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The feasibility of applying multiphoton excitation fluorescence microscopy-related techniques in planar
membrane systems, such as lipid monolayers at the air–water interface (named Langmuir films), is
presented and discussed in this paper. The non-linear fluorescence microscopy approach, allows obtaining
spatially and temporally resolved information by exploiting the fluorescent properties of particular
fluorescence probes. For instance, the use of environmental sensitive probes, such as LAURDAN, allows
performing measurements using the LAURDAN generalized polarization function that in turn is sensitive to
the local lipid packing in the membrane. The fact that LAURDAN exhibit homogeneous distribution in
monolayers, particularly in systems displaying domain coexistence, overcomes a general problem observed
when “classical” fluorescence probes are used to label Langmuir films, i.e. the inability to obtain
simultaneous information from the two coexisting membrane regions. Also, the well described photoselec-
tion effect caused by excitation light on LAURDAN allows: (i) to qualitative infer tilting information of the
monolayer when liquid condensed phases are present and (ii) to provide high contrast to visualize 3D
membranous structures at the film's collapse pressure. In the last case, computation of the LAURDAN GP
function provides information about lipid packing in these 3D structures. Additionally, LAURDAN GP values
upon compression in monolayers were compared with those obtained in compositionally similar planar
bilayer systems. At similar GP values we found, for both DOPC and DPPC, a correspondence between the
molecular areas reported in monolayers and bilayers. This correspondence occurs when the lateral pressure
of the monolayer is 26±2 mN/m and 28±3 mN/m for DOPC and DPPC, respectively.
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1. Introduction

Lipid monolayers have a broad application in basic sciences
(e.g. chemistry, biology, physical-chemistry, polymer science to
mention a few). Even though this model represent “half of a bilayer”
(one molecule thick), it is still extensively used to mimic basic
molecular and supramolecular interactions among different types of
lipids and proteins in membranes [1]. Examples of studies reported in
monolayer systems at the air–water interface are (just to mention a
few): (i) lateral structure of compositionally different lipid films [1–4],
(ii) penetration studies of proteins, peptides or other drugs (anes-
thetics for example) into amonolayer [5–7], (iii) stability of peptide or
proteinmonolayers [8,9], and (iv) enzymatic action of lipases [10–12].
Studies including rheological, topological, electrical and mechanical
properties of monomolecular films are also accessible using Langmuir
films [1,13,14]. For instance, studies of surface pressure and interfacial
electrical potential as a function of average cross-sectional molecular
area in Langmuir films provide insights into many interesting
membrane-related parameters. Examples are lipid hydrocarbon
chain ordering, lateral compressibility/elasticity, and dipole effects
under various conditions including those that approximate one leaflet
of a bilayer [1,13].

Importantly, Langmuir films have a concrete connection with
relevant structures existing in biological systems. For example, it is
well known that a proteo-lipid surfactant material exists in our body,
e.g. in the respiratory airways, having important physiologically
relevant functions [15]. Surfactant material is for example highly
important during the breathing cycles in order to avoid lung collapse
(by changing the surface tension in the surface of the alveoli) [15]. The
organization of lung surfactant at the air–tissue interface has been
modelled using monolayers (either Langmuir films or supported
monolayers) composed of particular lipid mixtures (with or without
proteins), surfactant lipid extracts and native surfactant material from
different sources [16–21]. In most of the cases, the role of different
components on the physical properties of the monolayer is evaluated
under controlled environmental conditions [22,23].

At present, there is an array of different experimental techniques that
can be used in order to study planar membrane model systems.
Specifically, for Langmuir films the most classic measurements are the
surface pressure (π), vs. molecular area isotherms and the surface
potential-area isotherms [24]. However, additional structural information
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can be obtained using spectroscopic techniques such as Brewster
angle and fluorescence microscopy, UV-Vis, IR, Raman, Second
harmonic generation, X-ray diffraction and reflectivity [25,26].
These applications can be classified in two types: (i) those that
measure main properties of the whole monomolecular film and (ii)
those that provide a spatial distribution of a measurable property of
the monolayer in an image, such as those measured in microscopy-
based techniques. For example, different fluorescence microscopy
experiments can provide the spatial correlation of several interesting
parameters, such as rotation of molecules, extent of hydration, polarity,
local pH, and lateral diffusion. Applications of these aforementioned
fluorescence microscopy approaches have become popular in the last
10 years using lipid bilayer systems; particularly giant unilamelar
vesicles [27–29].

