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In this study, a procedure for estimating Young’s modulus of textured and non-textured polycrystalline
materials was examined based on finite element analyses, which were performed using three-dimen-
sional polycrystalline finite element models of a random structure, generated using the Voronoi tessel-
lation. Firstly, the local stress/strain distribution and its influence on macroscopic elastic properties
were evaluated. Then, the statistical relationship between Young’s modulus obtained from the finite
element analyses and averaged Young’s modulus of all grains evaluated based on Voigt’s or Reuss’
model was investigated. It was revealed that the local stress/strain in the polycrystalline body is
affected by crystal orientation and deformation constraint caused by adjacent grains, whereas only
the crystal orientation affects Young’s modulus of the polycrystalline body when the number of grains
is large enough. It was also shown that Young’s modulus correlates well with the averaged Young’s
modulus of all grains, in which the size of grains is considered in the averaging. Finally, a procedure
for estimating Young’s modulus of textured and non-textured materials was proposed. Young’s modu-
lus of various materials can be estimated from the elastic constants of single crystal and the distribu-
tion of crystal orientation and size of grains, which can be obtained by using electron backscatter
diffraction (EBSD).

Æ 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Since a polycrystalline material is an aggregate of crystal grains of
various sizes and shapes, its macroscopic properties are affected by
the properties of individual grains. The elastic deformation of a sin-
gle crystal exhibits anisotropy in most materials and depends on the
orientation of the crystal. However, the macroscopic behavior of
polycrystalline materials can be regarded as isotropic and homoge-
neous in terms of elastic deformation when the materials have ran-
dom crystallographic and morphologic texture. The influence of the
crystal orientation of individual grains on the elasticity of the aggre-
gate is minor. Therefore, for engineering structural materials, we
consider not the properties of individual grains but those of their
aggregate, such as Young’s modulus and Poisson’s ratio.

However, this assumption may not be true when the material
does not consist of a sufficient number of grains. Young’s modulus
of a micro-structure consisting of a small number of grains is depen-
dent on the crystal orientations of individual grains in addition to the
elasticity of a single crystal (Mullen et al., 1997; Nygårds, 2003). Even
if the number of grains is large enough, Young’s modulus is influ-
enced by the crystal orientation of each grain for the textured mate-
rial. In order to estimate Young’s modulus of such structures, it is
important to identify local properties, which are the elasticity and
crystal orientation of each grain. Although it is difficult to identify
ll rights reserved.
the crystal orientations of all grains, a statistical distribution of crys-
tal orientation can be obtained by using X-ray diffraction or electron
backscatter diffraction (EBSD).

Once the crystal orientation of each grain or its statistical distri-
bution is identified, Young’s modulus of the aggregate can be eval-
uated by averaging Young’s modulus of each grain (hereafter, local
Young’s modulus) based on a geometrical assumption. However, as
explained in detail later, the geometrical condition (uniform local
strain or stress) in a polycrystal is not obvious due to the complex-
ity of the geometrical structure of a crystal grain. Furthermore, the
complex geometry causes nonuniform stress at the microstructural
level even under a uniform remote stress condition (Hashimoto
and Margolin, 1983; Nichols et al., 1991; Sarma et al., 1998;
Schroeter and McDowell, 2003; Kanit et al., 2003; Kamaya et al.,
2007). The deformation constraint caused by neighboring grains
as well as the variation in local Young’s modulus induces large
stress (or strain) near the grain boundary (Barbe et al., 2001; Diard
et al., 2005; Kamaya, 2009). Such nonuniform stress may affect the
macroscopic Young’s modulus.

