Balanced k-decompositions of graphs

Hsiang-Chun Hsu a,*, Gerard Jennhwa Chang a,b,c

a Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
b Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan
c National Center for Theoretical Sciences, Taipei Office, Taipei, Taiwan

ABSTRACT

For a given integer \(k \geq 2 \), a balanced k-coloring of a graph \(G \) is a mapping \(c: V(G) \to \{0, 1, 2, \ldots, k\} \) such that \(|A_i| = |A_j| \) for \(1 \leq j < j' \leq k \), where \(A_j = \{v \in V(G): c(v) = j\} \) for \(0 \leq j \leq k \). The balanced k-decomposition number \(f_k(G) \) of \(G \) is the minimum integer \(s \) with the property that for any balanced k-coloring \(c \) there is a partition \(V(G) = V_1 \cup V_2 \cup \cdots \cup V_r \) such that each \(V_i \) induces a connected subgraph with \(|V_i| \leq s \) and \(|V_i \cap A_j| = |V_i \cap A_j| \) for \(1 \leq i \leq r \) and \(1 \leq j < j' \leq k \). In this paper, we determine \(f_k(G) \) for some graphs of high connectivity, trees and complete multipartite graphs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. For a graph \(G \), \(V(G) \) denotes the vertex set and \(E(G) \) the edge set of \(G \). The concept of balanced decomposition number for two colors was introduced by Fujita and Nakamigawa [5] in connection with a simultaneous transfer problem. For further studies of balanced decomposition for two colors, please see [1–4]. The present paper studies this topic from a more general setting.

For a given integer \(k \geq 2 \), a balanced k-coloring of a graph \(G \) is a mapping \(c: V(G) \to \{0, 1, 2, \ldots, k\} \) such that \(|A_i| = |A_j| \) for \(1 \leq j < j' \leq k \), where \(A_j = \{v \in V(G): c(v) = j\} \) for \(0 \leq j \leq k \). As \((A_1, A_2, \ldots, A_k) \) determines \(c \), we also call \((A_1, A_2, \ldots, A_k) \) a balanced k-coloring alternatively. A graph \(G \) with a balanced k-coloring \(c \) is denoted by \((G; c) \) or \((G; A_1, A_2, \ldots, A_k) \). Vertices in \(\bigcup_{1 \leq j \leq k} A_j \) are called colored and vertices in \(A_0 \) are called uncolored.

A balanced set of \((G; c)\) is a vertex set \(S \subseteq V(G) \) such that the subgraph \(G[S] \) induced by \(S \) is connected and \(|A_i \cap S| = |A_j \cap S| \) for \(1 \leq j < j' \leq k \). A balanced decomposition of \((G; c)\) is a partition of \(V(G) \) into balanced sets \(V_1, V_2, \ldots, V_r \). The size of a balanced decomposition of \((G; c)\) is the maximum size of its balanced sets, i.e., \(\max_{1 \leq i \leq r} |V_i| \). Since there may not exist a balanced decomposition for \((G; c)\) if \(G \) is a disconnected graph, we only consider connected graphs in this paper.

Given a connected graph \(G \) with a balanced k-coloring \(c \), the object is to find a balanced decomposition with a smallest size. Then we consider the worst balanced k-coloring such that this min–max value is as large as possible. More precisely, the balanced k-decomposition number of a graph \(G \) is

\[
f_k(G) = \max_{c} \min_{(V_1, V_2, \ldots, V_r)} \max_{1 \leq i \leq r} |V_i|,
\]

* Supported in part by the National Science Council under grant NSC98-2115-M-002-013-MY3.
* Corresponding author. Tel.: +886 227691086.
E-mail addresses: hcsus0222@gmail.com (H.-C. Hsu), gjchang@math.ntu.edu.tw (G.J. Chang).
0166-218X/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi: 10.1016/j.dam.2012.02.029
where \(c \) runs over all balanced \(k \)-colorings of \(G \) and \(\{V_1, V_2, \ldots, V_t\} \) runs over all balanced decompositions of \((G; c)\). A balanced \(k \)-coloring \(c \) of \(G \) is optimal when every balanced decomposition of \((G; c)\) has size at least \(f_k(G) \).

