View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

sc.ence@p.“w

JOURNAL OF
Functional

Analysis

ELSEVIER Journal of Functional Analysis 226 (2005) 301-372 _—
www.elsevier.com/locate/jfa

Linear response theory for magnetic Schroédinger
operators in disordered media

Jean-Marc Bouclét Francois Germin&t Abel Klein®*1,
Jeffrey H. Schenkér?

8 aboratoire Paul Painlevé, Université de Lille 1, F-59655 Villeneuve d’Ascq Cédex, France
bDépartement de Mathématiques, Université de Cergy-Pontoise, Site de Saint-Martin, 2 avenue Adolphe
Chauvin, 95302 Cergy-Pontoise cedex, France
CDepartment of Mathematics, University of California, Irvine, Irvine, CA 92697-3875, USA
dTheoretische Physik, ETH, CH-8093 Zurich, Switzerland

Received 18 August 2004; received in revised form 20 January 2005; accepted 7 February 2005
Communicated by L. Gross
Available online 27 March 2005

Abstract

We justify the linear response theory for an ergodic Schrddinger operator with magnetic field
within the noninteracting particle approximation, and derive a Kubo formula for the electric
conductivity tensor. To achieve that, we construct suitable normed spaces of measurable covariant
operators where the Liouville equation can be solved uniquely. If the Fermi level falls into a
region of localization, we recover the well-known Kubore8ia formula for the quantum Hall
conductivity at zero temperature.
© 2005 Elsevier Inc. All rights reserved.

MSC: primary 82B44; secondary 47B80; 60H25

Keywords: Kubo formula; Kubo—-S€da formula; Magnetic Schrédinger operator

* Corresponding author.

E-mail addressesJean-Marc.Bouclet@math.univ-lillel.fd.-M. Bouclet), germinet@math.u-cergy.fr
(F. Germinet),aklein@uci.edu(A. Klein), jschenker@itp.phys.ethz.cfd.H. Schenker).

1supported in part by NSF Grant DMS-0200710.

2Supported in part by an NSF postdoctoral research fellowship.

0022-1236/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/}.jfa.2005.02.002


https://core.ac.uk/display/82490398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jfa
mailto:Jean-Marc.Bouclet@math.univ-lille1.fr
mailto:germinet@math.u-cergy.fr
mailto:aklein@uci.edu
mailto:jschenker@itp.phys.ethz.ch

302 J.-M. Bouclet et al./Journal of Functional Analysis 226 (2005) 301-372

Contents

1. Introduction

2. Magnetic and time-dependent electromagnetic Schrédinger operators
2.1. Magnetic Schrodinger operators

2.2. Time-dependent electric fields

2.3. Time-dependent Hamiltonians and their propagators

3. Covariant operators and the trace per unit volume

3.1. Measurable covariant operators

3.2. The Hilbert spacéC,

3.3. The normed spacky

3.4. The trace per unit volume

3.5. The connection with noncommutative integration

4, Ergodic magnetic media

4.1. The ergodic Hamiltonian

4.2. Commutators of measurable covariant operators

4.3. Time evolution on spaces of covariant operators

4.4. Gauge transformations in spaces of measurable operators
5. Linear response theory and Kubo formula

5.1. Adiabatic switching of the electric field

5.2. The current and the conductivity

5.3. Computing the linear response: a Kubo formula for the conductivity
5.4. The Kubo-S&da formula for the Hall conductivity
References

1. Introduction

In theoretical works, the electric conductivity tensor is usually expressed in terms
of a “Kubo formula,” derived via formal linear response theory. The importance
of this Kubo formula is enhanced by its links with the quantum Hall conductivity
at zero temperature. During the past two decades a few papers managed to shed
some light on these derivations from the mathematical point of view, AG.,AVSS,
B,BES,ES,Ku,Na,NB,P,SB1,SB2]. While a great amount of attention has been brought
to the derivation of the quantum Hall conductivity from a Kubo formula, and to the
study of this conductivity itself, not much has been done concerning a controlled
derivation of the linear response and the Kubo formula itself; only the recent papers
[CoJM,ES,Na,SB2] deal with this question.

In this article we consider an ergodic Schrédinger operator with magnetic field, and
give a controlled derivation of a Kubo formula for the electric conductivity tensor,
validating the linear response theory within the noninteracting particle approximation.
For an adiabatically switched electric field, we then recover the expected expression
for the quantum Hall conductivity whenever the Fermi energy lies either in a region
of localization of the reference Hamiltonian or in a gap of the spectrum.