The first applications of fluorescence microscopy on Langmuir films
were reported in the1980s [3,30]. This verypopular and frequently used
experimental approach is based in the acquisition of images reflecting
the distribution of a fluorescent probe in the monolayer film upon
compression.Although, aswementionedabove,fluorescentmicroscopy
techniques offer the possibility of measuring of a variety of fluorescent
parameters in the target system, this type of approach has not been fully
exploited in Langmuir films except for a few exceptions [31,32].

This present report introduces and discusses for first time
multiphoton excitation fluorescence microscopy applications in
Langmuir films using the fluorescence probe LAURDAN. Additionally
we describe some technical details about our systems, where a
Langmuir trough has been incorporate on a custom built multiphoton
excitation fluorescence microscopy.

2. Materials and methods

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC) were purchased from
Avanti Polar Lipids and used without further purification. 6-
dodecanoyl-2-dimethylamino naphthalene (LAURDAN) was obtained
from Invitrogen (Denmark).

2.1. Preparation of Langmuir films

A solution of 1 mg/ml DPPC (or DOPC) dissolved in a chloroform
mixed with 2 mol% of LAURDAN was prepared. 20 μl of the solution
was carefully added to the air/water interface and the solvent was
allowed to evaporate over 10 min. The trough has a maximum area of
312 cm2 and a minimum area of 54 cm2 and uses Teflon-coated
ribbons as the barriers. The ribbons are moved so as to compress as a
symmetrical double barrier. The pressure was measured using the
Wilhelmy plate technique. We estimate the error between different
isotherms to be on the order of ±1 mN/m. The monolayer was
compressed at a speed of 50 cm2/min to the desired surface pressure,
which was kept constant during the laser scanning experiments. The
experiments were carried out on a MilliQ-water subphase at room
temperature (room temperature, 21 °C). The data sets for the GP
functions were based on 2 or 3 independent measurements of
different monolayers of DOPC or DPPC, respectively.

2.2. Preparation of supported lipid membranes by spincoating

The preparation of supported membranes by hydration of spin-
coated lipid films has been described previously [33,34]. To prepare the
dry spin-coated lipid film on mica, we used a stock solution of 10 mM
lipid containing 0.5 mol % LAURDAN in hexane/methanol (97:3 volume
ratio). 30 µL of this lipid stock solution was then applied to freshly
cleavedmica and immediately thereafter spunona Chemat Technology,
KW-4A spin-coater at 3000 rpm for 40 s. The sample was then placed
under vacuum for 10–15 h to ensure complete removal of the organic
solvents. The dry spincoated film was subsequently hydrated by
immersing the sample in either pure water or phosphate buffer
(10 mM phosphate, 128 mM NaCl, pH=7) followed by heating to
55 °C for 1 h. The sample was then placed on the fluorescence
microscope and flushed with 55 °C buffer/water using a pipette
adjusted to 500 μL in order to remove excess lipid from the support.
After the washing procedure, the liquid volume was gently exchanged
5–10 times to remove membranes in solution. Measurements of
LAURDAN GP function in these membranes were performed using the
same setup indicated in the next section. The GP experiments have been
carried out twice and multiple images (up to 15) were collected from
each individual samples. No substantial difference in the GP value was
foundbetween the samplesmade in purewater or thosemade in buffer.

2.3. LAURDAN GP function

The LAURDAN GP denotes the position of the probe's emission
spectrum [35]. The fluorescence emission properties of LAURDAN are
sensitive to the water dipolar relaxation process that occurs in the
probe's environment. The energy of the excited singlet state
progressively decreases when the extent of dipolar relaxation process
is augmented. The extent of water dipolar relaxation observed in
highly packed membrane regions (as the solid-ordered phase in
bilayers) is very low compared to what it is observed in less packed
regions (as the liquid-disordered phase in bilayers). For example
when a solid-ordered/liquid-disordered phase transition occurs in
the membrane, a prominent red shift in the fluorescence emission
spectrum of the probe is observed (from blue to green; almost 50 nm
shift) [35]. The GP function was defined analogously to the
fluorescence polarization function as:

GP =
IB−IR
IB + IR

ð1Þ

where IB and IR correspond to the intensities at the blue and red edges
of the emission spectrum (440 and 490 nm) using a given excitation
wavelength [35–37]. In lipid bilayers high LAURDAN GP values (0.5–
0.6) correspond to laterally ordered phases (e.g. solid-ordered or gel)
whereas low LAURDAN GP values (below 0.1) correspond to liquid-
disordered phases [35]. Coexistence of liquid-ordered and liquid-
disordered lipid phases in bilayer systems have been characterized
using LAURDAN GP images [38,39].