Notice that the balanced 2-decomposition number \(f_2(G) \) of \(G \) is the same as the balanced decomposition number \(f(G) \) introduced by Fujita and Nakamigawa [5]. They established interesting results including (i) \(f(G) = 2 \) if and only if \(G \) is a complete graph of at least two vertices, (ii) \(f(T) = n \) for any tree \(T \) of \(n \) vertices, (iii) \(f(K_{m,n}) = \left\lfloor \frac{n-2}{m} \right\rfloor + 3 \) for any complete bipartite graph \(K_{m,n} \) with \(2 \leq m \leq n \), (iv) \(f(C_n) = \left\lfloor \frac{n}{2} \right\rfloor + 1 \) for any cycle \(C_n \) with \(n \geq 3 \). They then proposed a conjecture that \(f(G) \leq \left\lfloor \frac{n}{2} \right\rfloor + 1 \) for any 2-connected graph \(G \) of \(n \) vertices. They in fact confirmed the conjecture for the case of \([A_1] = [A_2] = 2\). The conjecture was then verified for generalized \(\theta \)-graphs [2], for 3-connected planar graphs and some special graphs [3], for \(TK_4 \) and series-parallel graphs [4], and finally for all 2-connected graphs [1]. It was also proved in [2] that for a graph \(G \) of \(n \geq 3 \) vertices, \(f(G) = 3 \) if and only if \(G \) is \(\left\lfloor \frac{n}{2} \right\rfloor \)-connected but is not a complete graph.

The purpose of this paper is to study the balanced \(k \)-decomposition number \(f_k(G) \) for general \(k \). In particular, we determine \(f_k(G) \) for some graphs of high connectivity, trees and complete \(r \)-partite graphs.

2. Graphs of high connectivity

It is evident that \(f_k(G) \) is small when \(G \) has high connectivity, as shown in the characterizations of graphs \(G \) with \(f(G) = 2 \) (see [5]) and \(f(G) = 3 \) (see [2]).

Suppose \(G \) is a connected graph of \(n \) vertices. For the case when \(n < k \), there is only one balanced \(k \)-coloring, i.e., \(A_k = V(G) \). In this case, \(f_k(G) = 1 \). So, we may only consider the case when \(n \geq k \). In this case, \(k \leq f_k(G) \leq n \). We now characterize graphs \(G \) for which \(f_k(G) = k \).

Proposition 1. For any connected graph \(G \) of \(n \geq k \geq 2 \) vertices, the following statements are equivalent:

1. \(f_k(G) = k \).
2. \(G[S] \) is connected for any \(k \)-vertex subset \(S \subseteq V(G) \), or equivalently, \(G \) is \((n-k+1)\)-connected.
3. The complement of \(G \) does not contain \(K_{p,q} \) for any positive integers \(p \) and \(q \) with \(p + q = k \).

Proof. (1) \(\Rightarrow \) (2). For any \(S = \{v_1, v_2, \ldots, v_k\} \subseteq V(G) \), consider the balanced \(k \)-coloring \(c \) with \(A_j = \{v_j\} \) for \(1 \leq j \leq k \). Then since \(f_k(G) = k \), there exists a balanced decomposition \(\{V_1, V_2, \ldots, V_t\} \) of size at most \(k \) for \((G; c)\). For some \(i \), we have \(V_i \supseteq S \), so \(k \geq |V_i| \geq |S| = k \). Hence, \(S = V_i \) and \(G[S] \) is connected.

