifts of absorption
maximum (dark adaptation) after 12 h incubation (data not shown).

3.2. Photocycle kinetics

Difference absorption spectra of DDM-solubilized ESR and of
isolated membranes from ESR-expressing E. coli cells were re-
corded in the range of 350–700 nm. In both cases spectra charac-
teristic for bacteriorhodopsin with depletion and regeneration of
the ground state, rise and decay of O intermediate at >500 nm
and subtle changes at <400 nm (absorption of M intermediate)
were obtained (Fig. 3b). In order to compare ESR and BR photocy-
cles flash-photolysis experiments were conducted at characteristic
wavelengths of 410, 550 and 610 nm. Formation of M intermediate
was clearly observed at 410 nm (Fig. 4). Its accumulation was�100
times faster than in BR (s = 0.5 ls). M decay kinetics (s = 3.5 ms)
was the same order as in BR [3]. Absorption changes of O interme-
diate observed at 610 nm were �4 times greater than of M. The de-
cay of O (s = 26 ms) corresponded to the return of the ground state
observed at 550 nm.

In contrast to BR proton uptake at the cytoplasmic surface of
ESR precedes proton release and coincides with M decay/O rise
(Fig. 4). This ‘‘late release” phenomenon is an indicator of blocked
proton-releasing complex and consistent with the absence of
extracellular analogues of E204 and E194 in BR [19–21]. More ra-
pid M-formation and increased amount of O intermediate are also
Fig. 2. SDS–PAGE of ESR in E. coli membranes (2) and purified ESR (3). 1 – E. coli
membranes without ESR.

Fig. 4. Flash-induced transient absorption changes of ESR in DDM micelles
recorded at 410, 550 and 610 nm.



Fig. 5. Light-induced proton fluxes in ESR-containing liposomes. Samples were
illuminated with 500 W halogen lamp (OSRAM) from 35 cm distance.
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characteristic for E204Q mutant of BR [19]. Indeed position corre-
sponding to E194 in BR is occupied with F203 in ESR. Location of
R213 adjacent to E214 (analog of E204 in BR) can potentially im-
pair its ability to deliver protons (Fig. 1).

The presence of R82, D85 and D221 of ESR at the positions cor-
responding to R82, D85 and D212 of BR points to the structural
similarity of proton translocation channels of ESR and BR (Fig. 1).
Intriguing feature of ESR is the presence of K96 residue at the posi-
tion corresponding to D96 which serves as a proton donor in BR
and is occupied by carboxylic acid almost in all known proton
pumping bacteriorhodopsins [22]. BR mutant D96N and homolo-
gous proteorhodopsin mutant E108Q both have a very slow decay
of the M intermediate due to reprotonation of the Schiff base from
the medium [21,23]. This is not the case in ESR, suggesting the
existence of an alternative intramolecular proton donor whose po-
sition should be the matter for further investigation.

3.3. Proton transport measurements

After illumination we have observed net acidification of the sus-
pension of ESR-containing liposomes corresponding to the proton
pumping from the inside to the outside of liposomes (Fig. 5). The rate
of proton translocation by ESR is�10 times slower than in BR-contain-
ing liposomes measured in the same conditions (data not shown) but
correlates with the time-course of light-induced acidification in prote-
orhodopsin liposome suspension [24]. The same effects were ob-
served when pH changes were measured for washed E. coli cells
expressing ESR confirming that ESR is incorporated into liposomes
in the same direction as in the E. coli membrane. Therefore we can con-
clude that ESR unlike bacteriorhodopsin [25] is oriented in the prote-
oliposomes with its C-terminus facing the inner surface of the bilayer.

This report is the first functional characterization of a bacterio-
rhodopsin gene from Firmicutes. Experimental data obtained con-
firm that ESR heterologously expressed in E. coli membranes
demonstrates light-induced photocycle and proton transport. ESR
photocycle at neutral pH was relatively fast (<100 ms) enabling
attribution of this protein to the transport bacteriorhodopsins. Fu-
ture studies should clarify the details of the proton translocation
mechanism conducted by ESR as well as its role in E. sibiricum
physiology and adaptive response to environmental stimuli.
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