In order to quantify the effect of complex geometry and the
local stress distribution in the polycrystalline material, it is necessary
to use a numerical approach such as the finite element method. It
has been shown that the local stress and strain distribution can
be solved by using a reconstructed model of the grain structure
and crystal orientations (Sumigawa et al., 2004; Zhao and Tryon,
2004; Lewis et al., 2005; Musienko et al., 2007; St-Pierre et al.,
2008). Several attempts have been made to evaluate Young’s

https://core.ac.uk/display/82490708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kamaya@inss.co.jp
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


z

x

y

W

W

Grain 1

Grain 2
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modulus by elastic finite element analysis (FEA) by using polycrys-
talline models which were made by the Voronoi tessellation and of
which crystal orientations were assigned randomly (Mullen et al.,
1997; Chu et al., 2000; Nygårds, 2003; Sakaida and Sato, 2003;
Serizawa et al., 2004). The FEA results showed reasonable Young’s
moduli, although they did not treat the textured material.

The objective of this study is to quantify the influence of
texture on Young’s modulus of the polycrystalline material.
Three-dimensional polycrystalline finite element models of ran-
dom structure were generated using the Voronoi tessellation.
The local stress/strain distribution and its influence on elasticity
were evaluated. Then, the statistical relationship between
Young’s modulus obtained from FEA and those from the aver-
aged value of the local Young’s modulus of all grains was inves-
tigated, and a procedure for estimating Young’s modulus from
the crystal orientations (or there distribution) was developed.
The estimated Young’s modulus was compared with the experi-
mental results obtained using specimens of textured and non-
textured materials. Finally, the procedure was generalized for
various materials of different degree of anisotropy.

2. Procedure of analysis

2.1. Polycrystalline finite element models

Fig. 1 illustrates the geometry of the analyzed body of length L
(=2W), width W, and thickness W. A uniform tensile load, Po, was
applied at the top and bottom of the body. In order to investigate
the influence of deformation constraint, a bi-crystal model was
made as shown in Fig. 2. Then, as shown in Fig. 3, random morpho-
logic textured polycrystal models were generated by the Voronoi
tessellation (Kitamura et al., 1993; Zhao and Tryon, 2004; Kamaya,
2004). The models consist of 16, 128, 432, 1024 and 2000 grains,
and these are referred to as N16, N128, N432, N1024 and N2000,
respectively. Each grain was divided into 8-nodes solid elements
(in the bi-crystal model) or 4-nodes solid elements (in the other
polycrystal models) by using the commercial mesh generator,
Po
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y

Fig. 1. Geometry and boundary condition of analyzed body.

Finite element mesh

Fig. 3. Generated three-dimensional polycrystal model (number of grains: 2000).
PATRAN ( PATRAN, 2007), in conjunction with an original
programmed procedure. The mesh division was relatively fine near
grain boundaries and their junction points. The total number of
elements was 31,250, 9073, 26,225, 124,467, 231,694 and
1,448,324 for the bi-crystal, N16, N128, N432, N1024 and N2000
models, respectively.

2.2. Finite element analysis

Each grain was assumed to possess the anisotropic elasticity of
cubic symmetry. The elastic constants used in this study are sum-
marized in Table 1 (Ledbetter, 1981; Nagashima, 1984; Hosford,
1993). The constants for Type 316 stainless steel (SS) (Ledbetter,
1981) were mainly used except the cases for investigating the
influence of material. Crystal orientations were determined ran-
domly or chosen randomly from data groups, which were obtained
from specimens of Type 316 stainless steel.

The general-purpose finite element solver ABAQUS, Version 6.5,
(ABAUS, 2005) was employed for the elastic analyses. Young’s
modulus was derived from the displacement of the edge of the
model, do, and denoted as EFEM.



Table 1
Elastic constants used for analyses (GPa).

C11 C12 C44 Reference

Stainless steel (SS) 198 125 122 Ledbetter (1981)
Cu 168.4 121.4 75.4 Nagashima (1984)
Ni 246.5 147.3 124.7 Nagashima (1984)
Si 166.2 64.4 79.7 Hosford (1993)
Pb 49.5 42.3 14.9 Hosford (1993)
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3. Young’s modulus and crystal orientations of test specimens

Crystal orientations for the data group were obtained from spec-
imens of Type 316 stainless steel. Five specimens were prepared, in
which four specimens were made from the same material, but which
exhibited different degrees of crystallographic texture depending on
the sampling position. The alloying constituents and the texture of
material are shown in Table 2. Crystal orientations were identified
for each grain using EBSD. In many grains, the (100) plane is perpen-
dicular to the loading axis. Crystal orientations of more than 5000
grains were measured for each of the five specimens and were
recorded for each data group. The area of each grain was identified
by counting the number of pixels in the crystal orientation map.