(2) \(\Rightarrow \) (1). Suppose \((A_1, A_2, \ldots, A_k) \) is a balanced \(k \)-coloring of \(G \) with \(|A_j| = t \) for \(1 \leq j \leq k \). We can choose mutually disjoint \(k \)-vertex sets \(S_i \) \(1 \leq i \leq t \), such that \(|S_i \cap A_j| = 1 \) for all \(i \) and \(j \). By the assumption, each \(G[S_i] \) is connected and so \((G; A_1, A_2, \ldots, A_k) \) has a balanced decomposition which consists of \(S_1, S_2, \ldots, S_t \) and one-vertex sets. Therefore, \(f_k(G) \leq k \) and so \(f_k(G) = k \).

(2) \(\Rightarrow \) (3). If \(\overline{G} \supseteq K_{p,q} \) for some \(p \) and \(q \) with \(p + q = k \), then taking \(S \) to be the vertices of the \(K_{p,q} \), we have \(G[S] \) is disconnected, a contradiction.

(3) \(\Rightarrow \) (2). If \(G[S] \) is disconnected for some \(S \subseteq V(G) \) with \(|S| = k \), then \(\overline{G}[S] \supseteq K_{p,q} \) for some \(p \) and \(q \) with \(p + q = k \), a contradiction. \(\square \)

Another relation between small balanced \(k \)-decomposition number and high connectivity of a graph \(G \) is the following.

Proposition 2. If \(G \) is a connected graph of \(n \geq k \geq 2 \) vertices and \(f_k(G) \leq 2k - 1 \), then \(G \) is \(\left\lceil \frac{n}{k} \right\rceil \)-connected.

Proof. Suppose to the contrary that \(G \) is not \(\left\lceil \frac{n}{k} \right\rceil \)-connected. Then \(G \) has a cut set \(C \) of \(\left\lceil \frac{n}{k} \right\rceil - 1 \) vertices. Since \(|V(G) - C| = n - |C| \geq (k - 1)|C| + k \geq |C| + 2| \), there exist two vertex sets \(A, B \subseteq V(G) - C \) with \(|A| + |B| = |C| + 2 \) such that there is no edge between \(A \) and \(B \). We color \(A \) and \(|B| - 1 \) vertices of \(C \) by 1, color \(B \) and \(|A| - 1 \) vertices of \(C \) by 2, and choose arbitrary \(k - 2 \) mutually disjoint subsets of size \(|C| + 1| \) from \(V(G) - (A \cup B \cup C) \) as the other \(k - 2 \) color classes. This is permissible since \(|V(G) - (A \cup B \cup C)| \geq (k - 2)(|C| + 1) \). As \(C \) is a cut set, any balanced decomposition for this coloring has a balanced set using at least two vertices colored by 1. Hence, this balanced set has size at least \(2k \) and so \(f_k(G) \geq 2k \), a contradiction. \(\square \)

Notice that a connected graph \(G \) with \(f_k(G) = 2k \) may have small connectivity. For instance, consider the graph \(G \) obtained from \(K_{n-1} \) by adding a new vertex adjacent to a vertex in \(K_{n-1} \). If \(n \geq 2k \), then \(f_k(G) = 2k \) but the connectivity of \(G \) is only 1.

3. Trees

In this section, we determine the balanced \(k \)-decomposition number of a tree \(T \) with \(n \geq k \geq 2 \) vertices. Recall that Fujita and Nakamigawa [5] proved that \(f_2(T) = n \).
Theorem 3. Suppose T is a tree with $n \geq k \geq 2$ vertices, ℓ leaves and $m = n - \ell$ non-leaves. If $\ell = kq + r$, where q is a nonnegative integer and $0 \leq r \leq k - 1$, then

$$f_k(T) = \begin{cases} n - r, & \text{if } m + r \leq k - 1; \\ n, & \text{if } m + r \geq k. \end{cases}$$

Proof. For $k = 2$, the formula in the theorem is $f_2(T) = n$, which was proved by Fujita et al. [5]. Now we may assume that $k \geq 3$.

For the case of $m + r \leq k - 1$, any balanced k-coloring of T has at least r uncolored leaves. So, there is a balanced decomposition whose size is at most $n - r$. Hence, $f_k(T) \leq n - r$. This establishes the upper bound for $f_k(T)$.

