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SUMMARY

Stress-induced phosphoprotein 1 (STIP1), a cocha-
perone that organizes other chaperones, heat shock
proteins (HSPs), was recently shown to be secreted
by human ovarian cancer cells. In neuronal tissues,
binding to prion protein was required for STIP1
to activate the ERK (extracellular-regulated MAP
kinase) signaling pathways. However, we report
that STIP1 binding to a bone morphogenetic protein
(BMP) receptor, ALK2 (activin A receptor, type II-like
kinase 2), was necessary and sufficient to stimulate
proliferation of ovarian cancer cells. The binding
of STIP1 to ALK2 activated the SMAD signaling
pathway, leading to transcriptional activation of ID3
(inhibitor of DNA binding 3), promoting cell prolifera-
tion. In conclusion, ovarian-cancer-tissue-secreted
STIP1 stimulates cancer cell proliferation by binding
to ALK2 and activating the SMAD-ID3 signaling path-
ways. Although animal studies are needed to confirm
these mechanisms in vivo, our results may pave the
way for developing novel therapeutic strategies for
ovarian cancer.

INTRODUCTION

Ovarian cancer is the gynecologic tumor with the highest

mortality because most patients with ovarian cancer are diag-

nosed in advanced stages. Several genes, including BRCA1/2

(breast cancer 1/2, early onset), KRAS, BRAF, and TP53, have

been associated with tumorigenesis in ovarian cancer, but their

molecular mechanisms remain unclear (Bast et al., 2009).

Currently, CA125 is the only tumor marker for monitoring the

disease progression of ovarian cancer, but it does not cover all

ovarian cancers (Karam and Karlan, 2010). Better understanding

of the molecular mechanisms of ovarian cancer may help us

develop novel therapeutic strategies.
Stress-induced phosphoprotein 1 (STIP1, STI 1, gene ID

10963), also referred as heat shock protein (HSP) 70/90 orga-

nizing protein (HOP), is a 62.6 kDa protein that contains nine tet-

ratricopeptide repeat (TPR) motifs and one nuclear localization

signal (NLS) (Longshaw et al., 2004). The TPR domains of

STIP1 are involved in holding HSP70 and HSP90 together in

the HSP90 chaperone machinery (Odunuga et al., 2004). This

formation of protein complexes participates in several cellular

processes including transcription, protein folding, protein trans-

location, viral replication, signal transduction, and cell division

(Arbeitman and Hogness, 2000; Bharadwaj et al., 1999; Hu

et al., 2002; Johnson et al., 1998; Martins et al., 1997; Zanata

et al., 2002). The NLS sequence allows STIP1 transport from

cytoplasm to the nucleus under the control of cell-cycle kinases

(Longshaw et al., 2004).

STIP1 lacks a transmembrane domain or signal peptide; thus,

it was previously considered to be a cytoplasmic protein (Lässle

et al., 1997). However, recent studies indicate that it can be

translocated to the cell surface or secreted out of the cell

(Eustace and Jay, 2004; Wang et al., 2010). Extracellular STIP1

binds to prion proteins on cell surfaces and induces neuropro-

tective signals that rescue the cell from apoptosis (Roffé et al.,

2010; Zanata et al., 2002). In glioblastoma cells, extracellular

STIP1 was shown to trigger endogenous mitogen-activated

protein kinase 1/2 (ERK1/ERK2), protein kinase A (PKA), and

phosphatidylinositol 3-kinase (PI3K) signaling pathways,

promoting cell proliferation (Caetano et al., 2008; Erlich et al.,

2007; Lopes et al., 2005). Once the interaction between STIP1

and prion protein takes place at the cell surface, the protein is

endocytosed, and transient ERK1/ERK2 activation occurs

(Caetano et al., 2008).

Bone morphogenetic protein (BMP) pathways are involved in

various cell functions, including cell proliferation and migration

(Kitisin et al., 2007). These pathways are also important for

embryonic development and tumorigenesis (Blanco Calvo

et al., 2009; Waite and Eng, 2003). Ligands of the BMP family

bind to two distinct membrane receptors, known as type I and

type II receptors, which contain serine/threonine kinase domains

in their intracellular portions. Upon binding of this ligand, these
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Figure 1. Secreted STIP1 Activated ID3 at the Transcriptional Level

(A) After being cultured in serum-free medium for 24 hr, MDAH2774 and SKOV3 cells were treated with 0.4 mM of rhSTIP1 for 24 hr. The resultant RNAs were

analyzed with Affymetrix U133A microarrays. The data shown were obtained from two independent experiments in each cell line.

(B) Activation of ID3 by treatment with STIP1 was confirmed by real-time QPCR at different time points. The data (mean ± SE) shown were obtained from three

independent experiments, in which GAPDH was used for normalization purposes. Asterisks denote statistical significance (p < 0.05, paired Student’s t test).

(C) After MDAH2774 and SKOV3 cells were treated with 0.4 mMof rhSTIP1 for 1 hr, increased ID3 protein levels were detected by western blot analyses. The actin

level was used to normalize the input protein.

(D) ID3 promoter luciferase assays were performed in embryonic kidney 293 and SKOV3 cells. Results shown are the mean ± SE of three independent exper-

iments. Asterisks denote statistical significance (p < 0.05, paired Student’s t test).