To perform our analysis we develop an appropriate mathematical apparatus for the
linear response theory. We first describe several normed spaces of measurable covariant
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operators which are crucial for our analysis. We develop certain analytic tools on these
spaces, in particular the trace per unit volume and a proper definition of the product
of two (potentially unbounded) operators. (Similar spaces and their relevance were
already discussed ifBES].) We then use those tools to compute rigorously the linear
response of the system forced by a time-dependent electric field. This is achieved in two
steps. First, we set up the Liouville equation which describes the time evolution of the
density matrix under the action of a time-dependent electric field, in a suitable gauge
with the electric field given by a time-dependent vector potential. In a standard way,
this evolution equation can be written as an integral equation, the so-called Duhamel
formula. Second, we compute the net current per unit volume induced by the electric
field and prove that it is differentiable with respect to the electric field at zero field. This
yields the desired Kubo formula for the electric conductivity tensor. We then push the
analysis further to recover the expected expression for the quantum Hall conductivity,
the Kubo—Stéda formula.

Our derivation of the Kubo formula is valid for any initial density matéix= f(H)
with a smooth profile of energieg(E) that has appropriate decay at high energies. In
particular, the Fermi—Dirac distributions at positive temperature are allowed. At zero
temperature, with the Fermi projectidh®® as the initial profile, our analysis is valid
whenever the Fermi energfg lies either in a gap of the spectrum or in a region
of localization of the reference Hamiltonian. The latter is actually one of the main
achievements of this article. There is indeed a crucial difference betwé&n with
Er in a gap (or similarlyf(H), with f smooth with decay at high energies) aptfr)
with Er in a region of localization: in the first case the commutdtgr, P(£F)] is a
bounded operator while it is unbounded in the second case. Dealing with the unbounded
commutator[x;, P£F], which appears naturally in the Kubo+&fa formula, forces
us to use the full theory of the normed spaces of measurable covariant operators we
develop.

We now sketch the main points of our analysis. We consider a system of noninter-
acting quantum particles in a disordered background, with the associated one-particle
Hamiltonian described by an ergodic magnetic Schrédinger operator

Hy = (—iV —Ay)2 +V, onH:=L3RY, (1.1)

where the parametem runs in the probability spacéQ, P), and for P-a.e. w we
assign a magnetic potentidl,, and an electric potentidl,,. The precise requirements

are described in Assumptighl of Section 4. Brieflyd,, andV,, belong to a very wide
class of potentials which ensures thdf, is essentially self-adjoint oni’go([RRd) and
uniformly bounded from below fof?-a.e.w. In particular,no smoothnesassumption

is required onV,,. The probability spac&Q, P) is equipped with an ergodic group
{t(a); a € 7%} of measure preserving transformations. The crucial property of the
ergodic system is that it satisfies a covariance relation: there exists a unitary projective
representatior/ (a) of Z¢ on L2(R%), such that for alla,b € Z¢ and P-a.e.w we

have

U(a)H,U (a)" = T(a)ws (1.2)
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U@mU@" = fpiar (1.3)

where y, denotes the multiplication operator by the characteristic function of a unit
cube centered at. Operators that satisfy the covariance relatiar?) will be called
covariant operators(See Section 3.1.) IA,, = A is the vector potential of a constant
magnetic field, the operatoi$(a) are the magnetic translations. Note that the ergodic
magnetic Schrddinger operator may be random, quasi-periodic, or even periodic.

At time ¢+ = —oo, which we take as reference, the system is in equilibrium in the
state given by a one-particle density mattiy = f(H,) where f is a nonnegative
function with fast enough decay at infinity. At zero temperature, we [fgve P(f)EF) =
X(—c.E-](Ho), the Fermi projection. It is convenient to give the technical statement
of the condition on{,, in the language of the normed spaces developed in Section 3.
Hence we postpone it to Section 5 where it is stated as Assumption 5.1. We note here,
however, that th&ey point in that assumption is that

[E{||xk z;onug} < o0, or equivalently[E{H[xk, z;w]xOug] <00, (1.4)

for k = 1,...,d, where|S|2 denotes the Hilbert—Schmidt norm of the operasor
(This is essentially the condition identified |[BES].)

