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Carbon monoxide (CO), a product of heme degradation by heme oxygenases, plays an important role in vascular
homeostasis. Recent evidence indicates that mitochondria are among a number of molecular targets that mediate
the cellular actions of CO. In the present study we characterized the effects of CO released from CORM-401 on mi-
tochondrial respiration and glycolysis in intact human endothelial cells using electron paramagnetic resonance
(EPR) oximetry and the Seahorse XF technology. We found that CORM-401 (10-100 pM) induced a persistent in-
crease in the oxygen consumption rate (OCR) that was accompanied by inhibition of glycolysis (extracellular

lc(zi,t‘ﬁlrﬁonoxide acidification rate, ECAR) and a decrease in ATP-turnover. Furthermore, CORM-401 increased proton leak, dimin-
CO-RM ished mitochondrial reserve capacity and enhanced non-mitochondrial respiration. Inactive CORM-401 (iCORM-
Endothelium 401) neither induced mitochondrial uncoupling nor inhibited glycolysis, supporting a direct role of CO in the en-
Respiration dothelial metabolic response induced by CORM-401. Interestingly, blockade of mitochondrial large-conductance
Oxidative phosphorylation calcium-regulated potassium ion channels (mitoBKc,) with paxilline abolished the increase in OCR promoted by
Glycolysis CORM-401 without affecting ECAR; patch-clamp experiments confirmed that CO derived from CORM-401 acti-

Mitochondrial BKCa channels vated mitoBKc, channels present in mitochondria. Conversely, stabilization of glycolysis by MG132 prevented

CORM-401-mediated decrease in ECAR but did not modify the OCR response. In summary, we demonstrated
in intact endothelial cells that CO induces a two-component metabolic response: uncoupling of mitochondrial
respiration dependent on the activation of mitoBKc, channels and inhibition of glycolysis independent of
mitoBK¢, channels.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Abbreviations: CO, carbon monoxide; CO-RMs, CO-releasing molecules; CORM-
401, Mn(CO)4{S2CNMe(CH2CO2H)}; iCORM-401, inactive CORM-401; BKc,, large-
conductance calcium-regulated potassium ion channels; mitoBK¢,, mitochondrial
large-conductance calcium-regulated potassium ion channels; HO-1, heme oxygenase-1;
EPR, electron paramagnetic resonance; OCR, oxygen consumption rate; ECAR, extracellular
acidification rate; mHCTPO, 4-protio-3-carbamoyl-2,2,5,5-tetraperdeuteromethyl-3-
pyrrolin-1-yloxy; CCCP, carbonyl cyanide 3-chlorophenylhydrazone; FCCP,
carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; MG132, Z-Leu-Leu-

Carbon monoxide (CO) is an endogenous gasotransmitter [1] pro-
duced during heme degradation by heme oxygenase [2]. For a long
time CO has been considered merely as a ‘silent killer’ due to its strong
affinity to hemoglobin and high toxicity when delivered to organisms
via inhalation. More recently, CO produced in low concentrations has
been recognized as an important endogenous mediator involved in vas-
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cular homeostasis (for review see [3-5]). Being a gaseous molecule, CO
can freely enter the cell and influence diverse cellular processes without
the involvement of receptors or endocytosis. Importantly, and unlike
other gases (oxygen and nitric oxide), CO is not metabolized by mam-
mals but eliminated through exhalation in the lungs [6]. Many reports
support beneficial, cytoprotective and antioxidant effects of heme
oxygenase-1 (HO-1)-derived CO [3,4,7-9] and the development of CO-
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releasing molecules (CO-RMs) has facilitated studies on the role of CO in
diverse cellular processes in in vitro and in vivo models. CO-RMs are a
class of compounds formed by complexation of a transition metal with
CO, which allows the delivery of controlled amounts of CO to biological
systems, mimicking in many instances the effect of endogenous CO [3,
7]. A number of CO-mediated vasoprotective activities induced by CO-
RMs have been described, including inhibition of platelet aggregation,
anti-thrombotic and anti-inflammatory effects [6,10,11]. The HO-1
pathway was also shown to display pronounced anti-atherosclerotic ac-
tion that may be partially due to specific effects of CO on the endotheli-
um [12]. Indeed, HO-1 deficiency in humans resulted in extensive
endothelial injury [13] and a number of reports demonstrate beneficial
roles of CO on endothelial function. For example, CORM-2 exhibited
anti-inflammatory actions in lipopolysaccharide (LPS)-stimulated
human umbilical vein endothelial cells (HUVECs) by decreasing LPS-
induced production of reactive oxygen species (ROS) and nitric oxide
[14]. Furthermore, it was shown that CORM-2 suppressed pro-
thrombotic (tissue factor, TF) and anti-fibrynolytic (PAI-1) activities of
the endothelium stimulated by inflammatory cytokines (TNF-a) and
regulated activation of MAPKs and NF-kB signaling pathways [15].
However, the target responsible for the beneficial action of CO in the en-
dothelium remains elusive. Recent studies conducted mainly in isolated
mitochondria from various types of cells or tissues suggest that these or-
ganelles participate in the regulation of cellular activity by CO [16-18],
but limited evidence is available in intact cells. Reiter et al. [19] demon-
strated CO-dependent increase in oxygen consumption rate (OCR) in
endothelial cells, which was accompanied by a disruption of mitochon-
drial function. In addition, Wegiel and colleagues [20] showed that CO
inhibits respiration in normal cells, but CO accelerates oxidative metab-
olism and ROS generation and decreases glucose metabolism in cancer
cells. Nevertheless, the detailed mechanism(s) explaining the action of
CO on mitochondria remain to be fully investigated.