See also Table S1 and Figure S1.
two receptors form a hetero-complex where the type II receptor

phosphorylates the type I receptor and activates receptor-regu-

lated SMADs (R-SMADs), SMAD1/SMAD5 (Hardwick et al.,

2008). Once phosphorylated, SMAD1/SMAD5 form a complex

with a common SMAD (co-SMAD), SMAD4 (Heldin et al., 1997).

Then, the R-SMADs and co-SMAD complexes are translocated

into the nucleus to regulate the transcription of target genes,

including IDs (inhibitor of DNAbinding) (Miyazono andMiyazawa,

2002). ID proteins compete with the retinoblastoma protein (Rb)

to interact with E2F.When E2F is released from Rb, the cell cycle

enters the S phase from the G0/G1 phase (Lasorella et al., 2000).

Ovarian cancers produce higher levels of STIP1 than benign

tumors do. Because STIP1 is secreted into the blood, the serum

STIP1 concentrations in patients with ovarian cancer were signif-

icantly higher than those in age-matched controls (Wang et al.,

2010). Supporting these findings, Kim and associates found

that serum STIP1 autoantibodies were also increased in patients

with ovarian cancer (Kim et al., 2010). Treatment of cells with re-

combinant human STIP1 (rhSTIP1) stimulates ERK1/ERK2 phos-

phorylation, activates DNA synthesis (Arruda-Carvalho et al.,
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2007; Erlich et al., 2007), and enhances cell proliferation (Wang

et al., 2010). These results suggest that STIP1 in cancer cells

acts as a cytokine, with the ability to stimulate cell proliferation.

In this study our microarray results revealed that ID proteins

were upregulated by treatment of ovarian cancer cells with

rhSTIP1. Interestingly, ERK1/ERK2 was not involved in these

STIP1-activated ID pathways. In an attempt to dissect how

STIP1 promotes the proliferation of ovarian cancer cells through

an ERK-independent pathway, we found that STIP1 binds to

a BMP receptor, activin A receptor, type II-like kinase 2 (ALK2)

(the updated gene symbol as ACVR1, gene ID 90), and activates

ID proteins via the SMAD signaling pathway.

RESULTS

STIP1 Activated Expression of ID1, ID3, and ID4 in
Ovarian Cancer Cells
From microarray analysis of gene expression, we found that five

genes were upregulated by treatment with rhSTIP1 for 24 hr in

MDAH2774 and SKOV3 (Figures 1A and S1; Table S1). ID3 gene



Figure 2. Secreted STIP1 Activated ID3 through SMAD Proteins

(A) Knockdown of endogenous SMAD1 and SMAD5 by siRNA decreased the

stimulation of ID3 protein levels by treatment with 0.4 mM of rhSTIP1.

(B) Suppression of endogenous STIP1 by siRNA did not affect ID3 stimulation

by rhSTIP1.

(C) STIP1-induced binding of SMADs to two ID3 promoter regions was

assayed with ChIP assays with anti-SMAD1/SMAD5 antibody. Two putative

SMAD1/SMAD5-responsive elements (BREs) in ID3 promoter region are

depicted in the upper panel. The PCR products were separated by 5%

nondenature acrylamide gel.

(D) Two reported SMAD binding sites in ID3 promoter are at the 1 kb region

(shown in black bar) and the �3 kb region (shown in gray bar). Three

independent ChIP experiments were quantified by real-time QPCR, and

results shown are mean ± SE.

See also Figure S2.
that promotes cell proliferation was markedly activated by

treatment with rhSTIP1 in ovarian cancer cell lines (Figure 1A).

STIP1-activated expression of ID3 was further validated by real-

time quantitative PCR (QPCR) at different time points (Figure 1B).

Also, the amount of ID3 protein was increased by treatment with

rhSTIP1 in ovarian cancer cells (Figure 1C). Results of the ID3

promoter reporter assays indicated that STIP1 stimulated the

full-length activity from 1.9- to 2.3-fold. The reporter activities

were decreased in the truncated promoters: down from 1.3- to

2.0-fold for the �4,432 to �2,281 reporter, 0.7- to 1.2-fold for

the�2,281 to +75 reporter, and no activation for the�982 to +75

reporter (Figure 1D). These results suggested that the STIP1

response element is located in the �4,432 to �2,281 region of

the ID3 promoter, where several SMAD binding sites are located.

The SMAD Signaling Pathways, but Not ERK Pathways,
Were Involved in the Activation of ID Proteins by STIP1
Our previous results indicated that STIP1 activates ERKs (Wang

et al., 2010), so we used the ERK-specific inhibitor, PD98059, to
test whether the ERK pathway was involved in the activation of

ID proteins. Surprisingly, treatment with PD98059 did not signif-

icantly inhibit the effective activation of ID3 mRNA by rhSTIP1

treatment (Figure S2A), and the stimulation of pSMAD1/pSMAD5

by rhSTIP1 was not significantly suppressed by PD98059, either

(Figure S2B). Because SMAD proteins were shown to be

involved in the activation of ID proteins in ovarian cancer (Herrera

et al., 2009; Shepherd et al., 2008), we used RNAi to examine the

roles of SMAD proteins in the activation of ID3 protein by STIP1.