2.4. LAURDAN GP measurements

For LAURDAN GP measurements the fluorescence signals were
collected in twodifferent channels using bandpassfilters of 438±12 nm
and494±10 nm. Thefluorescence emission lightwas split between two
PMTs (Hamamatsu H7422P-40) by a dichromatic Mirror splitting at
475 nm. Themicroscope is controlled byGlobals for Images SimFCS. This
software is developed by the Laboratory for Fluorescence Dynamics,
University of California at Irvine, USA. It is important to notice that theGP
values obtained from the GP images strongly depend on instrumental
factors such as filter settings and gain of the PMTs used in the
microscope. Therefore, the calculated GP images must be calibrated
with a correcting factor G. As the GP function is based on the relative
intensity of the blue and the green channel it is necessary to calibrate the
relative intensity of the twochannels toobtainanabsolutemeasurement
of the GP. Therefore the GP equation utilized to calculate the GP images
contains a factorG (similar to the classical polarizationequation), used in
this case to calibrate the relative intensity of the two channels:

GP =
IB− G × IRð Þ
IB + G × IRð Þ ð2Þ

In Eq. (2) the GP should be equal to that from a reference solution
with a defined GP. The measurement of the factor G is performed by



Fig. 1. (A) Sketch displaying the orientation of the LAURDAN transition moment in
monolayers displaying different phases (a-d). (B) Sketch showing the coupling
between the water immersion objective (located in our custom built microscope)
and the Langmuir trough. The drawing shows a lipid monolayer at the air/water
interface and includes the glass window (coverglass) located at the bottom of the
trough in order to observed the monolayer. The blue and green arrows in the lipid
monolayer represent the transition moments of LAURDAN in a liquid-condensed and
liquid-expanded phases, respectively. The sketch is not drawn to scale.
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acquiring images of a LAURDAN reference solution with a known GP
in the microscope using the same instrumental conditions as in the
membrane experiments [34]. The GP value from the microscope is
then corrected using the G factor so that it matches the reference
value measured on the fluorometer (this is done from the SimFCS
software). The G factor can be calculated from the above equation as:

G =
IB 1−GPcð Þ
IR GPc + 1ð Þ ð3Þ

where GPc is the GP value from the reference solutionmeasured in the
fluorometer. The obtained G factor is then used to calibrate the GP
values from images of the monolayer. In our experiments we used a
160 μM LAURDAN solution in DMSO as a reference (GP=0.006 at
room temperature). The LAURDAN GP value of the reference solution
was measured in a fluorometer (ISS, Champaign, IL, USA) at the
emission wavelengths defined for Eq. (1), i.e. the excitation
wavelength was 374 nm and the emission wavelengths 440 nm and
490 nm. The associated error of the GP measurements from the
Langmuir films is ±0.03.

2.5. LAURDAN photoselection effect

The photoselection effect arises from the fact that only those
fluorophores which have electronic (absorption) transition moments
aligned parallel or nearly so to the plane of polarization of the
excitation light are excited, i.e. the excitation efficiency is proportional
to the fourth power of the cosine (for two photon excitation, cosine
square for one photon excitation) of the angle between the electronic
transition moment of the probe and the polarization plane of the
excitation light [27,34]. In our particular monolayer setup, we expect
to observe differences in the fluorescence intensity between ordered
and disordered regions, but also to be sensitive to changes in the
orientation of themembrane, particularly when condensed phases are
present or when the monolayer is at the collapse point (similar to the
effects previously described between the equatorial and polar regions
of GUVs, [27,40]). This phenomenon is illustrated in Fig. 1A.

In order to perform comparative LAURDAN GP experiments
betweenmonolayer and bilayers we choose planar supported bilayers
as a reference, because of the similar planar geometry between these
two systems. Studies exploiting the LAURDAN GP function have been
recently reported in planar membrane systems in order to explore the
texture of gel domains in bilayer model systems [34].