Young’s modulus of the specimens was measured by strain
gages and the results are shown in Table 2. The textured material
showed a relatively small Young’s modulus.

4. Young’s modulus of aggregates

The elastic relationship between global strain {e(i)} and global
stress {r(i)} of single crystal can be expressed as (Serizawa et al.,
2004)

frðiÞg ¼ ½TðiÞ��1½C�½T ðiÞ�feðiÞg; ð1Þ

where [C] is the stiffness matrix and [T(i)] represents the transform
matrix of the stiffness from the global coordinate system to the
crystal one of grain i, and is calculated by the crystal orientation.
Young’s modulus of an aggregate of grains can be obtained by aver-
aging the elasticity of all grains. However, it is not obvious how to
perform this averaging for a polycrystalline material. The following
two extreme methods have been proposed (Voigt, 1928; Reuss,
1929). Voigt’s model assumes uniform local strains. Based on this
assumption, the averaged stiffness [C]V can be obtained as

½C�V ¼
1

Vo

XNg

i

V ðiÞ½TðiÞ��1½C�½TðiÞ�; ð2Þ

where V(i) denotes the volume of grain i, and Vo is the total volume
of the polycrystalline body whose number of grains is Ng. On the
other hand, Reuss’ model assumed uniform local stress, therefore,
the compliances can be averaged for each grain. The averaged com-
pliance [S]R is obtained by

½S�R ¼
1

Vo

XNg

i

V ðiÞ½T ðiÞ��1½C��1½TðiÞ�: ð3Þ
Table 2
Chemical contents and measured Young’s moduli of test specimens.

Specimen Young’s
modulus (GPa)

Chemical content (wt%)

TS1 147 0.016C, 0.37Si, 1.46Mn, 0.030P, 0.001S, 11.69Ni,
17.31Cr, 2.12Mo and balance in FeTS2 159

TS3 151
TS4 156

NT1 198 0.021C, 0.49Si, 1.39Mn, 0.032P, 0.025S, 12.11Ni,
17.14Cr, 2.05 Mo and balance in Fe
Young’s modulus can be evaluated from the global deformation of
the aggregate obtained using the stiffness [C]V and compliance
[S]R. Young’s modulus obtained from Voigt’s model (EV) and that
from Reuss’ model (ER) give the upper and lower bounds to the true
value, respectively (Hosford, 1993).

5. Results and discussion

5.1. The bi-crystal model

Fig. 4 shows the change in Young’s modulus of the bi-crystal mod-
el with the rotation angle of Grain 1. Grain 1 was rotated from the
(100) plane to (110) plane with respect to the loading axis, whereas
Grain 2 was fixed to the (100) plane. The elastic constants of SS were
used. Since the grain structure of the bi-crystal model is the same as
that of Reuss’ model, the change in Young’s modulus (EFEM) was
almost identical to ER. However, EFEM is not exactly the same as ER.
Fig. 5 shows the stress (r22) and strain (e22) near the surface of the
body when h = 45̄. Here, the stress and strain were obtained by inter-
polating adjacent integral points of the solid elements, and normal-
ized by the macroscopic value ro(=Po/W2) and eo(=do/L),
respectively. According to Reuss’ assumption, the stress should be
the same in the entire body. However, some variation in stress was
observed, although the magnitude of variation was much smaller
than that of strain. The deformation constraint between the grains
causes deviation from the ideal Reuss’ model and variation of the
stress and strain near the grain boundary. The magnitude of the dif-
ference between EFEM and ER is much smaller than the change in
Young’s modulus caused by the rotation of Grain 1.