Knocking down SMAD1 and SMAD5 significantly suppressed

the activation of ID proteins by rhSTIP1 (Figure 2A). We also

checked the role of endogenous STIP1 in ID3 stimulation with

small interfering RNA (siRNA) technology. After expression of

endogenous STIP1 was suppressed, we still observed the stim-

ulation of ID3 by rhSTIP1 (Figure 2B).

Because there are two BMP-responsive elements (BREs) in

the ID3 gene (Shepherd et al., 2008), we used anti-SMAD1/

SMAD5 antibodies in chromatin immunoprecipitation (ChIP)

assays to test whether STIP1 activated the binding of SMAD

proteins to the enhancer region of the ID3 gene. Real-time

QPCR results confirmed that treatment of cancer cells with

rhSTIP1 increased the binding of SMAD proteins to the 1 and

the �3 kb enhancer regions of ID3 gene (Figures 2C and 2D).

Taken together, these results indicate that STIP1 activates the

expression of ID3 through the SMAD proteins.

STIP1 Induced Phosphorylation of Endogenous
SMAD1/SMAD5 in Ovarian Cancer Cells
Treatment of human ovarian cancer MDAH2774 cells with

rhSTIP1 induced phosphorylation of SMAD1/SMAD5 in time-

dependent (Figure 3A) and dose-dependent (Figure 3B) fash-

ions. The induction of SMAD phosphorylation by rhSTIP1 was

also detected in six other human ovarian cancers (Figure 3C).

These results indicated that STIP1 activates the canonical

SMAD1/SMAD5 pathway in ovarian cancer cells.

Binding to ALK2 Receptors Was Required for
STIP1-Induced Phosphorylation of SMAD1/SMAD5
To test whether the prion protein was required for the phosphor-

ylation of SMAD proteins by STIP1, we knocked down the prion

protein with siRNA. The knockdown of prion did not suppress the

STIP1-induced phosphorylation of SMAD1/SMAD5 (Figure S3).

On the other hand, 5 nM of the BMP receptor and serine/threo-

nine kinase inhibitor, LDN193189, effectively blocked the STIP1-

induced phosphorylation of SMADs (Figure 4A).

LDN193189 preferentially inhibits ALK2 and ALK3 (IC50 = 5

and 30 nM, respectively) but only weakly inhibits ALK4, ALK5,

and ALK7 (IC50 > 500 nM) (Yu et al., 2008). Knockdown of

ALK2 blocked STIP1-activated SMAD1/SMAD5 phosphoryla-

tion (Figure 4B), suggesting that the BMP receptor ALK2 is

required for STIP1 to activate ovarian cancer cells. Colocaliza-

tion of rhSTIP1 and ALK2 was also observed by confocal immu-

nofluorescent microscopy (Figure 4C). Because some colocal-

ized signals were found intracellularly after rhSTIP1 treatment

for 15 min, we tested whether endocytosis was important for

rhSTIP1-induced SMAD1/SMAD5 phosphorylation. As an inhib-

itor of dynamins, Dynasore blocks the formation of clathrin-

coated vesicles (Macia et al., 2006). Clathrin-dependent
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Figure 3. Secreted STIP1 Activated Phosphorylation of Endogenous

SMAD1/SMAD5

(A) MDAH2774 cells were serum starved for 24 hr and then treated with 0.4 mM

of STIP1 for 0, 5, 10, 20, and 60 min. The phospho-SMAD1/SMAD5 intensities

were assayed by western blot analyses. The total amount of SMAD5 and actin

was used as the protein loading control.

(B) After serum starvation for 24 hr, MDAH2774 cells were treated with various

concentrations of rhSTIP1 for 20 min, and assayed for the activation of

phospho-SMAD1/SMAD5 (upper panel). Summary of dose-responsive

activation of phospho-SMAD1/SMAD5 by treatment with rhSTIP1 for 20 min

(lower panel). Results shown are the mean ± SE from three independent

experiments.

(C) Activation of phospho-SMAD1/SMAD5 by treatment with 0.4 mM of

rhSTIP1 for 20 min in six other ovarian cancer cell lines.
internalization was also required for BMP-SMAD signal trans-

duction (Hartung et al., 2006; Sieber et al., 2009). The interaction

between rhSTIP1 and clathrin was also observed in confocal

immunofluorescent microscopy (Figure 4C). The interaction of

rhSTIP1 and ALK2 was disrupted (Figure 4C), and the induction

of phospho-SMAD1/SMAD5 by rhSTIP1 was repressed by
286 Cell Reports 2, 283–293, August 30, 2012 ª2012 The Authors
treatment of Dynasore (Figure 4D), suggesting that clathrin-

dependent endocytosis was required for the STIP1-activated

ALK2-SMAD signaling pathway. Physical interactions between

rhSTIP1 and ALK2 were further confirmed by immunoprecipita-

tion (Figure 4E) and pull-down experiments (Figure S3B) followed

by western blot analyses (Figures 4E and S3B). To verify that

phospho-SMADs were specifically induced by the interaction

between STIP1 and ALK2, we used a STIP1-neutralizing anti-

body and ALK2 fusion protein to block the rhSTIP1 activation

of the SMAD pathway. At the molarity ratio between anti-STIP1

antibody and rhSTIP1 at 2:1, rhSTIP1-induced SMAD1/SMAD5

phosphorylation decreased, and such phosphorylation was

completely blocked at the ratio of 4:1 (Figure 4F). Similarly, the

ALK2-Fc fusion protein at 8-fold molar ratio (ALK2-Fc fusion

protein, rhSTIP1 at 8:1) suppressed the rhSTIP1-activated

SMAD1/SMAD5 phosphorylation, and the ALK2-Fc fusion

protein at a molar ratio of 16:1 completely blocked SMAD1/

SMAD5 phosphorylation (Figure 4G). These results collectively

indicated that exogenous STIP1 activated the phosphorylation

of SMAD1/SMAD5 through its binding to ALK2 receptor, but

not through binding to prion protein as previously reported by

Zanata et al. (2002).