It is known that plasma membrane large-conductance calcium-
regulated potassium channels (BKc,) contain a heme-binding domain
[21]. Reduced heme can in turn be a functional CO receptor, providing
a mechanism for the regulatory activity of the channel by CO [22]. For
example, it was shown that CO activates BK¢, channels in endothelial
cells directly and indirectly via involvement of nitric oxide and cGMP-
dependent pathways [23] and that BK¢, channels activity in the endo-
thelium is heme oxygenase-dependent, suggesting that CO represents
an endogenous regulator of BKc, activity [24]. It is interesting to note
that large-conductance calcium-regulated potassium channels
(mitoBKc,) in the mitochondrial inner membrane were described re-
cently in the endothelium [25]. Based on these findings, we hypothe-
sized that the modulation of mitochondrial function exerted by CO is
associated with regulation of mitoBKc, channels activity. Therefore,
we determined the effect of CO released by CORM-401 on mitochondri-
al respiration and glycolytic flux in intact endothelial cells and whether
mitoBK¢, channels mediate this response. Our results demonstrate that
CO induces a two-component metabolic response: uncoupling of mito-
chondrial respiration dependent on the activation of mitochondrial BKc,
channels and inhibition of glycolysis.

2. Materials and methods
2.1. Reagents

Dulbecco's Modified Eagle Medium (DMEM), fetal bovine serum
(FBS), GlutaMAX, HAT supplement, penicillin/streptomycin, sodium py-
ruvate, and trypsin were obtained from Gibco. Oligomycin was obtained
from Calbiochem. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP),
rotenone and antimycin A used for the EPR oximetry experiments,
DMSO, methyl cellulose, paxilline and MG132 (Z-Leu-Leu-Leu-al)
were obtained from Sigma. Base XF medium, carbonyl cyanide 4-
(trifluoromethoxy)phenylhydrazone (FCCP), oligomycin, rotenone,
antimycin A and 2-deoxy-glucose were obtained from Seahorse

Bioscience. All other reagents used in patch-clamp experiments and
not listed above were obtained from Sigma.

CORM-401, synthesized as described previously [26], was dissolved
in PBS and protected from light in all experiments. PBS was used as ve-
hicle in control experiments conducted with CORM-401. mHCTPO (4-
protio-3-carbamoyl-2,2,5,5-tetraperdeuteromethyl-3-pyrrolin-1-
yloxy) was synthesized as described previously [27]. As paxilline and
MG132 were dissolved in DMSO, in control experiments DMSO was
used as a vehicle.

2.2. Cell culture

The hybridoma endothelial EA.hy926 cell line, formed by fusion of
human umbilical vein endothelial cells (HUVEC) with the A549
human lung carcinoma cell line, was kindly provided by Dr. C-J Edgell
(Department of Pathology, University of North Carolina, Chapel Hill,
NC, USA) (Edgel 1983). Cells were propagated using three weekly feed-
ings of DMEM containing 10% FBS, 1 g/I glucose, 110 mg/1 sodium pyru-
vate, 2 mM GlutaMAX™, antibiotics (100 IU penicillin, 100 pg/ml
streptomycin) and 2% HAT Supplement. Cultures were maintained at
37 °Cin a fully humidified atmosphere of 5% CO, in air.

2.3. EPR oximetry

Oxygen consumption by EA.hy926 cells in suspension was measured
by the spin label method in a closed chamber system (glass capillary
tubes) using an EMX Bruker spectrometer. EA.hy926 cells were cultured
to 95% confluence, harvested by trypsinization, washed with PBS buffer
(centrifugation 300 xg, 5 min, RT), re-suspended in DMEM without FBS
and stored on ice until the start of measurement to preserve their func-
tional responses for a period of couple of hours. Five min before the ex-
periment cells were transferred to room temperature. Measurements
were performed at 37 °C on cells suspended at a density of 5 million
per ml in DMEM with 0.2% methylcellulose and 100 pM mHCTPO as a
spin probe (spectral parameters of mHCTPO were calibrated for dis-
solved oxygen concentration in DMEM at 37 °C, data not shown). The
total volume of sample was 50 . Samples were run using the following
instrumental settings: microvawe power, 1 mW; modulation ampli-
tude, 0.03 mT; scan width, 0.3 mT; and scan time, 23 s. All reagents in-
vestigated (CORM-401 or mitochondrial modulators) were added just
before the start of measurements. The mitochondrial function assay
employed in the study relied on separate measurements of oxygen con-
sumption by untreated cells (control) or cells treated with oligomycin
(1 pg/ml), CCCP (1 uM) or rotenone (1 uM) together with antimycin A
(1 uM). Slopes of linear functions fitted to the data points reflect the ox-
ygen consumption rate (OCR) of cells. The mitochondrial function pa-
rameters determined were: 1) basal respiration (difference between
OCR of untreated cells and cells incubated with rotenone/antimycin
A), 2) ATP-linked respiration (difference between OCR of untreated
cells and cells treated with oligomycin), 3) proton leak (difference be-
tween OCR of cells incubated with oligomycin and cells treated with ro-
tenone/antimycin A), 4) maximal respiration (difference between OCR
of cells treated with CCCP and cells additioned with rotenone/antimycin
A), 5) reserve respiratory capacity (difference between OCR of cells
treated with CCCP and untreated cells) and 6) non-mitochondrial respi-
ration (OCR value of cells after incubation with rotenone/antimycin A).