Of course, if{, = P(,(,EF) where Er falls inside a gap of the spectrum df,,,
or {, = f(H,) with f smooth and appropriately decaying at high energies, then
(1.4) is readily fulfilled by general arguments (e.g. [GK2]). The main challenge is to
allow for the Fermi energyEr to be inside a region of localization, as described for
random operators in [AENSS,AG,GK1,GK3]. Note that the existence of these regions
of localization has been proven for random Landau Hamiltonians with Anderson-type
potentials [CH,GK4,W], and that assumption (1.4) holds in these regions of localization
[BoGK,GK5].

Under this assumption, as expected, the current is proved to be zero at equilibrium
(Lemma 5.7):

T{V./,(/)Cw} =0, j=12...,4d, (1.5)
where the velocity operatar; ., is the self-adjoint closure af H,, x;]1, initially defined
on CgO(R"). Here7 denotes the trace per unit volume, and reads, for suitable covariant

operatorsY,, (applying the Birkhoff ergodic theorem),

T(Yo) == Eftr{zoYorol) = lim = triza, Yoza,} for P-ae o, (1.6)
L—oo ALl L L

where A; denotes the cube of side centered at 0.
We then slowly, from time = —oo to timer = 0, switch on a spatially homogeneous
electric fieldE, i.e., we take (with_— = min{z, O}, r, = max({z, 0})

E(t) = €'"-E. 1.7
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In the appropriate gauge, the dynamics are now generated by an ergodic time-dependent
Hamiltonian,

Hy (1) = (—iV = Ay, — F(1))? + Voo (x) = G(1) Hy G (1)*, (1.8)

where
t 1—
F@) = / E(s)ds = (e”T + t+) E, (1.9

and G (1) = €F* is a gauge transformation orf(R). (Note that, ifyy, is a solution
of idny, = H,()y(¢) then, at least formally,

i0,G* (Y, = (Hy + E@®) - )G ()Y,

which represent&(¢) in a more familiar way via a time dependent scalar potential.
This fact is made precise for weak solutions in Sect2op.)

It turns out that for alk the operatord,,(¢) are self-adjoint with the common domain
D =D(Hy), and H,(t) is bounded from below uniformly im. Thanks to these facts,
a general theory [Y, Theorem XIV.3.1] of time evolution for time-dependent operators
applies: there is a unique unitary propagaldy(z,s), i.e., a unique two-parameter
family U, (z, s) of unitary operators, jointly strongly continuous inand s, and such
that Uy, (¢, r)Uy(r, s) = Uy(t, 1), Uy(r,r) = I, Uy(t,s)D = D, andid,Uy(t, )Y =
H(@)Ugy(t, s)y for all y € D.

A crucial advantage of our choice of gauge is tl#&§(r) is a covariant operator for
all ¢, which ensures that the unitary propagaty(z, s) is also covariant. This is of
great importance in calculating the linear responsésidethe trace per unit volume,
taking advantage of the centrality of this trace, a key feature of our derivation.

To compute the time evolution of the density matp(s), we shall have to set up
and solve the Liouville equation which formally reads

ialQU)(t) = [Hw(t)’ Q(U(t)]s
{ Iimtﬁfoo Q(u(t) = Qu(m (110)

where(,, is the initial density matrix at = —oco. (Thus{,, = PSEF at zero temper-
ature.) We shall also give a meaning to the net current per unit volume (area) in the
jth direction,j = 1,...,d, induced by the electric field, formally given by

Ji(m, E:l, = T(Vj,w(o)Qw(O)) - T(Vj,wa_./w) = T(Vj,w(O)Q(U(O))a (1.11)
with v; ,(0), the self-adjoint closure of[H,(0), x;] defined onCéx’([Rd), being the

velocity operator in thejth direction at timer. Note thatv; ,,(0) = G(O)v; ,G(0)* =
Vj’w — 2Fj (O)
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We remark that there is an alternative approd8kS,ES] to a derivation of the
Kubo-Stéda formula for the quantum Hall current in a two-dimensional sample, based
on the calculation of a conductance rather than a conductivity. Conductance is the
linear response coefficient relating a current to the electric potential difference, whereas
conductivity relates a current density to the electric field strength. In [AES,ES] the
effect of a finite potential drop is analyzed by considering the effect of adding to the
Hamiltonian a termg(z)A1 with g(¢) a time dependent scalar coupling and(x) =
A1(x1) = %1 asx1 — Foo a smooth switch function. This term models the effect of a
modulated (in time) potential difference between the left and right edges of a physical
sample, with the edges formally considered to be located; at +oco. With g(¢) of
the form g(r) = ¢(¢/t) with ¢ a fixed function, an expression for the net current
across the linex; = 0 has been derived, which in the adiabatic—¢ oo) limit gives
the corresponding Kubo—&tla formula for continuum operators with a gap condition
[ES] and for discrete operators with a localization assumption [AES].