2.6. Custom built Fluorescence microscope for monolayers

The measurements reported in this paper were made on a custom
built multiphoton excitation microscope. This setup is specially
constructed on an Olympus IX70 microscope. The objective used in
the experiments was a 60× water immersion objective with an NA of
1.2. The excitation light source was a femtosecond Ti:Sa laser
(BroadbandMai Tai XF-W2Swith 10 WMillennia pump laser, tunable
excitation range 710–980 nm, Spectra Physics, Mountain View, CA)
and the excitation wavelength was 780 nm. The excitation light was
circularly polarized to avoid photoselection effect in the plane of the
monolayer. This allows to selectively observe photoselection along
the z direction.

A special designed Langmuir Blodgett trough built by NIMA
(Coventry, UK) was mounted on top of the microscope. The trough
has a maximum area of 312 cm2 and a minimum area of 54 cm2 and
uses Teflon-coated ribbons as the barriers. The trough features a
window in the center of the bottom of the trough, designed to enable
imaging of a monolayer on the water surface with the 60× water
objective from below the trough (see Figs. 1B and 2). The microscope
and trough were mounted on an actively stabilized optical table from
Newport to minimize vibration. To help stabilize the thin water film
on the glass window, the glass was made hydrophilic by using a
plasma cleaner (Harrick Plasma, Ithaca, NY) for 15 min before use.

3. Results and discussion

To investigate the behavior of LAURDAN in lipid monolayers, we
performed two photon excitation fluorescence microscopy experi-
ments on Langmuir films composed of either pure DPPC or DOPC. As
shown in Fig. 3, the LAURDAN distribution in the plane of the
monolayer is homogeneous in these two compositionally different
monolayer systems upon compression. This phenomenon is also
observed in the case of the DPPC film, where coexistence of distinct
lipid phases is present at particular lateral pressures (Fig. 3B). The
homogenous distribution of LAURDAN observed in our monolayer
experiments is in agreement with that previously reported for
LAURDAN in giant unilamellar vesicles (GUVs) composed of binary
and ternary mixtures showing coexistence of phases [39,41–44]. The
obtained results show an interesting advantage of the LAURDAN



Fig. 2. Sketch showing our complete experimental setup, consisting in a custom built multiphoton excitation fluorescence microscope and a Langmuir trough. The microscope
detection unit was operated in photon counting mode.
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probe over classical fluorescent probes used in monolayer experi-
ments, particularly when distinct membrane domains are observed in
the lipid film. Most of the fluorescent probes used in monolayer
experiments (e.g. NBD-PC, Bodipy-PC) display preferential partition
to one domain type in the lipid film. This last situation precludes
obtaining simultaneous information from different coexisting mem-
brane regions, for example by exploiting the probe's fluorescent
parameters (such as maximum emission wavelength, polarization,
fluorescence lifetime). Certainly the use of LAURDAN overcomes this
limitation. When phase coexistence is present in the lipid film, the use
of a single probe (LAURDAN) allows obtaining spatially resolved
information about local lipid packing in different regions of the
monolayer (GP function images).

3.1. Gas and liquid-expanded phase

From the LAURDAN GP data presented in Fig. 3A and B it is clear
that the extent of water dipolar relaxation phenomenon experienced
by the probe in the Langmuir film is depending on the particular phase
present in the monolayer. This phenomenon is very well reflected by
the very low GP value measured in the region of gas/liquid-expanded
phase coexistence (below−0.5), both in DOPC and DPPCmonolayers.
As shown in Fig. 4A and B, the LAURDAN GP function gradually
increases upon compression reaching a value of −0.3 at ∼23 mN/m
for DOPC, or at ∼12 mN/m for DPPC (notice that in this last case we
are referring to the GPmeasured in the more fluid regions of the DPPC
Fig. 3. (A) Surface pressure/area isotherm for the compression of a DOPC monolayer at roo
images of a DOPC monolayer at different surface pressures (a–c) (right). The green and b
represented in false colors. The pressures indicated in the images are a) 1.8 mN/m (average G
value is −0.10). The scale bar (for all microscopy images presented in the figure) is 10 μm.
temperature (21 °C) (left). Representative LAURDAN fluorescence intensity (blue and gree
(right). The blue and green intensity images have the same fluorescence intensity scales and
(average GP value is−0.58), (b) and (c) 8.8 mN/m (average GP value in liquid-expanded and
0.55), (e) 70 mN/m (average GP value is 0.62). At the collapse pressure the gain of the detect
collapsed structures. For such reason the GP values shown in (e), except those obtained in
measured GP values is ±0.03.
monolayers, Fig. 3B). From the presented experimental data we can
conclude that LAURDAN is sensitive to the physical changes exerted in
the monolayer upon compression. Particularly, these results show a
clear response of the probe when a liquid-expanded phase is formed
at expense of a gas phase in the monolayer.