Spin labeled EPR oximetry has been described and widely used for
measurements of oxygen consumption by cells in suspension [28,29].
In this method OCR is measured in cells placed in a closed chamber sys-
tem (glass capillary tube), which does not allow the diffusion of gases
from the atmosphere. Thus, the system is especially useful in experi-
ments aimed at investigating the effect of gaseous mediators, such as
CO, because it ensures that the entire amount of gas remains within
the vial containing the sample. Interestingly, EPR oximetry is normally
used for measurements of basal OCR by cells, but here we show that a
complete profile of mitochondrial respiration can be obtained with
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this method by measuring the response to oligomycin, the uncoupler
CCCP, and rotenone with antimycin A.

2.4. Extracellular flux technology

A Seahorse Bioscience XF24 Analyzer was used to measure mito-
chondrial function and extracellular acidification in adherent endotheli-
al EA.hy926 cells. Cells were seeded into Seahorse XF24-well plates
approximately 24 h before the experiment according to the Seahorse
protocol. A density of 30,000 cells per well was selected as ideal after
preliminary experiments. One day before the experiment sensor car-
tridges were hydrated in XF calibrant and maintained at 37 °C in air
without CO,. On the day of the experiment cells were washed once
and incubated with bicarbonate-free low-buffered assay medium (glu-
cose 1 g/I, GlutaMAX 2 mM, sodium pyruvate 1 mM, pH adjusted with
NaOH) for one hour at 37 °Cin the absence of CO, prior to the beginning
of the assay. Changes in cellular respiration were assessed over time
after addition of CORM-401 or in a mitochondrial functional assay
where sequential injections of vehicle, CORM-401 or other reagent in
port A followed by addition of 1 pg/ml oligomycin in port B, 0.7 uM
FCCP in port C and 1 pM rotenone/antimycin A in port D were
performed.

From the mitochondrial assay we determined the following param-
eters: stimulated respiration (the last value of OCR after exposure to PBS
or CORM-401 and preceding oligomycin injection), ATP-linked respira-
tion (the difference between OCR before and after oligomycin injec-
tion), proton leak (the difference between OCR after oligomycin and
rotenone/antimycin A injection), maximal respiration (the difference
between OCR after FCCP and rotenone/antimycin A injection), reserve
capacity (the difference between OCR after FCCP and stimulated respi-
ration before oligomycin injection), non-mitochondrial respiration
(the OCR value after rotenone/antimycin A injection).

The glycolysis stress test was performed according to the Seahorse
Bioscience protocol. Briefly, on the day of the experiment cells were
washed once and incubated with bicarbonate-free low-buffered glycol-
ysis assay medium (glucose-free, GlutaMAX 2 mM, pH adjusted with
NaOH) for one hour at 37 °Cin the absence of CO-, prior to the beginning
of the assay. The glycolysis stress test employed in the present study
used sequential injections of glucose (10 mM, port A), PBS or CORM-
401 (port B), oligomycin (1 ug/ml, port C) and 2-deoxy-glucose
(100 mM, port D). In certain experiments cells were incubated for 6 h
with 10 pM MG132, a protease inhibitor that stabilizes glycolysis, prior
to performing the glycolysis stress test.

2.5. Mitoplast preparation and patch-clamp experiments

Patch-clamp experiments in mitoplasts (mitochondria without
outer membranes) were performed as described previously [25]. Firstly,
EA.hy926 cells were scraped, collected in ice-cold PBS, centrifuged
(800 xg for 10 min) and resuspended in sucrose solution (250 mM su-
crose, 5 mM HEPES, pH 7.2). Next, cells were homogenized with a glass-
glass homogenizer and centrifuged again (9200 xg for 10 min). The
resulting pellet was resuspended in sucrose solution and centrifuged
(790 xg for 10 min). The mitochondria-enriched supernatant was col-
lected and centrifuged again (9200 xg, 10 min). The resulting pellet
was resuspended in storage solution (150 mM KCI,10 mM HEPES,
pH 7.2) and used in patch clamp experiments (Fig. 6A). All procedures
were performed at 4 °C.

Mitoplasts were prepared from the mitochondrial preparation by
changing the isotonic solution to a hypotonic one (5 mM HEPES,
100 pM CaCl,, pH 7.2) to induce swelling and disruption of the mito-
chondrial outer membrane. To restore the sample to an isotonic condi-
tion (150 mM KCI, 10 mM HEPES, 100 pM CaCl,, pH 7.2) a hypertonic
solution (750 mM KCl, 30 mM HEPES, 100 uM CaCl,, pH 7.2) was
added (Fig. 6A). The purity of the mitoplasts preparation has been

confirmed in our previous publication [25] and by a novel PCR approach
(unpublished results).

The experiments to assess the mitoBK¢, channel activity were car-
ried out in patch-clamp inside-out mode. Reported voltages are those
applied to the interior of the patch-clamp pipette. Hence, positive po-
tentials represent the physiological polarization of the inner mitochon-
drial membrane (outside positive). CORM-401 or iCORM-401 were
added as dilutions in isotonic solution containing 1 uM Ca®™. The
mitoplast attached to the tip of the measuring pipette was put into a
glass perfusion tube in which its outer face was washed by the test so-
lutions (Fig. 6A). The electrical connection was made using Ag/AgCl
electrode and an agar salt bridge as the ground electrode. The current
was recorded using a patch-clamp amplifier (Axopatch 200B). The pi-
pettes made of borosilicate glass had a resistance of about 15 MQ. The
currents were low-pass filtered at 1 kHz and sampled at a frequency
of 100 kHz. The illustrated single-channel recordings are representative
for the most frequently observed conductance in given condition and
the conductance of the channel was calculated from the current-
voltage relationship. The probability of channel opening was deter-
mined using the single-channel search mode of the Clampfit software.