For the lower bound, we need to construct a balanced k-coloring of T such that any balanced decomposition of $(T; c)$ has size at least n if $m + r \geq k$, and at least $n - r$ if $m + r \leq k - 1$. We consider two cases.

Case 1. $r = 0$ or $m + r \leq k - 1$.

We draw T as a plane graph inside a circle Ω such that the leaves of T are on Ω. We order the leaves as v_1, v_2, \ldots, v_ℓ along Ω. Let $t = [\ell/k]$. For $r = 0$ or $r \geq 3$, let $A_1 = \{v_1, v_2, \ldots, v_t\}, A_2 = \{v_{t+1}, v_{t+2}, \ldots, v_{2t}\}$ and $A_3 = \{v_{2t+1}, v_{2t+2}, \ldots, v_{3t}\}$. For $r = 2$, since $m \geq k - r = k - 2 \geq 1$, we can choose $A_1 = \{v_1, v_2, v_3, \ldots, v_t\}$, $A_2 = \{v_{t+1}, v_{t+2}, \ldots, v_{2t}\}$ and $A_3 = \{v_{2t+1}, v_{2t+2}, \ldots, v_{3t-1}\}$. Hence, we can choose an ordering of leaves v_1, v_2, \ldots, v_ℓ such that $x \in N(v_{3t-1})$ and $y \in N(v_3)$, we have to redraw T if necessary. Let $A_1 = \{v_1, v_2, \ldots, v_t\}, A_2 = \{v_{t+1}, v_{t+2}, \ldots, v_{2t-1}\}$ and $A_3 = \{v_{2t+1}, v_{2t+2}, \ldots, v_{3t-2}\}$. In all the above cases, we can choose the other $k - 3$ color classes A_4, A_5, \ldots, A_k such that all leaves are colored.

We claim that there is a balanced k-coloring of T^*. For a balanced decomposition of $(T'; A_1, A_2, \ldots, A_k)$, there is a balanced set S containing a path P from v_{t+1} to A_3. Since all paths from A_2 to A_1 must intersect P, all colors 1 and 2 vertices, and hence all colored vertices, must be in S. Because all leaves are colored, S contains all leaves and $T[S]$ is connected. Therefore, $S = V(T)$ and so $f_k(T) = n$.

Case 2. $r \neq 0$ and $m + r \leq k - 1$.

We first claim that we can delete r leaves from T such that all non-leaves remain non-leaves after the deletion. Let B_i be the set of non-leaves with exactly i leaves as its neighbors and $b_i = |B_i|$ for $i \geq 0$. When we delete $i - 1$ leaves from neighbors of a vertex in B_i, all non-leaves remain as non-leaves. Hence the previous claim is equivalent to that $\sum_{i \geq 1} (i - 1) b_i \geq r$. Since $q = 0$ and $r = \ell$, this happens only when $q \geq k$. Hence $n = m + \ell = m + r \leq k - 1$, a contradiction to the assumption that $n \geq k$.

Therefore we can delete r leaves from T to get a tree T' such that T' has the same m non-leaves as T and $r' = \ell - r$ leaves, where $\ell' = qk + r'$ with $r' \geq 0$. Hence $f_k(T') = n - r$ since T' satisfies $r' = 0$ in Case 1. So we have an optimal balanced k-coloring (A_1, A_2, \ldots, A_k) for T' such that the only balanced decomposition of $(T'; A_1, A_2, \ldots, A_k)$ is (T'). Therefore, any balanced decomposition of $(T; A_1, A_2, \ldots, A_k)$ has a component containing $V(T')$. This implies that $f_k(T) \geq n - r$. \hfill \square

4. Complete multipartite graphs

For complete multipartite graphs, Fujita and Liu [2] proved that $f_2(K_{n_1, n_2, \ldots, n_r}) = \left\lceil \frac{n_1 - 2}{n_2} \right\rceil + 3 = \left\lceil \frac{n - 2}{\sum_{i=1}^r n_i} \right\rceil$, where $r \geq 2, n_1 \geq n_2 \geq \cdots \geq n_r \geq 1$ and $n = \sum_{i=1}^r n_i$. The following theorem considers $f_k(K_{n_1, n_2, \ldots, n_r})$ for $k \geq 2$.