STIP1 Induced Cell Proliferation through the
ALK2-SMAD Pathway
BrdU is an analog of thymidine that can replace thymidine during

DNA replication, and Ki67 is a nuclear protein that is associated

with cell proliferation. We used BrdU incorporation assay and

immunocytochemistry for endogenous Ki67 as indicators for

cell proliferation (Wang et al., 2010). Treatment with rhSTIP1

increased the BrdU incorporation rate and Ki67 staining of

ovarian cancer cells, and these activations were completely

blocked by treatment with an ALK2/ALK3 inhibitor LDN193189

(Figures 5A and 5B), a STIP1-neutralizing antibody (Figures 5C

and 5D), or an ALK2 siRNA (Figures 5E and 5F). Of note, inhibi-

tion of ERK activity by PD98059 strongly inhibited cell prolifera-

tion, but even in such inhibition, treatment with rhSTIP1 still

significantly stimulated BrdU incorporation (Figure 5A). These

results indicated that ERK pathways are very important for cell

proliferation, but the ALK2-SMAD might be more specific for

the rhSTIP1-stimulated cell proliferation. Furthermore, knock-

down of endogenous STIP1 alone did not inhibit cell proliferation

and neither did it affect the stimulation of cell proliferation by

treatment with exogenous rhSTIP1 (Figures 5E and 5F).

Serum STIP1 concentrations were previously shown to be

higher in patients with ovarian cancer than age-matched healthy

controls (Wang et al., 2010). To further confirm that ovarian

cancer tissues were the source of elevated serum STIP1, we

showed that serum levels of STIP1 in patients with ovarian

cancer were significantly decreased after surgery (p < 0.01)

(Figure 6A). Immunohistochemical analyses of human ovarian

cancer tissues also demonstrated that increased levels of

STIP1 were positively correlated with increased amounts of

phospho-SMAD1/SMAD5 proteins and ID3 (Figure 6B). Notably,

ALK2 staining was also shown in the nucleus, as previously

reported in the Human Protein Atlas (http://www.proteinatlas.

org/ENSG00000115170). Functions of such ALK2 are yet to be

clarified. Significantly positive correlations were found between

http://www.proteinatlas.org/ENSG00000115170
http://www.proteinatlas.org/ENSG00000115170


Figure 4. Secreted STIP1 Activated SMAD1/SMAD5 through Binding to a BMP Type I Receptor ALK2

(A) A BMP type I receptor inhibitor, LDN193189, inhibited the STIP1-activated phosphorylation of SMAD1/SMAD5. MDAH2774 cells were pretreated with various

concentrations of LDN193189 for 24 hr, before 0.4 mM of rhSTIP1 was added for 20 min.

(B) Knockdown of ALK2 with siRNA inhibited the rhSTIP1-activated phosphorylation of SMAD1/SMAD5.

(C) Intracellular colocalization of exogenous STIP1 (green) and endogenous ALK2 (red, left panel), clathrin (red, middle panel) or endogenous ALK2 in the

presence of Dynasore (red, right panel) shown by confocal microscopy. After ovarian cancer cells were treated with rhSTIP1 for 15 min, exogenous STIP1 was

detected with an antibody that recognized the V5 tag of rhSTIP1 (green), whereas ALK2 or clathrin was detected by an anti-ALK2 or anti-clathrin antibody (red).

(D) Endocytosis was essential for rhSTIP1-induced SMAD1/SMAD5 phosphorylation. Cells were pretreated with endocytosis inhibitor-Dynasore for 2 hr, then

treated with 0.4 mM of rhSTIP1 for 20 min.

(E) After proteins in the rhSTIP1-treated cells were crosslinked, the protein complex around ALK2 from 2,000 mg of protein lysate was immunoprecipitated with

specific anti-ALK2 (a-ALK2) antibody, and exogenous rhSTIP1 was identified by western blot analysis with an anti-His tag antibody. A total of 50 mg of identical

protein lysates was used as loading control and probed with anti-His and anti-STIP1 antibodies.

(F and G) STIP1-neutralizing antibody and ALK2-Fc inhibited the rhSTIP1-induced SMAD1/SMAD5 phosphorylation. rhSTIP1 was preincubated with antibody or

ALK2-Fc for 1 hr at 37�C, then added to cells for 20 min. Western blots were performed with indicated antibodies.

See also Figure S3.
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Figure 5. STIP1-ALK2-SMAD Pathway

Promoted Cell Proliferation

BrdU incorporation assay and immunointensity

of Ki67 protein (brown) were used as an index for

cell proliferation. (A), (C), and (E) summarize the

results of BrdU incorporation assays, and (B), (D),

and (F) show representative pictures of Ki67

immunocytochemistry of MDAH2774 cancer cells

treated with ALK inhibitor, LDN 193189, ERK

inhibitor PD98059 (A and B), STIP1-neutralizing

antibody (C and D), ALK2 siRNA, and STIP1si

(E and F), respectively. Results shown are the

mean ± SE from three independent experiments.