5.2. Stress and strain distributions in polycrystal models

Fig. 6 shows the change in stress (r22) and strain (e22) along a
line parallel to the loading axis in models N16 and N128. Crystal
orientations were assigned randomly and the elastic constants of
SS were used. In the polycrystalline body, both of Voigt’s and
Reuss’ model are not appropriate due to the complexity of grain
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structure. The extent of variation of the stress and strain was sim-
ilar, and this means that neither of Voigt’s and Reuss’ models is
predominant in the polycrystalline body.

The stress and strain tended to vary grain by grain. This sug-
gests that the stress (strain) in the grain is governed primarily by
crystal orientation. This can be confirmed by Fig. 7, which shows
the relationship between the local Young’s modulus for each grain
and the averaged stress and strain. The local Young’s modulus was
calculated from the stiffness matrix in the global coordinate sys-
tem ([T(i)]�1[C][T(i)]) of each grain, and the averaged stress and
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strain were the average of all elements in the grain. Both of the
strain and stress exhibit correlation with the local Young’s modu-
lus. Therefore, it is expected that the macroscopic deformation
(do) correlates with the average of the local Young’s modulus such
as EV and ER. Note that a clear correlation could not be found
between the local Young’s modulus and grain size.

The stress and strain varied significantly inside some grains due
to the deformation constraint caused by adjacent grains, and this
variation might have affected the Young’s modulus.

5.3. Young’s modulus of polycrystalline body

The relationship between Young’s moduli obtained by FEA
(EFEM) and those estimated by Voigt’s (EV) and Reuss’ models (ER)
is shown in Fig. 8. This figure includes 100 results obtained using
20 combinations of crystal orientation that were selected
randomly from each data group. Due to differences of the degree
of crystallographic texture of specimens and the combinations of
crystal orientations, Young’s moduli showed large variations, and
the range of variation of the N16 model was larger than that of
the N128 model. The effect of local Young’s modulus of each grain
on Young’s modulus is larger for the model with fewer grains.

In spite of large variation, EV and ER correlate well with EFEM,
and form the upper and lower limits of EFEM, respectively. This
implies that Young’s modulus of the polycrystalline body greatly
depends on the combinations of crystal orientations. The ambigu-
ousness of the geometrical condition (uniform local strain or uni-
form local stress) and the deformation constraint also affects
Young’s modulus in the polycrystalline body, although it seems
to bring about a relatively small effect. In the N16 model, EFEM is
nearer to ER rather than EV. The polycrystalline model is a rectan-
gular parallelepiped and longer in the loading direction. Therefore,
the model tends to satisfy the uniform local stress condition
(Reuss’ model) statistically. This effect is reduced as the number
of grains increases.
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In Fig. 9, EV and ER were evaluated assuming that the volume of
grains was the same for all grains, whereas the results of FEA were
the same as shown in Fig. 8(b). The correlation becomes worse
than that of Fig. 8(b), implying that it is important to consider
the volume of grains for the estimation of Young’s modulus by
Eqs. (2) and (3).

Fig. 10 shows the change in averaged deviation of EFEM from the
regression line. An increase in the number of grains enhances the
averaging effect and reduces the effect of the geometrical condition
and the deformation constraint. As the number of grains increases,
Young’s modulus of the polycrystalline aggregate appears to be
determined by the combination of the crystal orientations of the
grains and their size. The averaged error from the regression line
is less than 0.3 GPa when the number of grains is more than 1024.