The lowest LAURDAN GP value reported in bilayer systems
(around −0.25) is obtained when these membranes are in a liquid-
disordered phase (Lα) [27]. Following the interpretation of the
LAURDAN GP function in bilayer systems, we can conclude that
LAURDAN experiences a highly hydrated environment in the gas
phase, with a subsequent decrease in the extent of water relaxation
phenomenon when the monolayer displays a liquid-expanded phase.
Interestingly, this is the first timewhere such a range of low LAURDAN
GP values (−0.6 to−0.3) is reported for a lipid membrane, indicating
one more time the strong sensitivity of the LAURDAN GP function to
the physical state of the host membrane [42,45].
3.2. Liquid-expanded/liquid-condensed phase coexistence

In these experiments we used the very well-characterized DPPC
films at the air–water interface. DPPC isotherms at 20 °C show a
region correspondingwith coexistence of liquid-expanded and liquid-
condensed phases [46,47]. Therefore this system is very suitable to
explore the response of LAURDAN in monolayers displaying phase
coexistence.
m temperature (21 °C) (left). Representative LAURDAN fluorescence intensity and GP
lue fluorescence intensity images have the same fluorescence intensity scale and are
P value is−0.53, b) 25.5 mN/m (average GP value is−0.26), c) 37.5 mN/m (average GP
(B) Surface pressure/area isotherm for the compression of a DPPC monolayer at room
n channels) and GP images of a DPPC monolayer at different surface pressures (a–e)
are represented in false colors. The pressures indicated in the images are: (a) 3.8 mN/m
liquid-condensed are−0.32 and 0.44, respectively), (d) 30 mN/m (average GP value is

ors has been reduced to avoid saturation on the high fluorescence intensity areas, i.e. the
the collapse areas, are meaningless. For both A and B the experimental error on the
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At pressures above 4 mN/m we observed distinct domains in the
monolayer displaying high blue LAURDAN emission intensity. These
domains were surrounded by areas displaying high green intensity
emission (Fig. 3B). These high blue fluorescence intensity domains
show bean/kidney and trilobal/spiral shapes similar to that previ-
ously reported as liquid condensed domains in DPPC films [47,48]. In
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addition, these particular domains show higher GP values (low extent
of water dipolar relaxation process/higher packing) with respect to
that observed in the rest of the film (Fig. 3B). At this point we can
conclude that the reported data correspond very well to the liquid-
expanded/liquid-condensed coexistence region previously reported
for DPPC monolayers. Between 12 and 15 mN/m, the high GP regions
(liquid-condensed) starts to percolate, and above ∼18 mN/m no
distinguishable low GP (liquid-expanded) regions were observed in
the film.

The LAURDAN GP values obtained in the liquid-condensed regions
augment from approximately 0.22 to 0.55 as the pressure is raised
from 4 to ∼30 mN/m (Fig. 4B). This result indicates a progressive
decrease in the extent of water relaxation process occurring in this
phase caused by the reduction of the area per lipid upon compression
(similar to our observations for both DOPC and DPPC in the liquid-
expanded phase; cf. Fig. 4A and B). At surface pressures above 33 mN/
m, the GP measured for the condensed phase of DPPC is constant at
∼0.6. The upper end of the range of observed GP values is in line with
that observed for solid ordered (gel) phases in lipid bilayers (Fig. 4B;
[27]).