2.6. Statistics

The EPR results are presented as means 4 SD from four independent
experiments. The Seahorse XF results are presented as means 4+ SEM
from four independent experiments (4-5 replicates in each experi-
ment) or as means =+ SD (4-5 replicates) in representative experiments.
Details are included under the figures. For statistical analysis Student's
t-test or One-way ANOVA was performed and statistical significance
was considered at p < 0.05. Data from the patch-clamp experiments
are reported as means 4 SD. Student's t-test was used for statistical
analysis.

3. Results

3.1. Effect of CORM-401 on endothelial mitochondrial function as measured
by EPR oximetry

As shown in Fig. 1A, endothelial cells in suspension (5 million/ml) in
a glass capillary tube consumed oxygen with a linear kinetic. To confirm
the validity of our experimental methodology, we measured oxygen
consumption following treatment of cells with different modulators of
mitochondrial function. We observed that inhibition of ATP synthase
with oligomycin decreased OCR, the uncoupler CCCP strongly accelerat-
ed oxygen consumption and rotenone/antimycin A virtually abolished
cell respiration (Fig. 1A). Differences in OCR values in control cells or
cells treated with oligomycin, CCCP, or rotenone/antimycin A were
used to calculate basal respiration, ATP-linked respiration, proton leak,
maximal respiration and reserve capacity as illustrated in Fig. 1B.
Interestingly, incubation with CORM-401 induced a concentration-
dependent acceleration of OCR in comparison to untreated cells
(Fig. 2A) and an increase in basal respiration, proton leak and non-
mitochondrial respiration with concomitant decrease in ATP-
linked respiration was observed (Fig. 2B). Maximal respiration and
reserve capacity were slightly decreased, but the difference did
not reach statistical significance. Importantly, oxygen concentra-
tion in the chamber remained unchanged in the presence of
CORM-401 (1 mM) but without cells.

3.2. The effect of CORM-401 on mitochondrial respiration and glycolytic flux
is concentration-dependent

In parallel sets of the experiments using EPR oximetry we assessed
the effect of CORM-401 on cellular respiration and glycolysis using the
Seahorse XF analyzer. As shown in Fig. 3, CORM-401 (10, 30 or
100 pM) added to endothelial cells induced a concentration-
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Fig. 1. Assesment of oxygen consumption in endothelial EA.hy926 cells using EPR oximetry. (A) The kinetic of oxygen consumption by EA.hy926 cells in suspension (5 mln/ml) was measured
using 100 pM of the mHCTPO spin probe in a closed chamber system. Cells were untreated (control) or treated independently with the following mitochondrial modulators: 1 ug/ml
oligomycin (0), 1 uM CCCP (uncoupler), 1 uM rotenone in combination with 1 uM antimycin A (R/A). Data are from a representative experiment. (B) Oxygen consumption rate (OCR)
calculated for different conditions: (a) basal respiration is the difference between OCR of untreated cells and cells incubated with R/A; (b) ATP-linked respiration is the difference between
OCR of untreated cells and cells treated with O; (c) proton (H") leak is the difference between OCR of cells incubated with O and cells treated with R/A; (d) maximal respiration is the
difference between OCR of cells treated with CCCP and cells additioned with R/A; (e) reserved respiratory capacity is the difference between OCR of cells treated with CCCP and untreated
cells; (f) non-mitochondrial respiration is the OCR value of cells incubated with R/A.

—0— cells - control
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—w— cells - CORM-401 1.0 mM
—o—no cells - CORM-401 1.0 mM

0 3 6 9 12 15
time (min)
[ contral [ 0.5 mM CORM-401 [l 1.0 mM CORM-401

OCR (nmoles/min/1min of cells)

Fig. 2. Effect of CORM-401 on mitochondrial function of endothelial EA.hy926 cells monitored by EPR oximetry. (A) Oxygen consumption by endothelial cells (5 mln/ml) in control conditions or
in the presence of CORM-401 (0.5 mM or 1.0 mM); 1 mM CORM-401 did not change oxygen levels in the absence of cells (data from a representative experiment). (B) Mitochondrial
function assay performed in control conditions or in the presence of CORM-401 (0.5 mM or 1.0 mM) as described in Materials and Methods. In these experiments 1 mM CORM-401 equals
to 200 nmoles of CORM-401 per 1 mln of cells. Results are calculated as described in the legend of Fig. 1. Data are means =+ SD of four independent experiments, * p < 0.05 compared to
control.
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Fig. 3. Effect of CORM-401 on basal mitochondrial respiration and glycolytic flux in endothelial EA.hy926 cells as monitored by the Seahorse XF Analyzer. Basal oxygen consumption rate (OCR)
(A) and extracellular acidification rate (ECAR) (B) were measured in cells after addition of PBS (control) or CORM-401 (10, 30, 100, 300 uM). Data are expressed as a percentage of the basal
OCR or ECAR. Data represent the means + SD of n = 3-4 replicates from a representative experiment.

dependent increase in OCR and a simultaneous decrease in ECAR. By
contrast, 300 pM CORM-401 caused a rapid initial increase in OCR
followed by a profound decrease after ~45 min of incubation. A persis-
tent decrease in ECAR was observed with CORM-401 at 300 pM. No ev-
ident cytotoxicity was observed at all the concentrations of CORM-401
tested in these experiments (Supplementary Fig. S1). Therefore, we se-
lected 10, 30 and 100 uM concentrations of CORM-401 for further anal-
ysis of mitochondrial function.