Theorem 4. For $r \geq 2$, if complete r-partite graph $G = K_{n_1, n_2, \ldots, n_r}$ has $n \geq k \geq 2$ vertices, where $n_1 \geq n_2 \geq \cdots \geq n_r \geq 1$ and $m = n - n_1$, then

$$f_k(G) = \begin{cases} k + k \ell, & \text{if } t \leq \frac{n - k}{km} < t + \frac{1}{k} \text{ where } t \in \mathbb{Z}^+ \cup \{0\}. \\ k + k \ell + 1, & \text{if } t + \frac{1}{k} \leq \frac{n - k}{km} < t + 1 \text{ where } t \in \mathbb{Z}^+ \cup \{0\}. \end{cases}$$

Proof. Let S_i be the partite set of G with $|S_i| = n_i$ and $\overline{S_i} = V(G) - S_i$ for $1 \leq i \leq r$. First, we give a balanced k-coloring c of G and prove that any balanced decomposition of $(G; c)$ has sufficiently large size.

For the case when $t \leq \frac{n - k}{km} < t + \frac{1}{k}$ with $t \in \mathbb{Z}^+ \cup \{0\}$, we have $|S_1| = n - m \geq (kt - 1) m + k = (tm - m + 1) k$. Consider a balanced k-coloring c of G that colors m vertices of $\overline{S_1}$ and $tm - m + 1$ vertices of S_1 by i for each color i from 2 to k, and leaves the other vertices uncolored. Since some vertex in S_1 must be adjacent to $\left\lceil \frac{tm + 1}{m} \right\rceil = t + 1$ vertices colored by k in any balanced decomposition of $(G; c)$, we have $f_k(G) \geq k + kt$.

For the case when $t + \frac{1}{k} \leq \frac{n - k}{km} < t + 1$ with $t \in \mathbb{Z}^+ \cup \{0\}$, we have $|S_1| = n - m \geq k(tm + 1)$. Consider a balanced k-coloring c of G that colors $tm + 1$ vertices of S_1 by i for each color i from 1 to k, and leaves the other vertices uncolored. Since some vertex in S_1 must be adjacent to $\left\lceil \frac{tm + 1}{m} \right\rceil = t + 1$ vertices colored by k in any balanced decomposition of $(G; c)$, we have $f_k(G) \geq k + kt + 1$. \hfill \square
On the other hand, given a balanced k-coloring of G, we have to find a balanced decomposition of (G: c) with small size. Choose, as many as possible, disjoint balanced sets of k colored vertices. Let β be the maximum. Let U be the union of these balanced sets. If \(S_i - U \) and \(S_j - U \) both have some colored vertices for some \(i \), then we can choose another balanced set of \(k \) vertices outside \(U \), a contradiction to the maximality of \(β \). Hence for \(i \neq j \), both \(S_i - U \) and \(S_j - U \) cannot contain colored vertices. If \(S_i - U \) contains colored vertices of colors from 1 to \(k \), then any one of the previous \(β \) balanced sets of \(k \) vertices has exactly one vertex in \(S_i \), otherwise we can change the balanced \(k \)-sets such that \(β \) is not the maximum.

By the above observations, we may consider three cases: (i) colored vertices are all in \(S_i \cup U \) but not all in \(U \) for some \(i \neq 1 \), and (ii) colored vertices are all in \(S_i \cup U \) but not all in \(U \). For case (i) when \(U \) contains all colored vertices, we have a balanced decomposition of size at most \(K \). For case (ii) when \(S_i - U \) contains some colored vertices for some \(i \neq 1 \), any of the \(β \) balanced \(k \)-sets has one vertex in \(S_i \). Since \(\alpha \), a subset of \(S_i \), has at most \(n_\alpha - 1 \) uncoldored vertices and \(S_i - U \) has at most \(n_i - (k - 1) \beta \leq n_i - \beta \) colored vertices, we have a balanced decomposition of size \(k + 1 \).