Up to 30 mN/m, a gradual decrease in the intensity of the overall
LAURDAN fluorescence emission is observed. It has been reported that
between 10 and 30 mN/m, the tilting of the DPPC chains with respect
to the surface normal is reduced by 7° (from approximately 39° to 32°
[49,50]). This decreased tilting affects the LAURDAN orientation and
lead to an increase in the photoselection effect (cf. Fig. 1A). However,
the lack of a drastic reduction in the overall LAURDAN intensity (as the
one observed above 30 mN/m, cf. below) may be compensated by an
Fig. 4. (A) LAURDAN GP values from a DOPC monolayer at different pressures (open
circles). The dashed line shows the intersection between the progression of the
monolayer GP values and the GP value measured in a DOPC supported planar bilayer
membrane (−0.25±0.03). The intersection was found at 26±2 mN/m. (B) LAURDAN
GP values from a DPPC monolayer at different pressures (circles). The filled symbol
represents measurements on gas and liquid-expanded phases, while the open symbol
corresponds to liquid condensed phases. The dashed line shows the intersection
between the GP progression obtained for the liquid condensed phase and the
corresponding GP (0.55±0.03) value measured in a DPPC supported planar bilayer
membrane. The intersection was found at 28±3 mN/m. For both A and B the
experimental error on the measured GP values is ±0.03.
increase in the probe density during reducing the area upon
compression.

Based on previous information reported for LAURDAN in bilayer
systems displaying gel/fluid phase coexistence [41–43], the situation
observed in the DPPC monolayers corresponds very well with a
coexistence of two different regions showing high and low lipid
packing. As we mentioned above, this information is in line with
coexisting liquid expanded and liquid condensed phases reported for
DPPC films [46–48]. This last result illustrates the capability of
LAURDAN to simultaneously map the physical properties of coexisting
phases not only in lipid bilayers but in lipid films at the air–water
interface.

3.3. Lipid tilting in liquid-condensed regions

It is interesting to note that at 30 mN/m, although the GP function
is (nearly) homogeneous, the intensity images obtained in the green
and blue channels are not. In fact, the nature of the aforementioned
fluorescence intensity patterns is different to those observed when
coexistence of liquid-expanded/liquid condensed phases is present in
the monolayer (where a strong correspondence between high GP/
high blue fluorescence intensity and low GP/high green fluorescence
intensity is observed; see Fig. 3B and compare images b and c with
image d). The fluorescence intensity images obtained at 30 mN/m
(Fig. 3B d) shows that the high intensity areas co-localize in both
green and blue channels. In order to explain this phenomenon we
consider that at 30 mN/m: (i) the orientation of the probe in these
two distinct fluorescence intensity regions is different (intensity
differences are only due to the photoselection effect), and (ii) the
extent of water dipolar relaxation process (reflected in the LAURDAN
GP function) is becoming very similar between two distinct
fluorescence intensity regions.

Above 30 mN/m, the overall fluorescence intensity emitted from
LAURDAN dramatically decreases upon compression (compared
Fig. 3B, d and e), i.e. the intensity in both channels drops more than
3 folds when the monolayer is compressed from 30 to 40 mN/m. In
other words, there must be a continued change in the orientation of
the probe's transition moment in the liquid-condensed film upon
compression above 30 mN/m (see Fig. 1A). In fact, from 30 to 40 mN/
m, the DPPC tilting is further reduced by 3 to 4° [49,50] affecting the
LAURDAN orientation in the monolayer (and producing a large effect
of photoselection). We believe that the effect of intensity loss due to
the photoselection is much bigger andmore critical than the potential
augmentation of intensity due to a higher probe density upon
compression. In fact, because of the highly reduced compressibility
of the DPPC monolayer at high surface pressures, the LAURDAN
density can hardly be further increased above 30 mN/m.

At this point this is a qualitative effect since we are not yet able to
determine tilting angles using this approach. However, studies
exploiting the LAURDAN fluorescence polarization simultaneously
with the GP function have been recently reported in planar bilayer
membranes composed of binary lipid mixtures to explore the gel
domain's texture [34]. We believe that this combined experimental
approach can be potentially utilized in monolayer experiments to
explore tilting (and texture) effects on different lipid domains.

3.4. Collapse pressure

As mentioned above, the fluorescence emitted by LAURDAN in the
DPPC films becomes weaker as the pressure is raised above 30 mN/m
due to the photoselection effect. However, at ∼70 mN/mwe observed
high fluorescence intensity lines in the plane of the images obtained in
the monolayer (Fig. 3B, e). This phenomenon is again indicative of a
dramatic change in the orientation of the probe with respect to the
polarization plane of the excitation light (Fig. 1A, d). In other words,
we believe that the probe's reorientation is caused by the collapse of
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the monolayer towards the water phase. The GP value measured in
these particular regions is ∼0.55, a similar value obtained from gel-
phase DPPC planar supported bilayers (see below). The last
observation might suggest a correspondence between the collapsed
structures and bilayers (notice that the GP measured in the plane of
monolayer at 70 mN/m pressure is ∼0.62, Fig. 4B).