Asterisks denote statistical significance (p < 0.05,

paired Student’s t test). The scale bars represent

20 mm.
STIP1 and phospho-SMAD1/SMAD5 expression (p < 0.005;

Figure S4A), between ID3 and phospho-SMAD1/SMAD5

(p < 0.001), and between STIP1 and ID3 expression (p < 0.0001;

Figure S4C). Collectively, these results suggest that, after STIP1

is secreted from ovarian tumor tissues, it binds to the ALK2

receptor of itself (autocrine) and/or neighboring cells (paracrine)

and triggers SMAD1/SMAD5 to activate ID3 expression in vivo.

DISCUSSION

In this study, we demonstrated that, in an autocrine and/or para-

crine fashion, secreted STIP1 from human ovarian cancer cells

binds to a BMP receptor, ALK2, phosphorylates cytoplasmic

SMAD1/SMAD5, and activates ID3 gene expression, promoting

cell proliferation. Marked phosphorylation of SMAD1/SMAD5

was induced by STIP1 at 10 min, and this effect lasted up to

1 hr (Figure 3A). This pattern is similar to that of BMP7 and

BMP9, in which these two proteins stimulated phosphorylation

of endogenous SMAD1/SMAD5 within 15 min and reached the
288 Cell Reports 2, 283–293, August 30, 2012 ª2012 The Authors
maximum between 30 and 60 min (Her-

rera et al., 2009; Macı́as-Silva et al.,

1998). Although STIP1 was reported to

bind to prion protein to activate ERK,

PAK, PI3K, and mTOR pathways in cells

(Caetano et al., 2008; Erlich et al., 2007;

Roffé et al., 2010), our results showed

that the prion protein was not required

for the STIP1-activated SMAD1/SMAD5

pathway (Figure 4A). Our findings of

prion-independent cell stimulation by

STIP1 are consistent with a previous

report by Arruda-Carvalho et al. (2007).

As a receptor serine/threonine kinase,

ALK2 interacts with BMP ligands such

as BMP6, BMP7, and BMP9, and phos-

phorylates the downstream SMAD1/

SMAD5 (Ebisawa et al., 1999; Herrera

et al., 2009; Macı́as-Silva et al., 1998).

We found that STIP1 colocalized and

biochemically interacted with ALK2 and

that ALK2 was required for the STIP1-
induced SMAD signaling pathway (Figure 4). These results

strongly suggest that STIP1 is also a ligand for the ALK2-

SMAD pathway, although the protein sequence of STIP1 is

very different from that of BMPs.

BMPs regulate a variety of cell functions including prolifera-

tion, differentiation, apoptosis, and migration through phosphor-

ylation of SMAD1/SMAD5 (Alarmo and Kallioniemi, 2010), which

is also crucial for tumorigenesis in many cancers including

ovarian cancer. BMP4 induces epithelial to mesenchymal transi-

tion (EMT) in primary human ovarian cancer cells (Thériault et al.,

2007) and also stimulates cell proliferation via upregulation

of proto-oncogene ID3 in ovarian cancer cells (Shepherd et al.,

2008). Upregulated BMP2 in ovarian cancer cells stimulates

the expression of ID1, SMAD6, and SNAIL (Le Page et al.,

2009). In an autocrine fashion, BMP9 promotes the cell prolifer-

ation of immortalized human ovarian surface epithelial cells and

cancer cell lines through the ALK2/SMAD1/SMAD4 pathway

(Herrera et al., 2009). Carcinoma-associated mesenchymal

stem cells (CA-MSCs) from ovarian cancer exhibit increased



expression of BMP2, BMP4, and BMP6, which are required

for the in vitro and in vivo MSC-promoted tumor growth

(McLean et al., 2011). These results indicate that BMP pathways

play an important role in tumor cell proliferation of ovarian

cancer. However, this study shows that STIP1 secreted from

ovarian cancer tissues, similar to BMPs, promotes tumor cell

proliferation through the ALK2-SMAD1/SMAD5 pathway

(Figures 4 and 5).

Endogenous STIP1 interacts with HSP90 and participates in

HSP90-regulated signaling pathways (Taipale et al., 2010). This

interaction was shown to inhibit dimerization of HSP90 N

terminal and its ATPase activity (Lee et al., 2012; Li et al.,

2011), by which STIP1 may cause arrest of the cell cycle as

geldanamycin and its derivative 17-allylaminogeldanamycin

(17-AAG) do (Niikura et al., 2006). Indeed, our results showed

that knockdown of endogenous STIP1 by siRNA slightly

increased cell proliferation (Figures 5E and 5F). Nevertheless,

the STIP1-knocked down cells still responded to the treatment

with rhSTIP1 and further increased cell proliferation (Figures 5E

and 5F). Based on these results, we propose that endogenous

(intracellular) STIP1 may slightly suppress the progress of

the cell cycle by an inhibitory interaction with HSP90, but

exogenous (secreted) STIP1 may bind to cell membrane recep-

tors, prion or ALK2, trigger downstream pathways, and promote

cell proliferation.