Choose, as many as possible, disjoint balanced sets of \(k \) vertices with the \(α \) uncolored vertices in \(S_i \), and at most \(βk \) of the \(k \) colored vertices with the \(1 \) balanced \(k \)-sets. This has size at most \(k + \alpha \), which gives \(f_k(G) \leq k + \alpha \).

For the case when \(t \leq \frac{n - k}{km} < \frac{1}{k} \) with \(t \in \mathbb{Z}^+ \cup \{0\} \), we have \(\ell k \leq n_i - \beta(k - 1) \leq n_i - m < ktm + k - 1 \) and so \(\ell \leq \frac{km(k - 1)}{k} = \ell m = t(\alpha + \beta) \). Now, consider the balanced decomposition formed by grouping at most \(\alpha tk \) of the \(k \) colored vertices with the \(1 \) uncolored vertices of \(S_i \), and at most \(\beta tk \) of the \(k \) colored vertices with the \(\beta \) balanced \(k \)-sets. We remark that in the formula for \(f_k(K_{n_1,n_2,...,n_r}) \), we have \(t = \left\lfloor \frac{n - k}{km} \right\rfloor \) and so

\[
f_k(K_{n_1,n_2,...,n_r}) = k + \left\lfloor \frac{n - k}{km} \right\rfloor + \left\lfloor \frac{n - k}{km} - \frac{n - k}{km} + \frac{k - 1}{k} \right\rfloor.
\]

When \(H \) is a connected subgraph of \(G \), we may not have \(f_k(H) \geq f_k(G) \). For instance, \(f_2(P_3) = 3 \) and \(f_2(P_2) = 2 \). But when \(H \) is a connected spanning subgraph of \(G \), we have the following.

Proposition 5. If \(H \) is a connected spanning subgraph of \(G \), then \(f_k(H) \geq f_k(G) \).

Proof. This is obvious, since all balanced \(k \)-colorings and corresponding balanced decompositions of \(H \) are also those of \(G \), the assertion holds. □

Corollary 6. If \(n = n_i + m \geq 2m \) and \(G \) is a connected graph of \(n \geq k \geq 2 \) vertices such that \(K_{n_1,m} \subseteq G \subseteq K_{n_1,1,1,...,1} = Kn - E(K_{n_1,m}) \), then \(f_k(G) = k + k\left\lfloor \frac{n - k}{km} \right\rfloor + \left\lfloor \frac{n - k}{km} - \frac{n - k}{km} + \frac{k - 1}{k} \right\rfloor \).

Proof. The corollary follows from \(V(K_{n_1,m}) = V(G) = V(K_{n_1,1,1,...,1}) \) and the fact that \(f_k(K_{n_1,m}) = f_k(K_{n_1,1,1,...,1}) = k + k\left\lfloor \frac{n - k}{km} \right\rfloor + \left\lfloor \frac{n - k}{km} - \frac{n - k}{km} + \frac{k - 1}{k} \right\rfloor \) by the previous theorem. □

Corollary 7. If \(G \) is a connected graph of \(n \geq k \geq 2 \) vertices such that \(\alpha(G) \geq \alpha = n - m \), then \(f_k(G) \geq k + k\left\lfloor \frac{n - k}{km} \right\rfloor + \left\lfloor \frac{n - k}{km} - \frac{n - k}{km} + \frac{k - 1}{k} \right\rfloor \).

Proof. The corollary follows from that \(G \) is a spanning subgraph of \(K_{n_1,1,1,...,1} = Kn - E(K_{n_1}) \). □

Acknowledgments

The authors thank the referees for many constructive suggestions.

References