3.5. Bilayer and monolayer correspondence

Wedecided to explore if the dependence of LAURDANGP function in
monolayers upon compression can be somehow connected with the
values obtained in bilayers. To answer this question we decided to
compare the LAURDAN GP values obtained in Langmuir films upon
compression with those obtained in compositionally similar planar
bilayer membranes since the geometry of both system is the same (i.e.
planar). At similar GP values, we observed for both DOPC and DPPC, a
correspondence between the measured molecular areas in the
monolayer experiment and the reported molecular area in bilayers of
similar compositions (Fig. 4A and B). For example, DOPC bilayers have
the same GP value of−0.25±0.03 as DOPC monolayers at 26±2 mN/
m (Fig. 4A). This value corresponds to an area per lipid molecule of
∼71 Å2 as seen in the compression isotherm (Fig. 3A). The obtained area
is in line with the range of areas per lipid molecule reported for DOPC
bilayers in the liquid disordered phase, i.e., from 70.1 to 72.6 Å2 (values
measured between 20 and 25 °C) [51,52]. For DPPC on the other hand,
the equivalent GP value between monolayers at 28±3 mN/m and
bilayers is 0.55±0.03 (Fig. 4B). This value corresponds to an area per
lipid molecule of 54 Å2 as seen in the compression isotherm (Fig. 3B).
This area value is close (but slightly higher) than the values reported for
DPPC bilayers displaying a gel phase (from 47.9 to 52.3 Å2, values
measured between 20 and 25 °C) [53].

It is striking that the LAURDAN GP's correspondence between
DPPC monolayers and bilayers match with the 30 mN/m pressure
regime found in monolayers. It is exactly this pressure regime where
other structural parameters of DPPC monolayers concur most with
those of DPPC bilayers [53]. For example, it was reported that at
30 mN/m, DPPC monolayers exhibit a 32° tilt of the lipid chains and
an area per lipid molecule of 48 Å2 as determined by X-ray
measurements [49,50,54]. Fully hydrated bilayers at nearly the same
temperature also show a lipid chain tilt of 32° and a molecular area of
47.2 Å [55]. The parallelism of these structural parameters (around
30 mN/m) in bilayers and monolayers shows that the hydration state
of both membrane systems is comparable. The correspondence of the
GP value strengthens the point that lipid bilayers and monolayers in
the pressure regime of 30 mN/m possess equivalent structures [52].
However, especially DOPC shows this equivalence of monolayer and
bilayer structures at a slightly lower surface pressure of the
monolayer than the previously reported 30 to 35 mN/m range [56].
Hence, systematic studies with compositionally different system are
required to further explore this monolayer/bilayer equivalence. This
step is necessary to generalize our hypothesis and conclusions about
the bilayer–monolayer correspondence.

4. Concluding remarks

We demonstrate that the fluorescence probe LAURDAN shows
homogeneous partition in lipid films at the air–water interface, even in
cases where domain coexistence is observed. By exploiting the
sensitivity of this probe to lipid packingwe can obtain spatially resolved
information using the LAURDAN GP function in different regions of the
lipid film, overcoming a problem generally observed from “classical”
fluorescence probes used in monolayers studies (e.g. NBD-PC, Bodipy-
PC), i.e. they label only oneparticular region of thefilmwhen lipid phase
coexistence is observed. As it was argued in bilayer systems [27], the
partition of these “classical” fluorescence probes can be dependent on
the composition of the lipid domains making it risky to infer the local
phase state of the lipid domain from the fluorescence images. This last
disadvantage is clearly solved by the use of LAURDAN.Also,while theGP
function provides clear differences among gas, liquid-expanded and
liquid-condensed phases, the photoselection effect on LAURDAN gives
extra capabilities to discriminate different tilting on condensed phases
and identified membrane structures at the collapse point. Last but not
least, we demonstrated that a connection between monolayers and
bilayers can be performed exploiting the LAURDAN GP function in both
systems. This approach can be further extended by performing
measurements of lifetime (FLIM), polarization (anisotropy imaging)
and/or diffusion (see Ref. [32] describing FCS experiments in mono-
layers) of the probe in the films using microscopy based techniques.
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