We previously reported that serum levels of STIP1 in patients

with ovarian cancer (137.4 ± 112.7 ng/ml, mean ± SD) were

significantly higher than those of age-matched healthy controls

(23.8 ± 15.1 ng/ml) (Wang et al., 2010). The highest serum

STIP1 concentration in peripheral blood of patients with ovarian

cancer was about 1,700 ng/ml (Figure 6A). The serum STIP1

concentrations in patients with ovarian cancer significantly

decreased after surgery (Figure 6A), supporting that the cancer

tissues were the origin of elevated STIP1. Of note, 1.6 nM (about

100 ng/ml) of STIP1 activated greater than 2-fold of SMAD1/

SMAD5 phosphorylation (Figure 3B). Therefore, patients with

ovarian cancer likely had increased activation of ALK2-SMAD-

ID3 pathway from high-serum STIP1 levels. Indeed, the immuno-

histochemical results in ovarian cancer tissues (Figure 6B)

support this notion.

Our discovery that STIP1, in an autocrine or paracrine fashion,

promotes ovarian cancer cell proliferation through the ALK2-

SMAD1/SMAD5 signaling pathways may be used as proof for

principle for various therapeutic strategies. For example, STIP1

in circulation, more importantly those around the cancer tissues,

may be neutralized by specific antibodies (Figures 5C and 5D).

ALK2 may be inhibited by competitive inhibition with ALK2-Fc

fusion proteins (Figure 4G) or by a specific inhibitor (Figures 5A

and 5B). Furthermore, the siRNA technology may be applied to

all players of the signaling pathway, from STIP1 to ALK2 (Figures

5E and 5F) to SMADs (Figure 2).

In conclusion, ovarian cancer tissues secrete STIP1 into the

local environment and eventually into blood circulation. In an

autocrine or paracrine fashion, secreted STIP1 stimulates cancer

cell proliferation by binding to a BMP receptor, ALK2, and

activating the SMAD-ID3 signaling pathways. These results

may be useful for developing further therapeutic strategies for

ovarian cancer.
EXPERIMENTAL PROCEDURES

Subjects

After informed consent was obtained from each patient, serum was collected

from Taiwanese patients with ovarian cancer before surgery and during the

postsurgery follow-up. All of the diagnoses of ovarian cancer were confirmed

by pathologists at Chang Gung Memorial Hospital (CGMH). This study

was approved by the Institutional Review Board of CGMH (IRB #94-975B,

#98-1982B, #98-1995A3).

Culture and Treatment of Cell Lines

Human ovarian cancer cell lines (SKOV3, TOV-21G, TOV 112D, OV-90,

MDAH2774) and human embryonic kidney epithelial 293 cells were obtained

from the American Type Culture Collection (Manassas, VA, USA). The ovarian

cancer cell lines BR (Wang et al., 1998) and BG1 (Geisinger et al., 1989) have

been previously described. All cells were cultured in DMEM/F12with 10% fetal

bovine serum and appropriate amounts of penicillin and streptomycin. Proto-

cols for rhSTIP1 purification and treatment have been previously reported

(Wang et al., 2010). rhSTIP1 was fused with two tags, 63 histidine and V5,

and thus, it could be purified or detected with nickel agarose, anti-his, or

anti-V5 antibodies. For the use of specific inhibitors, cells were pretreated

with 10 mM of PD98059 (ERK inhibitor; Calbiochem, Merck, Germany) for

1 hr, 80 mM of Dynasore (endocytosis inhibitor; Sigma-Aldrich, St. Louis) for

2 hr, or LDN193189 (ALK2 and ALK3 inhibitor; Stemgent, San Diego, CA,

USA) for 24 hr before rhSTIP1 was added.

DNA Transfection and Luciferase Reporter Assays

Protocols for DNA transfection and luciferase reporter assays were previously

reported (Wang et al., 2010). Briefly, cells were trypsined and resuspended in

serum-free RPMI at the concentration of 107 cells/ml. A total of 200 ml of cell

suspensions was mixed with 5 mg of reporter DNA and 20 ng of renilla plasmid,

transferred to 2mm gap electroporation cuvette, and pulsed at 120V for 70 ms

with BTX ECM2001 (BTX, Canada). Cells were reseeded into 6-well plates and

cultured in DMEM/F12 with 0.2% fetal bovine serum overnight. During the next

day, cells were treated with rhSTIP1 for 24 hr, and luciferase activity was

measured with the Dual-Luciferase Reporter Assay System (Promega,

Madison, WI, USA) according to the manufacturer’s instructions. Four ID3

promoter reporters, the full-length ID3 promoter construct (nt �4,432 to +75)

and three truncated constructs (�2,281 to +75, �982 to +75, and �4,432

to �2,281) (Figure 1C), were kind gifts from Dr. Trevor G. Shepherd of

Dalhousie University, Canada (Shepherd et al., 2008).

Transfection of siRNA

MDAH2774 (3 3 105 cells in 6-well plates) was transfected with 50 nM of

double-stranded RNA in Lipofectamine RNAimax (Invitrogen, Carlsbad, CA,

USA) according to manufacturer’s protocol. Small interfering prions, si-ALK2

and si-ALK3, were purchased fromDharmacon (Lafayette, CO, USA). si-STIP1

was purchased from Sigma-Aldrich; si-Smad1 and si-Smad5 were from

Invitrogen. After 72 hr of transfection, suppression of targeted genes was

confirmed by real-time QPCR and western blot analyses.

