Acute Mallory–Weiss syndrome after cardiopulmonary resuscitation by health care providers in the emergency department

Dae Hee Kim1, Dong Yoon Rhee1, Seon Hee Woo1*, Woon Jeong Lee1, Seung Hwan Seol1, Won Jung Jeong2

1Department of Emergency Medicine, Incheon St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Incheon, Republic of Korea
2Department of Emergency Medicine, St. Vincent's Hospital, College of Medicine, the Catholic University of Korea, Suwon, Republic of Korea

ARTICLE INFO

Article history:
Received 14 Feb 2015
Received in revised form 21 May 2015
Accepted 1 Jun 2015
Available online 29 Jul 2015

Keywords:
Death
Cardiac
Complications
Mallory–Weiss syndrome
Cardiopulmonary resuscitation

ABSTRACT

A report of a 62-year-old female patient with severe Mallory–Weiss syndrome after successful cardiopulmonary resuscitation (CPR) by health care providers in the emergency department is presented. The bleeding continued for five days, and the patient's total blood loss was estimated to be approximately 3000 mL. After 7 days, the patient died due to respiratory distress syndrome. Severe Mallory–Weiss syndrome after CPR may occur and should be considered as a potentially serious complication after CPR.

1. Introduction

Gastric mucosal tear, or Mallory–Weiss tear, is a rare complication following cardiopulmonary resuscitation (CPR) in the emergency department in Korea. Distension of the stomach due to mouth-to-mouth ventilation or bag-mask ventilation during CPR can increase gastric pressure[1]. Additionally, chest compressions during basic life support in a cardiac arrest patient can increase intragastric pressure and induce gastric mucosal tear or Mallory–Weiss syndrome[2].

These complications rarely occur, but when they do, they can be life-threatening in the resuscitated patients. A case of a severe Mallory–Weiss tear following CPR is presented in this paper.

2. Case report

A 62-year-old woman with no prior medical history was admitted to the emergency department after cardiac arrest caused by midazolam sedation and lidocaine injection for blepharoplasty at a private clinic. Bag-mask ventilation and compression were continued during the 7-min transport to the emergency department by health care providers. Upon arrival at the emergency department, the patient's initial rhythm was asystole, and cardiac massage was continued. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine. Return of spontaneous circulation was achieved after a further 8-min advanced life support and injection of a total of 3 mg epinephrine.

A chest radiograph was immediately performed. A digital rectal examination showed no bloody stool. The patient had no recent history of vomiting or upper gastrointestinal bleeding. Her initial hemoglobin level was measured as
12.6 g/dL. Emergency endoscopy was performed, and she was diagnosed with a severe Mallory–Weiss tear with a freshly bleeding lesion at the gastro-esophageal junction (Figure 2). After 1 h, her hemoglobin level was 9.5 g/dL. Bleeding continued, and the total amount of blood drainage on the first day was 1120 mL. On the second day, 350 mL of blood continued to flow out of the nasogastric tube. Surgical treatment for continuous bleeding was considered but not performed because of the patient's unstable vital signs and complications of pneumonia.

On the fifth day, bleeding from the nasogastric tube stopped, and the patient's total blood loss was estimated to be approximately 3000 mL. After 7 days, the patient died due to respiratory distress syndrome.

3. Discussion

Mallory–Weiss syndrome is a rare complication after CPR. Mallory–Weiss syndrome represents approximately 3%–10% of cases of upper gastrointestinal bleeding, and it frequently heals spontaneously[3]. It is caused by a sudden increase in intragastric pressure, which can be caused by nausea, vomiting or severe coughing, and occurred on the lesser curved side of the stomach and the esophagogastric junction[4].

Previous reports have indicated that the probability of gastric rupture is 0.1%; however, the frequency of Mallory–Weiss syndrome due to gastric mucosal injury might be higher than that due to gastric rupture. In most cases, incorrect hyperventilation during CPR has been cited as the main cause of gastric rupture and mucosal injury[1,6,7]. Hyperventilation during mouth-to-mouth ventilation, distension of the stomach due to bag-mask ventilation, and chest compressions can all lead to higher intragastric pressure. The increased pressure can lead to a gastric mucosal tear. Factors of gastric injury after CPR were reported to include the patient's position (i.e. non-supine), the use of the cardio pump, the location of arrest (i.e. outside the hospital), and the paramedics' CPR technique[1,2,6–8].

Yet, in this case, bag-mask ventilation combined with chest compressions were performed for approximately 10 min by health care providers; CPR without endotracheal intubation was performed for a relatively short time. Yet, a chest X-ray after return of spontaneous circulation showed stomach distension and the nasogastric tube insertion into the stomach.

Thus, excessive bag-mask ventilation without endotracheal intubation and chest compressions by the paramedics or health care providers might lead to dilatation of the stomach and increased intragastric pressure, which may subsequently induce the Mallory–Weiss tear.

In some cases, complications associated with nasogastric tube insertion have been reported, including intracranial malposition, tube knotting around a tracheal tube, misplacement.

Figure 1. Initial chest X-ray of the patient showing insertion of the nasogastric tube into the stomach.

Figure 2. Emergency endoscopy showing severe Mallory–Weiss tear in the patient.
into the bronchus causing pneumothorax, arterial-esophageal fistula, and bladder perforation9–11. Yet, the Mallory–Weiss syndrome in this case was not thought to be caused by a nasogastric tube because of the smooth insertion of nasogastric tube on the first attempt and the immediate draining of a large amount of blood after its insertion. A previous study reported the rupture of a cadaver’s stomach after mouth-to-mouth ventilation and the gastric rupture following bag-valve-mask ventilation12,13. In this case, we believe that hyperventilation during the bag-mask ventilation caused the distension of the stomach, and chest compressions without endotracheal intubation might lead to higher intragastric pressure.

4. Conclusions

Generally, Mallory–Weiss syndrome heals spontaneously, but it can cause severe damage in an unstable post-resuscitation patient. Thus, excessive bag-mask ventilation during CPR should be avoided, and severe Mallory–Weiss syndrome after CPR should be considered in the emergency department. Therefore, early recognition of gastric mucosal injury after CPR and the active management of complications are necessary to ensure a positive patient outcome.

Conflict of interest statement

The authors report no conflict of interest.

References