Let us now briefly describe the normed spaces of measurable covariant operators we
construct to carry out this derivation—see Section 3 for their full description. WK Jet
denote the subspace of functions with compact support, and setC(H¢, H) to be
the vector space of linear operators hwith domain . (nhot necessarily bounded).

We introduce the vector spadéy: of measurable covariant maps,: Q — £; where
we identify maps that agreB-a.e. We consider th€*-algebra

Koo =1{Y0 € Kmc; IYolle < o0},  where[[Yolloo = I Yol lILe@.p)- (1.12)

Bounded functions off,,(r) as well as the unitary operatots, (¢, s) belong to this
algebra.

However, since we must deal with unbounded operators (thinkefPFP71 with
Er in a region of localization), we must look outside,, and consider subspaces of
Kme Which include unbounded operators. We introduce normgCangiven by

1/2
Iolls = EtrixolYulro)  I¥ollz = {ElYorol3] . (113)
and consider the normed spaces
K = (Yo € Koo, I¥olli < 00}, i=12 (1.14)

We denote the (abstract) completion l@fo) in the norm|| - ||; by K;, i = 1,2. In
principle, elements of the completidg; may not be identifiable with elements &inc:
they may not becovariant operatorsdefined on the domaifi{c. Since it is important
for our analysis that we work with operators, we &&t= mc N ;. That is,

Ki ={Y» € Kme, IYolli < oo} (1.15)
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(We are glossing over the technical, but important, detail of defining the nfpin#;
on Kme. In fact, we shall do this only folocally boundedoperatorsY,,—see Definition
3.1(iii)—for which the absolute valugr,,| may be defined.)

It turns out thatkC, = KC; (Proposition 3.7), and the resulting set is a Hilbert space
with inner product{{Yy,, Zy)) = Etr{(Yuxo)*(Zw)o)}. However,KCq # K1 (Proposition
3.13), and the dense subspdCe is not complete. Nonetheless, it represents a natural
space of unbounded covariant operators on which the trace per unit volume (1.6) is
well defined. The trace per unit volung is naturally defined onfC1, where it is
bounded by the/C; norm, and hence it extends to a continuous linear functional on
K1; but (1.6) is only formal forY,, e K1 \ K1.

There is a natural norm preserving conjugation on the spigegiven by Y,,* =
(Yo®) |2, Which extends to a conjugation doy. Moreover, the spaces;, i = 1, 2, are
left and right C.-modules, with left and right multiplication being explicitly defined
for B, € K and ¥, € K2 or K1 by

B(u oL Yw = Bwa, Yw ORr Bw = (B:; oL Yw¢)¢ = Ywi*Bw- (1-16)

(It is not obvious that the latter equality makes sense!) The properties of left and right
multiplication, as well as the fact that they commute, can be read immediately from
(1.16). There is also a bilinear map: K2 x K, — K1 with dense range, written
o(Yw, Zo) =Yy © Zy, such thatT (Y, ¢ Zy,) = ((Ywia Zy)).

Another crucial ingredient is the centrality of the trace per unit volume: if either
Yo, Ze € K2 Or Y,y € K1 and Z,, € Ko, We have either

T(Ya) 0 Zy) = T(Zw ©Yy,) or T(Yw ORrR Zw) = T(Zw oL Yo). (1-17)

There is a connection with noncommutative integratidty, is a von Neumann
algebra, 7 is a faithful normal semifinite trace ofls, K; = L (Koo, T) for i =
1, 2—see Sectior8.5. But our explicit construction plays a very important role in our
analysis.

The Liouville equation (1.10) will be given a precise meaning and solved in the
spacesky and K. Note that assumption (1.4) is equivalent[to;, (] € IC for all
Jj=12,...,d. (We will also have[x;, {,] € K1 for all j =1,2,...,d. See Remark
(i) following Assumption 5.1, and Proposition 4.2.)

If Yo, € Ki, i =1, 2,00, is such that Rali, C D = D(H,(t)) and H, ()Y, € K;,
and similarly forY,,*, we set

[Ho (1), Yolt = Hy() Y — (fln)(t)Y(ui:):t e K.