We next performed a mitochondrial function assay to understand
whether the OCR response elicited by CORM-401 is linked to ATP pro-
duction or whether the compound induces a shift from glycolysis to ox-
idative phosphorylation. In these experiments, CORM-401 (10, 30 and
100 pM) or 100 pM inactive CORM-401 (iCORM-401, containing
MnSO,4 and the CORM-401 ligand), which does not release CO, were
used. We confirmed that addition of CORM-401 increased cell respira-
tion (Fig. 4A) and that the compound reduced the response of cells to
oligomycin, FCCP and rotenone/antimycin A. Although iCORM-401 in-
duced an initial increase in OCR, its effect on mitochondrial function
was very different from the same concentration of active compound
since the responses to oligomycin, FCCP and rotenone/antimycin were
similar to control (Fig. 4B). Thus, it appears that CO released from
CORM-401 is a major player in modulating mitochondrial respiration.
These findings were supported by additional experiments in which
OCR was followed over time after prolonged exposure of cells to either
CORM-401 or iCORM-401 (100 uM). We observed that the increase in
OCR induced by iCORM-401 was transient and was accompanied by
an initial increase in ECAR, while CORM-401 exerted a higher and
sustained increase in OCR with a substantial decline in ECAR (Supple-
mentary Fig. S2). Since 30 uM CORM-401 induced clear-cut effects in
OCR as well as in ECAR (Fig. 4C and D), we selected this concentration
for further analysis of mitochondrial functional parameters and for
mechanistic studies. CORM-401 (30 pM) consistently increased OCR,
proton leak and non-mitochondrial respiration. In contrast, ATP-linked
respiration, maximal respiration and reserve capacity were substantial-
ly decreased (Fig. 4E, for concentration-dependent effects see also
Fig. S3 in Supplementary data).

To further investigate the effect of CORM-401 on glycolysis we per-
formed a glycolysis stress test using CORM-401 (from 10 to 100 uM).
It should be noted here that cells in the glycolysis stress test were
starved for 90 min (in the absence of glucose) prior to addition of
glucose (10 mM), while cells in the mitochondrial function assay had
continuous access to glucose (5.5 mM) in the medium. Therefore, the

different experimental conditions between the glycolysis stress test
and the mitochondrial functional assay may give rise to different re-
sponses to CORM-401. Interestingly, CORM-401 added during the gly-
colysis stress test caused a ‘hormesis-like’ effect since the lowest
concentration (10 uM) induced an increase in ECAR. However, CORM-
401 (30 uM) did not elicit significant effects while this compound at
100 pM substantially diminished ECAR (Fig. S4A in Supplementary
data).

3.3. Inhibition of mitoBKc, channels with paxilline abolishes the increase in
respiration induced by CORM-401

We hypothesized that activation of mitoBK¢, channels is involved in
the increase in mitochondrial respiration induced by CORM-401. There-
fore, we performed experiments in which the effect of paxilline, a selec-
tive inhibitor of BK¢, type channels, was evaluated. Injection of paxilline
(10 M) alone did not influence OCR values compared to control, how-
ever injection of paxilline with CORM-401 (30 uM) abolished the effect
of CORM-401 (Fig. 5A). Interestingly, the presence of paxilline did not
influence glycolytic flux and the decrease in ECAR observed with
CORM-401 (Fig. 5B). The calculation of parameters from the mitochon-
drial function assay revealed that paxilline blocked the increase in basal
OCR and partially inhibited the increase in proton leak caused by CORM-
401 (Fig. 5C).

3.4. Direct activation of endothelial mitoBK, channels by CO released from
CORM-401

It was previously shown that mitoBK¢, channels are present in the
mitochondrial inner membrane of human endothelial EA.hy926 cells.
Moreover, it seems that these channels share similar pharmacology
properties and kinetics with their plasma membrane counterparts
[25]. To corroborate our findings showing that mitoBKc, channels medi-
ate the increased respiration by CORM-401, we performed patch-clamp
experiments to assess the capacity of CORM-401 to directly activate
mitoBKc, channels. The presence of mitoBKc; channels in EA.hy926
cells was confirmed by single-channel recordings at different voltages
in symmetrical isotonic solution. As expected, the channel activity was
inhibited in low-calcium solution (Fig. 6B). Interestingly, despite the
lack of calcium stimulus, the mitoBK¢, channel regained its activity
upon addition of 30 uM CORM-401 (Fig. 6B). When currents were mea-
sured as a function of applied potentials (from 60 mV to —60 mV) the
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Fig. 4. Effect of CORM-401 on mitochondrial bioenergetic parameters in endothelial EA.hy926 cells as monitored by the Seahorse XF Analyzer. OCR measurements of cells treated with PBS (con-
trol), CORM-401 (10, 30, 100 M, A) or iCORM-401 (100 pM, B) followed by sequential addition of oligomycin (1 pug/ml), FCCP (0.7 uM) and rotenone/antimycin A (1 puM/1 uM) (data rep-
resent the means + SD of n = 3-4 replicates from a representative experiment). OCR (C) or ECAR (D) measurements of cells treated with PBS (control) or 30 uM CORM-401 followed by
sequential addition of oligomycin (1 pg/ml), FCCP (0.7 uM) and rotenone/antimycin A (1 uM/1 uM), (data represent the means + SEM of nine independent experiments). Bioenergetic
parameters (E) were calculated from the results presented in Fig. 4C: stimulated respiration as the last value of OCR after exposure to CORM-401 and before oligomycin injection; ATP-
linked respiration as the difference between OCR before and after oligomycin injection; proton leak as the difference between OCR after oligomycin and rotenone/antimycin A injection;
maximal respiration as the difference between OCR after FCCP and rotenone/antimycin A injection; reserve capacity as the difference between OCR after FCCP injection and
before oligomycin injection; non-mitochondrial respiration as the OCR value after rotenone/antimycin A injection. Data represent the means 4 SEM of nine independent experiments,
n = 4-5 replicates in each experiment, * p < 0.05 compared to control.