Western Blot Analysis

Cell lysates were prepared with RIPA buffer (150 mM NaCl, 20 mM Tris-Cl

[pH 7.5], 1%Triton X-100, 1%NP-40, 0.1%SDS, 0.5%deoxycholate) contain-

ing freshly added proteinase and phosphatase inhibitors (Bionovas, Toronto).

Protein concentrations were assayed with the Bradford method. A total

of 50 mg of each sample was electrophoresed in 10% SDS-PAGE and

transferred to nitrocellulose membranes. All antibodies were from commercial

sources: SMAD1, SMAD4, and SMAD5 (Epitomics, Burlingame, CA, USA);

phospho-SMAD1/SMAD5 (Millipore, Billerica, MA, USA); prion, ID3 (Abcam,

Cambridge); actin (Sigma-Aldrich); and corresponding horseradish peroxi-

dase-conjugated antibodies (Santa Cruz Biotechnology, Santa Cruz, CA,

USA). Enhanced chemiluminescence reagents were from Millipore. The signal

intensity of autoradiogram was quantified using the UN-SCAN-IT software

(Silk Scientific, Orem, UT, USA), and relative intensity of each sample was

normalized by the corresponding actin intensity. For antibody neutralization

assay, cells were cultured in serum-free medium for 24 hr and then treated
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with rhSTIP1 in the presence or absence of anti-STIP1 monoclonal antibody

(Abnova, Taipei, Taiwan) or ALK2-Fc (R&D Systems, Minneapolis) mixtures,

which were preincubated at 37�C for 1 hr for 24 hr. Endogenous phospho-

SMAD1/SMAD5 were detected by western blot analysis.

RNA Extraction, Microarray Analysis, and Real-Time QPCR

Total RNA was isolated with TRIzol reagent (Invitrogen). Gene expression

profiles of the STIP1-treated cells and vehicle-treated control cells were

analyzed with a U133A gene chip (Affymetrix, Santa Clara, CA, USA), as

previously reported (Tsai et al., 2007). For real-time QPCR, first-strand cDNA

was synthesized with an oligo-T primer using SuperScript III First-Strand

Synthesis Kit (Invitrogen). Gene expression of ID1, ID3, and GAPDH mRNA

was analyzed with the TaqMan Gene Expression Assay (Applied Biosystems,

Foster City, CA, USA).

ChIP Assay

Briefly, rhSTIP1-treated or control cells were treated with a final concentration

of 1% formaldehyde at RT for 10min to crosslink proteins to DNA. The reaction

was stopped by the addition of glycine (final concentration of 0.125 M). Cells

were scraped from the culture dishes into PBS that contained proteinase

inhibitors. Cell pellets were resuspended in lysis buffer (5 mM PIPES/KOH

[pH 8.0], 85 mM KCL, 0.5% NP-40) and left on ice for 10 min. Nuclei collected

by centrifugation were lysed in nuclear lysis buffer (50 mM Tris [pH 8.1], 10 mM

EDTA, 1% SDS) and incubated on ice for 10 min. Lysates were sonicated to

obtain chromatin with an average length of �600 bp. After centrifugation,

1 mg of protein supernatant was diluted 5-fold in ChIP dilution buffer (0.01%

SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris [pH 8.1], 167 mM

NaCl). Immunocomplexes were precipitated overnight at 4�C with 5 mg of

specific antibodies, followed by five sequential washes with low-salt, high-

salt, LiCl, and Tris-EDTA buffer (pH 7.8), respectively (Weinmann et al.,

2001). Washed immunoprecipitates were eluted with elution buffer (1% SDS,

0.1MNaHCO3) at RT, followed by two runs of 15min vortex and centrifugation.

Formaldehyde crosslinks were reversed by incubation in a 65�C water bath

for 5 hr. After treatment with Proteinase K followed by phenol/chloroform

extraction, DNA fragments were recovered by ethanol precipitation. Immuno-

precipitated DNA was amplified by real-time QPCR. The primers used to

detect the ID3 enhancer sequence were designed according to a previous

report by Shepherd et al. (2008). The following real-time QPCR conditions

were used: 95�C for 10 min, 40 cycles of 95�C for 10 s, 60�C for 15 s, and

72�C for 10 s. The SMAD1/SMAD5 antibodies were purchased from Santa

Cruz Biotechnology.

Immunohistochemistry

Paraffin-embedded ovarian cancer tissues were sectioned to 4 mm, deparaffi-

nized with xylene, and rehydrated with a series of ethanol solutions. Sections

were stained with mouse IgG control, anti-human STIP1 antibody (Abnova),

anti-phospho-SMAD1/SMAD5 antibody (Millipore), anti-ALK2 antibody (Santa

Cruz Biotechnology), or anti-ID3 antibody (Abcam) in an automated immuno-

histochemistry (IHC) stainer with Ventana Basic DAB (3,30-diaminobenzidine)

Detection Kit (Tucson, AZ, USA), according to the manufacturer’s protocol.

Hematoxylin was used for counterstaining. To quantify immunointensity of

each IHC slide, histoscores were calculated by multiplying percentage (%)

of tumor cells (0%–100%) by immunointensities (0–3), as previously described

(Chao et al., 2012).