Our first main result is
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Theorem 1.1. Under Assumptiong.l and 5.1, the Liouville equation

10104,(1) = [Hop(1), 00y (D]
{ M —oo 00, (1) = {y (1.18)

has a solution ink1 N K2, unique in bothK; and Ky, given by

0o® = lim U, 5)(Cy) = lim U@, )y (5)) (1.19)
={,(1) —i /I dr €= U(t, r)([E - X, {, (1)), (1.20)

where
UL, 5)(Ye) = Uy(t, ) OL Yo Or Un(s, 1) for Yo, € i, i =1,2, (1.21)
(o) =GC{,GO)" = f(Hu(®)  (u= f(Ho)). (1.22)

We also have
00 (®) =U,5)(0,(5)),  llee®lli = Iyl (1.23)

for all 1,5 andi = 1, 2, co. Furthermore ¢, (¢) is nonnegative and i, = PfF then
0,,(t) is an orthogonal projection for alt.

We actually prove a generalization of Theordmi, namely Theorem 5.3, in which
the commutator in (1.18) is replaced by the Liouvillian (defined in Corollary 4.12), the
closure ofY,, — [Hy(t), Yo,]+ @S an operator oiC;, i = 1, 2. As a by-product of the
theorem, we prove that Rap,(r) € D andv; ,(t)g,(t) € K1, and hence the current
TVjw)o,@)) is well-defined for any time. In particular, the net current per unit
volume J;(n, E; {,,) is well defined and, since,,(r) is non-negative, a real number.

Our next main contribution states the validity of the linear response theory, and
provides a Kubo formula.

Theorem 1.2. Let n > 0. Under Assumptiond.1 and 5.1, the mapE — J(1, E; {,))
is differentiable with respect t& at E = 0 and the derivatives(i; {,,) is given by

A 0
o ) = a%k Ji(,0; () = —T{/ dr €V o UO (—r) (i [x, gw])} . (1.24)

where ¢/© (IS e "o o, Y, O €0,
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Note that we prove a result stronger than the existence of the partial derivatives of
J(n, E; {,,) at E =0: we prove differentiability aE = 0.

Next, taking the limity — 0, we recover the expected form for the quantum
Hall conductivity at zero temperature, the Kubore8i formula (e.g.[AG,B,BES,Na,
NB,St, ThKNN]).

Theorem 1.3. Under Assumptiond.1and5.1,if {, = P(E,EF) an orthogonal projection
then for all j,k=1,2,...,d, we have

ol i= im s PSP = —iT{ PSP 0 [, PSP [xe PSP]] ] 28)
n— <o

where [Zg,, Yolo = Zo © Yo — Yo ¢ Zoy € K1 if Zy, Yo, € Ko. As a consequengehe
conductivity tensor is antisymmetrim particular the direct conductivity is zero in all

directions i.e, ¢\ =0 for j=1.2.....4.

If the system is time-reversible the conductivity is zero in the region of localization,
as expected.

Corollary 1.4. Under Assumptiond.1and5.1,if A, = 0 (no magnetic fiel we have
o =0forall jk=12...d.

We remark that under Assumptions 4.1 and B.;, PSR, [xx, PEP]], is an ele-
ment of 1, but may not be inCy. (That is, it may not be representable as a covariant
operator with domairH¢.) In particular, the productH; in (1.25) is defined via ap-
proximation from/C; and may not reduce to an ordinary operator product. However,
under a stronger localization assumption such as

|
which holds throughout the regime in whici.4) has been verified for random

Schrédinger operators [BoGK,GK5], the products in (1.25) reduce to ordinary products
of (unbounded) operators, and we have

(EF) 7—{ P(E)EF)[I: P(E)EF):I [xk’ P“()EF):I]} (1.27)

e (1.26)

There are several reasons for usirig4] as the key assumption in this paper. As
discussed in [GK4], the stronger assumption (1.26) holds in a region of very strong
localization for random Schrddinger operators, analogous to the region of complete
analyticity in classical statistical mechanics. It is known that the latter may not hold all
the way to the critical point; there are examples where the single phase region has a
transition from complete analyticity at very high temperatures to another single phase
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region with fast decay of correlation functions. The analogy with classical statistical
mechanics indicates the possibility of a weaker localization region, wted (hay

hold, but not (1.26). (In fact (1.26) is equivalent to being in the region of applicability
of the multiscale analysis [GK5].) Moreover, the results of this paper apply to ergodic
magnetic Schrédinger operators which may be quasi-periodic or periodic, not just ran-
dom, and for which one may not expect (1.26). In addition, note that the use of (1.26)
as an assumption would not simplify significantly the proofs; the normed spéces
and /Co appear naturally in linear response theory, and (1.4), which simply states that
the relevant commutators are iy, is the natural condition for deriving the linear
response theory, as in [BES].