channel showed a linear current-voltage relationship in the presence of control (100 puM of Ca® ™). Therefore, the conductance of mitoBKc, chan-
100 uM Ca®™ or CORM-401 (Fig. 7A). However, CORM-401 slightly nels calculated for control recordings oscillated around 280 pS + 10 pS
shifted this relation towards higher values compared with the positive and rose insignificantly to 300 pS + 10 pS after CORM-401. Both values
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ECAR before injection of compounds. Data represent the means 4 SEM of four independent experiments (4-5 replicates in each experiment), * p < 0.05 compared to control, # p < 0.05

compared to paxilline.

indicate large-conductance channel activity. Rectification of the channel
was not observed (Fig. 7A).

The probability of channel opening (P,) was distinctive for a
mitoBKc, channel and ranged from ~4% at —60 mV to ~90% at 60 mV
as calculated from recordings in a symmetrical isotonic solution with
Ca®™ (100 uM). After channel inactivation with low Ca®* (1 uM) and re-
activation by CORM-401 (30 uM), the probability of opening of the
channel appeared to be somewhat higher than in the control, especially
when calculated from recordings carried out at —20 mV and 20 mV. In
fact, the P, in the presence of CORM-401 rose from ~14% to ~35% and
from ~61% to ~75%, respectively (Fig. 7B).

The distribution of mean lifetime of channel closure and opening at
different voltages was also altered by CORM-401 as compared to the
positive control. Thus, the maximal mean lifetime of the closed state cal-
culated from recordings at —60 mV reached ~120 ms in the presence of
100 uM Ca?* while after channel inactivation in 1 uM Ca?* and reacti-
vation by 30 uM CORM-401 it dropped to only ~40 ms (Fig. 7C). Similar-
ly, the maximal mean lifetime of the open state at 60 mV reached
~70 ms in 100 uM Ca?* but was shortened to ~15 ms in the CORM-
401 group (Fig. 7D). These results indicate that the kinetics of the chan-
nel has changed and the dramatic shortening of mean lifetime of both
closed and open state without corresponding changes in P, suggest
that CORM-401 significantly increases the frequency of closure/opening
events. The effect of CORM-401 was reversed by paxilline (1 uM,

Fig. 7E). iCORM-401 (30 uM) did not reactivate the mitoBKc, channel
in low-calcium solution (Fig. S5 in Supplementary data).

3.5. Effect of glycolysis stabilization by MG132 on CORM-401-induced
changes in glycolytic flux

As the increase in OCR induced by CORM-401 was accompanied
by a decrease in ECAR, we examined whether these two events
were metabolically related, that is, the reduction in ECAR was a di-
rect consequence of the increase of OCR, or they were two effects
of CORM-401 acting independently on mitochondrial and glycolysis
targets. Therefore, we treated cells with the protease inhibitor
MG132, which stabilizes the methylated form of 6-phosphofructo-
2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and increases gly-
colysis ([30], see Scheme in Fig. 9), followed by addition of CORM-
401. As expected, pre-incubation with MG132 lowered the basal
OCR and increased basal ECAR compared to control (Fig. 8A and B).
However, CORM-401 still induced an acceleration of OCR, and a mi-
tochondrial function assay (Fig. 8C) confirmed that CORM-401
caused an increase in basal respiration and proton leak, as well as a
decrease in ATP-linked respiration even in the presence of MG132.
In contrast, the glycolysis stress test showed that the decrease in
ECAR induced by CORM-401 was lost in the presence of MG132,
suggesting that the potential target responsible for inhibition of
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glycolysis by CO was either PFKFB3 or an enzyme upstream of
PFKFB3 (Fig. 9 and Fig. S4B in Supplementary data).

4. Discussion

Recent evidence suggest that CO targets mitochondria [9,16,17,
31-34], though the mechanisms involved are not clear. Herein, we dem-
onstrate in intact endothelial cells that CO induces uncoupling of mito-
chondrial respiration and inhibition of glycolysis. We provide evidence
supporting the effect of CO released by CORM-401 on OCR, index of mi-
tochondrial respiration, in intact endothelial cells using two comple-
mentary techniques: EPR-based oximetry and the Seahorse XF-based
methodology. The main advantage of using both techniques is that mi-
tochondrial function can be investigated in whole cells, as opposed to
isolated mitochondria. Moreover, two different systems — opened and
closed chambers - are especially useful in studies on gaseous moieties
such as CO. Most importantly, we showed that the increase in respira-
tion induced by CO is mediated by activation of mitoBK¢, channels,
while the effect on glycolysis was mitoBKc,-independent.