Ki67 Immunocytochemistry and BrdU Proliferation Assay

Procedures for Ki67 staining and BrdU assay were previously reported

(Wang et al., 2010). For BrdU assays, ovarian cancer cells were seeded at

a density of 104 cells/well in a 96-well plate overnight. After culturing in
(B) Colocalization among STIP1, ALK2, phospho-SMAD1/SMAD5, and ID3 in ov

for the first antibody, and the tissues were counterstained by hematoxylin. Scale

lower panels.

(C) Our working model of activation of the ALK2-SMAD-ID3 pathway by secrete

See also Figure S4.
serum-free medium for 24 hr, cells were treated with 0.4 mM of rhSTIP1 in

the presence of BrdU for 24 hr. DNA synthesis activity was assayed using

BrdU ELISA kit (Roche Applied Science). For immunocytochemistry studies

of Ki-67, MDAH2774 cells were cultured on Lab-Tek II chamber slides (Nalge

Nunc, Denmark) overnight. After serum starvation or RNAi transfected for

72 hr, cells were treated with 0.4 mM of STIP1 with/without 5 nM of a BMP

inhibitor, LDN193189, or an ERK inhibitor, PD98059, for another 24 hr. The

slides were fixed with 99.9% ethanol, rehydrated with PBS, treated with 3%

hydrogen peroxide for 20 min, permeabilized with 0.1% Triton X-100

(Sigma-Aldrich) for 15min, and stained with anti-Ki67 antibody (Thermo Scien-

tific, Rockford, IL, USA).

Immunofluorescent Microscopy

Cells were cultured on cover slides at the concentration of 33 105 cells/well in

6-well plates overnight, and underwent serum starvation for another 24 hr.

After incubating with 0.4 mM of rhSTIP1 for 15 min at 37�C, cells were fixed

with 2% paraformaldehyde at 4�C for 30 min, and incubated in blocking buffer

(5% normal goat serum in PBS) to reduce nonspecific binding for 1 hr at RT.

For rhSTIP1 and ALK2 staining, cells were incubated with amousemonoclonal

anti-V5 antibody (Invitrogen; 1:100) to detect the V5 and His-fused rhSTIP1

and a rabbit polyclonal anti-ALK2 antibody (Santa Cruz Biotechnology;

1:100), anti-clathrin antibody (Abcam). After incubation with anti-Alexa Fluor

488 (1:100) and anti-mouse Alexa Fluor 546 (1:100; Invitrogen), the slides

were mounted with VECTASHIELD mounting medium (Vector Laboratories,

Burlingame, CA, USA), and analyzed under the Leica TCS SP2 laser-scanning

confocal system (Leica, Germany).

Immunoprecipitation

After serum starvation for 24 hr, MDAH2774 cells were incubated with 0.4 mM

of rhSTIP1 for 4 hr at 4�C. Proteins were crosslinked using 1 mM of Disuccini-

midyl suberate and Bis(sulfosuccinimidyl)suberate (BS3) (Thermo Scientific) at

4� for 30 min as previously reported by Greenwald et al. (2003). Cell lysates

were preparedwith RIPA buffer with proteinase inhibitors, and 2mg of proteins

was incubated with nickel agarose (Invitrogen) at 4�C overnight with agitation.

The rhSTIP1 was tagged with V5 and 63 histidine; thus, it adheres to nickel

agarose beads. The nickel agarose was washed three times with native

wash buffer (50 mM NaH2PO4, 500 mM NaCl, 20 mM imidazole [pH 8.0]),

and proteins were eluted from the protein complex by native elution buffer

(50 mM NaH2PO4, 500 mM NaCl, 250 mM imidazole [pH 8.0]). For reversed

immunoprecipitation, ALK2 was immunoprecipitated from 2 mg of protein

extract by using 2 mg of anti-ALK2 antibody (Santa Cruz Biotechnology),

then was performed by ImmunoCruz IP/WB optima system (Santa Cruz

Biotechnology). Each sample was electrophoresed with 8% SDS-PAGE. The

antibody for ALK2 (Santa Cruz Biotechnology) and the antibody for STIP1

(Abnova) or HIS (Millipore) were used for western blot analysis.

ELISA for STIP1

The development of STIP1 ELISA was reported previously (Wang et al., 2010).

Briefly, we used a mouse monoclonal antibody (Abnova) as the capture

antibody, which was coated onto 96-well plates (Nunc F8 MaxiSorp, A/S,

Roskilde, Denmark). Another biotinylated mouse monoclonal antibody

(Abnova) was used as the detection antibody, which could be detected by

the Amdex streptavidin-peroxidase conjugate. TMB substrate was used for

color formation. The reaction was stopped by the addition of 100 ml/well of

1 N H 2SO4. Absorbance was determined at 450 nm in a microplate spectro-

photometer (Molecular Device SPECTRA Max model 190). The detection

sensitivity of our STIP1 ELISAwas 2 ng/ml. Intra-assay CVs of the STIP1 ELISA

were 4.6% at 59.5 ng/ml (n = 6) and 5.6% at 16.5 ng/ml (n = 6). Interassay CVs

were 10.6% at 59.5 ng/ml concentration (n = 7) and 9.4% at 16.5 ng/ml (n = 7).
arian cancer tissues was shown by IHC. IgG was used as a negative control

bars represent 100 mm in the upper panels of micrographs and 20 mm in the

d STIP1.
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