2. Magnetic and time-dependent electromagnetic Schrédinger operators
In this section we review some well-known facts about Schrédinger operators incor-

porating a magnetic vector potential, and present a basic existence and uniqueness
result for associated propagators in the presence of a time-dependent electric field.

2.1. Magnetic Schrédinger operators
Let
H=HA,V)=(—iV—A2+V on LR, (2.1)

where the magnetic potenti®d and the electric potential’ satisfy the Leinfelder—
Simader conditions:

o A(x) e L (RY; RY) with V- A(x) € L2 (RY).

loc loc
o V(x) = Vi(x) — Vo(x) with Vi(x) € L2.(RY), Vi(x)>0, and V_(x) relatively
bounded with respect ta with relative bound< 1, i.e., there are €« < 1 and
p >0 such that

V-l <ollAy | + Byl for all yr € D(A). (2.2)

Leinfelder and Simader have shown thatA, V) is essentially self-adjoint od‘go(Rd)
[LS, Theorem 3] (see also [CyFKS, Theorem 1.15; Si2, Theorem B.13.4]), with

HYy = —AY +2iA -V + (iV-A+ A2+ V) for iy € CCRY). (2.3)
Note that R.2) implies that for all’ > o we have [RS1, Proof of Theorem X.18]

OC/

0 (Y, Voy) <o (Y, —AY) + BlIyII%. (2.4)

o — o
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A similar bound holds forH (A, V) [LS, Eq. (4.11)]: for alle’ > « we have

OC/

IV_yll <o I H (A, Vol + Bllyll for all y € D(H(A, V), (2.5)

o — o

from which we immediately get the lower boufid, Theorem V.4.11]; [RS1, Theorem
X.12]

. g i
Sy @ —nd—a) (A= JaR

HA,V)> — (2.6)

But we can get a better lower bound. We have the a.e. pointwise ineq{Bdiy;
LS, Proof of Lemma 2]

IVAYDI<I(—iV — Ayp| for all ¥ e C(RY). (2.7)

Thus it follows for allo’ > o that we have (using2(4))

a/
(W, Vo) < (), Vo <o/ 1y, —Aly ) + 7 Blipl?
— LIV + =2 BRIV — A + = Bl
o — o = o — o
a/
S AW HA VOY) + —— BIYI (2.8)
for all € C(RY). We conclude that
- B B
HA,V)> — - . 2.
A V) 1/2'{'1) (o — o) 1—a) (2.9)
For convenience we write
. __b
y=y )= — +1, (2.10)
— o
and note that
H+9y>1 (2.11)

We also have the diamagnetic inequality

‘e_tH(A’V)l//‘ <e tHOV) 1y (2.12)
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for all y € LZ(RY) andt > 0, see[CyFKS, Proof of Theorem 1.13]. Note that the
diamagnetic inequality and (2.9) imply (using® /e~ “+9dr = I'(¢)(x + 1)79)

I((HA, V) + D" WI<(HO, V) + Dy (2.13)

for all ¥ € LZ(RY), 1 > % andg > 0.

An important consequence 02.03) is that the usual trace estimates foA + V
are valid for the magnetic Schrédinger operatb(A, V), with bounds independent of
A and depending orV only througha and . We state them as in [GK4, Lemma
A.4]. (We do not need the Leinfelder—Simader conditions here, just the conditions for
the diamagnetic inequalityA(x) € L2 (R%; RY), Vi(x) € L (R RY), and V_(x)
relatively form bounded with respect tA with relative bound< 1. See [CyFKS,
Theorem 1.13] where this is shown fét. = 0. The general case, with_ relatively
bounded as above, is proved by an approximation argument, see [F, Theorems 7.7,
7.9].) We use the notatiofx) = /1 + |x|2 throughout this paper.
Proposition 2.1. Let v > %. There is a finite constart, ; , s, depending only on the
indicated constanissuch that