5.4. Estimation of Young’s modulus of stainless steel

Since EFEM correlates well with ER and EV in a polycrystalline
body of a large number of grains, by evaluating the correlation it
is possible to estimate Young’s modulus of the material from ER

or EV quantitatively. By using the N1024 model, the correlation
was obtained from 1000 calculations using 200 combinations of
crystal orientation for each data group as shown in Fig. 11. EFEM
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correlates fairly well with ER and EV, and a linear regression leads
to the following equations:

EFEA ¼ 1:00EV � 21:5; ð4Þ
EFEA ¼ 1:21ER � 2:17: ð5Þ

The inclination of the regression line is almost unity for Voigt’s
model, whereas it is 1.2 for Reuss’ model. EFEM tended to be close
to ER for a small Young’s modulus as shown in Fig. 8. Since Eq. (4)
is easier to treat, Young’s modulus was estimated by

Eest ¼ EV � 21:5; ð6Þ

where Eest is the estimated Young’s modulus.
By using Eq. (6), Young’s modulus of each specimen was esti-

mated using 2000 crystal orientations in each data group. In the
measurement of crystal orientations of the specimens, the area of
grains at the observed surface was identified in addition to the crys-
tal orientation. The 1.5th power of area was used as V(i) for the calcu-
lation of EV by Eq. (2). Fig. 12 compare the estimated Young’s
modulus and the experimental results. These values agree well, sug-
gesting that the current estimation procedure is valid. In other
words, the difference in Young’s modulus between the specimens
can be explained by the crystallographic texture. In spite of large
variations in Young’s modulus due to texture, it could be estimated
by measuring the orientation and size of crystals by using EBSD.

5.5. Estimation of Young’s modulus of various materials

The estimation of Young’s modulus using Eq. (6) is valid only for
stainless steel. In order to apply this estimation procedure to vari-
ous materials, the correlation was investigated for several materi-
als, which are listed in Table 1. By using the N1024 model, the
correlation was obtained from 1000 calculations using 200 combi-
nations of crystal orientation for each data group as was done for
Fig. 11. Fig. 13 shows the obtained correlation, where the parame-
ter for anisotropy of elasticity was defined by the equation:

A ¼ 2C44

C11 � C12
; ð7Þ

where a denotes a parameter representing the correlation defined
by

Eest ¼ EV �
a

EVo
; ð8Þ

where EVo is Young’s modulus of a non-textured material calculated
by Hosford (1993)
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EVo ¼
ðc11 � c12 þ 3c44Þðc11 þ 2c12Þ

2c11 þ 3c12 þ c44
: ð9Þ

As shown in Fig. 13, the parameters A and a show good correlation
and the regression curve was obtained as

a ¼ �0:0048A2 þ 0:068A� 0:075: ð10Þ

Once EV of the material is evaluated, we can estimate Young’s mod-
ulus of a textured material using the elastic constants of a single
crystal.

When the crystallographic texture of the material is weak
enough, the crystal orientations can be regarded as distributed uni-
formly and EV can be evaluated as the average of all orientations. Eq.
(9) for EVo was derived for a non-textured material assuming that the
sizes of grains are the same. Fig. 14 shows the relationship between
the estimated Young’s modulus, which was evaluated by substitut-
ing EV(eqi) for EV in Eq. (8), and those obtained by FEA, which were per-
formed 1000 times for different combinations of crystal orientation
determined randomly. The agreement of these values implies that
the current estimation procedure can be applied not only to textured
materials but also to non-textured materials.

6. Summary and conclusions

In order to quantify the influence of crystallographic texture on
Young’s modulus of polycrystalline materials, three-dimensional
polycrystal models were analyzed by the finite element method.
Factors that control Young’s modulus of the polycrystalline aggre-
gate were examined and a procedure for estimating Young’s mod-
ulus of textured and non-textured materials was proposed. The
results are summarized as follows:

(1) Young’s modulus is influenced by three factors, which are
the crystal orientation, deformation constraint and geomet-
rical condition (uniform local stress or strain), whereas only
the crystal orientation is relevant to the estimation of
Young’s modulus when the number of grains is large
enough.

(2) Young’s modulus correlates well with the estimated value
based on Voigt’s or Reuss’ model, in which the size of grain
is considered.

(3) By using the proposed procedure, Young’s modulus of tex-
tured and non-textured materials can be estimated from
the elastic constants of a single crystal and the distribution
of crystal orientation and size of grains, which can be
obtained by using EBSD.
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