In the present work we used a recently synthesized CO-releasing
molecule, CORM-401, a Mn-based metal carbonyl soluble in PBS that re-
leases at least three moles of CO per mole of compound with a half-life
of 13-14 min (Crook et al. 2011 [26] and unpublished data). Therefore,
CORM-401 differs from previously characterized CO-RMs, such as
CORM-3 and CORM-A1, which release only one mole of CO per mole
of compound [35,36]. Here we demonstrate that CORM-401 consistent-
ly accelerates OCR in intact endothelial EA.hy926 cells using both EPR
oximetry (closed chamber) and the Seahorse XF analyzer (open sys-
tem). It is known that CO at high concentrations is a potent inhibitor
of cytochrome oxidase, as it directly competes with oxygen binding
and its inhibition is strictly competitive with respect to oxygen [37,
38]. In our experiments we observed a rapid acceleration of respiration
followed by a decrease in oxygen consumption rate only after prolonged
exposure to the highest concentration of CORM-401 (300 uM). This later
effect is likely due to inhibition of cytochrom oxidase as greater
amounts of CO are liberated by the compound over time. Alternatively,
depletion of substrates for respiration may also explain this result. How-
ever, the aim of the study was to investigate subtle effects of non-toxic
concentration of CORM-401 and at 30 uM CORM-401 we only observed
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Fig. 7. Influence of CORM-401 on the biophysical properties of the mitoBKc, channel present in mitochondria of endothelial EA.hy926 cells. Measurements were performed in a symmetric 150/
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a combination of 30 uM CORM-401 and 1 uM paxilline. Data represent the means 4 SD of four independent experiments (7-13 replicates in each experiment), Student's t-test, *** p <
0.001.

acceleration and not a slowdown of oxygen consumption rate. We also and a decrease in ATP-linked respiration and reserve capacity. It is im-
show that the increase in basal respiration by CORM-401 is accompa- portant to note that the concentration of CORM-401 used in EPR oxim-
nied by an increase in proton leak and non-mitochondrial respiration etry (0.5-1 mM) corresponds to 100-200 nmoles of compound per



1306

—O— control —a&— CORM-401

treatment O FCCP R/A

175
A

—
w
']

125

44

R,

0 30 60 90
time (min)

H

OCR (% of Control)
(4]
o

N
[4;]

o

[ control

Il CORM-401

[ ImMG132

P. Kaczara et al. / Biochimica et Biophysica Acta 1847 (2015) 1297-1309

——MG132

—— MG132/CORM-401

treatment (o] FCCP R/A

200

-
~
3

-
a
o

—_
(=]
(=]

ECAR (% of Control)
]
w

~
(9]

time (min)

I MG132/CORM-401

200
1754
150+

C

125

OCR (% of Control)

ATP-
-linked

Proton
Leak

Stimulated

Non-
-mitochondrial

Reserve

Maximal Capacity

Fig. 8. Effect of glycolysis stabilization on CORM-401-mediated changes in mitochondrial function and glycolytic flux in endothelial EA.hy926 cells. Endothelial cells were pre-incubated with
DMSO or 10 uM MG132 for 6 h. Three basal OCR (A) and ECAR (B) measurements were performed prior to injection of PBS (control) or 30 M CORM-401. (C) Bioenergetic parameters
were calculated after sequential addition of the following modulators of mitochondrial function: oligomycin (O, 1 pug/ml), FCCP (0.7 pM) and rotenone/antimycin A (R/A, 1 uM). Data
are expressed as a percentage of the first OCR or ECAR value in control group. Data represent the means + SEM of four independent experiments (4 - 5 replicates in each experiment),
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1 min of cells, while the reference concentration of CORM-401 used for
the majority of the Seahorse experiments (30 uM) corresponds to 600
nmoles per 1 mln of cells. It is possible that the slightly higher ratio of
nmoles of CORM-401 per 1 min of cells needed to observe an accelera-
tion of oxygen consumption in the Seahorse is due to the facts that the
Seahorse apparatus is a closed system only transiently, during the mea-
surement phase, and that in between each measurement of oxygen con-
sumption the medium is mixed several times to re-equilibrate oxygen
levels. Consequently, a loss of CO from the medium is expected to
occur over the course of the experiment in the Seahorse apparatus.
Importantly, in both systems we observed a concentration-dependent
effect of CO on respiration of endothelial cells. In the Seahorse experi-
ments, where CORM-401 was tested at 10, 30, 100 and 300 pM, the
highest concentration appeared to be toxic as mitochondrial function
and glycolytic flux were considerably inhibited over time.

The increase in OCR by endothelial EA.hy926 cells treated with
CORM-401 combined with a decline in ATP-linked respiration and a
rise in proton leak suggest mitochondrial uncoupling by CO. This is
in line with our recent findings in mitochondria isolated from
cardiomyocytes, in which CORM-3 uncoupled oxidative phosphoryla-
tion from ATP synthesis through a mechanism that involves activation
of uncoupling proteins (UCPs), adenine nucleotide transporter (ANT)

and phosphate carriers (PiC, DIC) [16,17]. Interestingly, in the present
work we provide evidence that mitoBK¢, channels also contribute to
the uncoupling activity of CO in endothelial cells since paxilline, an in-
hibitor of the BK¢, type channel, abolished the increase in OCR caused
by CO and lowered the effect on proton leak. Importantly, we further
show a direct action of CORM-401 in the activation of mitoBKc, chan-
nels in mitoplasts derived from mitochondria of EA.hy926 cells.
CORM-401 induced re-activation of mitoBK¢, channels in low-calcium
solution, increasing the frequency and decreasing the time span of clo-
sure/opening events in comparison to control high calcium solution.
The effect was directly related to CO, as inactive iCORM-401 was not
able to reactivate mitoBKc, channels in low-calcium solution. Activation
of mitoBKc, channel-dependent K™ influx increases the matrix volume
of mitochondria, which can alter electron flow through the respiratory
chain [39,40] and increase OCR. The influx of K™ is balanced by the
K*/H* antiporter, which expels K* from the matrix and induces an in-
flux of H* [41], seen as an increased proton leak. Therefore, the effect of
CO on mitoBK¢, channels seems to underscore the role of endogenous
CO in the regulation of coupling tightness between respiration and
ATP synthesis in mitochondria, contributing to the maintenance of a
balance between energy supply and demand in cells. On the other
hand, activation of mitoBKc, channels elicited by CO may function as a
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Fig. 9. A schematic model summarizing the proposed molecular processes by which CO influences mitochondrial respiration and glycolytic flux. Findings from the literature and this report sug-
gest that CO can uncouple mitochondrial respiration through: (1) activation of UCP and/or ANT, the inner mitochondrial membrane anion transporters that disrupt ATP synthesis, releasing
heat and causing a compensatory increase in oxygen consumption [16]; (2) stimulation of P;C activity thus increasing the matrix concentration of phosphate and protons [17] and (3) ac-
tivation of the mitochondrial large-conductance calcium-regulated potassium channel (mitoBKc,). Activation of mitoBKc, channel-dependent K™ influx increases matrix volume of mi-
tochondria, but the effect is balanced by the K*/H™ antiporter, which expels K* from the matrix and induces an influx of H* [41]. The active, methylated form of
phosphofructokinase/fructose biphosphatase 3 (PFKFB3) increases the level of fructose 2,6-bisphosphate (F-2,6-BP), an allosteric activator of phosphofructokinase-1 (PFK1), resulting
in activation of PFK1 and an increase in glycolytic flux, together with a decrease in pentose phosphate pathway (PPP). CO can suppress the activity of cystathionine 3-synthase (CBS) lead-
ing to a decrease in the level of the methylated form of PFKFB3. As a result, the glycolytic flux is decreased and glucose is shifted towards the PPP. The scheme depicting the role of CO in
inhibiting CBS and regulating glycolysis and the PPP is based on findings by Yamamoto et al. [30].

signaling pathway inducing a change in mitochondrial membrane po-
tential [25] and reactive oxygen species production [42] as it was
shown with using NS1619, an activator of the mitoBK¢, channel. We
also demonstrated that CO induced an increase in non-mitochondrial
respiration indicating additional cellular pathways that consume oxy-
gen that may be targeted by CO. However, the identity of these path-
ways remains at present unknown.

It was interesting to observe in our experiments that the increase in
respiration exerted by CO was associated with inhibition of glycolysis.
Similar findings previously reported by Wegiel and colleagues [20]
demonstrated that CO accelerated oxidative metabolism and ROS gen-
eration together with a decrease in glucose metabolism in cancer cells.
At first glance these results could suggest a shift in energy metabolism
from glycolysis to oxidative phosphorylation, but this hypothesis is
not supported by our data showing a decrease in ATP-linked respiration
induced by CO during the mitochondrial function assay. Moreover,
paxilline prevented the increase in oxygen consumption by CO but did
not change the slowdown of glycolic flux induced by CORM-401, sug-
gesting that the inhibition of glycolysis by CO is independent of its effect
on oxygen consumption and the activation of mitoBK¢, channels. This
idea was further corroborated in additional experiments in which we
stabilized glycolysis using the protease inhibitor MG132, which main-
tains PFKFB3 in the methylated form. Methylation of PFKFB3 increases
glycolysis, as shown recently by Yamamoto et al. [30] and confirmed
in our study by a decrease in OCR and an increase in ECAR during a mi-
tochondrial functional assay and a glycolysis stress test after incubation
with MG132. Interestingly, under these conditions we observed that the

effect of CO on ECAR was abolished, while the increase in respiration
and proton leak induced by CO was not affected. These data obtained
using two separate pharmacological approaches strongly support the
idea that the activation of mitochondrial respiration and the inhibition
of glycolysis by CORM-401 are two independent cellular events, most
likely occurring via the participation of different pathways and
mechanisms.

Our results may have implications in the context of various physio-
logical and pathological changes in which alterations in endothelial me-
tabolism are linked to endothelial phenotype (reviewed by Goveia et al.
[43]). For example, repression of glycolysis induced by laminar shear-
stress at the level of PFKFB3 via KLF2 seems to be a determinant of
quiescent endothelial phenotype [44]. In addition, pulmonary arterial
hypertension was associated with a 3-folds increase in glycolysis in
the pulmonary endothelium [45]. Interestingly, a robust activation of
PFKFB3-glycolysis by migrating vascular tip cells was required for an-
giogenic sprouting, whereas PFKFB3 silencing impairs tip cells activi-
ty [46]. In view of our findings, it would be interesting to determine
which of the above mentioned phenomena might be modulated by CO
due to its effect on glycolysis.

In conclusion, we demonstrated that CO released from CORM-401
induced a mitoBKc, channel-dependent uncoupling of mitochondrial
respiration and a mitoBK¢, channel-independent repression of glycoly-
sis. To our knowledge, we also showed for the first time that CO can re-
activate the mitoBK¢, channel in low-calcium conditions. Our results
suggest a signaling significance of CO in the metabolic reprogramming
of the endothelium, which may have implications for the activation of
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a vasoprotective phenotype of the endothelium or the inhibition of
pathological angiogenesis.
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