{072 HA V) + 928002 < T (2:14)

where [[%]] is the smallest integer bigger thaﬁn and y is the constant defined in
(2.10). Thus letting

d
Oy p(E) = 7 5o (ENE +pALall, (2.15)

I-a’

we have
tr ()72 ()W) ™) <Toapll fPa s plloe < 00 (2.16)

for every Borel measurable functiofi>0 on the real line

Proof. The proposition follows once estimat@.13) is converted into an estimate on
traces, because then the well-known trace estimates-for- V, e.g., [GK4, Lemma
A.4], finish the argument. Hence (2.14) follows from the following lemma, with

A= ()2 (HA, V) + )~ 2all () =2,

d
p:s

B=(x)"2"(HO, V) +y) Alall(x)=2", (2.17)

using the fact that the operatof (0, V) + ) ~2L41 is positivity preserving. O
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Lemma 2.2. Let A and B be bounded positive operators @A(R?), with B a positivity
preserving operatgrsuch that

(b, AY)Y<(Iy1, Blyl) for all Y e LA(RY). (2.18)
Thentr A <tr B.

Proof. First note that the lemma is obvious if we replacﬁﬂR") by 02(7%), since in
this case we have a basis of positive functions.|(= d,). Note also that we may
assume tB < co without loss of generality.

For L2(R?), let H, be the sub-Hilbert space with orthonormal basis

- nd 4
{lnx =22 AAyn(@nx)s X € 74},

where Ay (x) denotes the cube centered :atand of lengthZL; and let P, be the
orthogonal projection ont@{,,. Note thatP, is positivity preserving. Set

A, = P,AP, and B, = P,BP,. (2.19)
It follows from (2.18) and the fact that botB and P, are positivity preserving that
(W, An) <(IPutl, BIPY1) < (Y1, Bulyl)  for all € Hy. (2.20)
SinceH,, has a basis of positive functions, we get
tr A, <tr B, <tr B. (2.212)
Thus +/AP, is Hilbert—Schmidt, and it follows that
trv/AP,~/A<tr B. (2.22)

Since P, — I strongly, we conclude that #<tr B. [

The velocity operatorv = i[H,x], where x is the operator from #(RY)
to L2(R?; C?) of multiplication by the coordinate vectar, plays an important role in
the linear response theory. To give precise meaning, t@e note that orC‘gO(le) we
have

i[H,X] = 2(—iV — A). (2.23)

We let D = D(A) be the closure of(—iV — A) as an operator from ARY) to
L2(R?; ) with domain C°(R?). Each of its component®; =D, (A)=(—i=>-—A ),

Ox;
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j=1....d, is essentially self-adjoint o®(RY) since A(x) € L2 (R¢; RY) (see

loc

[Si1, Lemma 2.5]). We define
v =V(A) =2D(A).

Proposition 2.3. We have
() D(VH +y) € D(D). In fact there exists, 3 < oo such that

HD(H +72 ] <cup

(iy For all y € C2°(R?) we haveyD(H) c D(H) and
Hy = yHYy — (Apy — 2i(Vy) - Dy for all € D(H).
(iii) Let

D 3 dpyl
Dy 5 p(E) = (E+7)2®, , s(E) = T o oy (EXE + 2N+

(2.24)

(2.25)

(2.26)

(2.27)

If f is Borel measurable function on the real line Winb‘&)d%ﬁ||oo < o0, the

bounded operatotD f (H)| = {7(H)D*Df(H)}% satisfies

{0720 (D1 ) <Toaup

(2.28)

whereﬁ,d,a,[g < oo for v > d/4 and depends only on the indicated constants

Proof. To prove (i), note thaD*D = (—iV — A)? and by @.8)

/ /

3/ D* DL+ ) (—iV— AP —V_ 4+ — B<H+——f
— o — o

for o/ € (o, 1) and 6 such that(1+ 6)o’ <1. Choosingx’ and 6 such that

O(/

-f=y and (1+do =1,
o — o

we have

(1-o)D*D<LH +y

(2.29)

(2.30)

(2.31)
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as quadratic forms. Since’ = o'(«, ) is strictly less than one, it follows that
D(/H +7y) c D(D) and furthermore

1
(H+7)"2D*D(H +7) 2 < -

_“/’

(2.32)

which gives 2.25) with C,, g = /12
Part (ii) follows from (2.25), since the identity holds fgre CZ° by (2.3). Part (iii)
is a result of combining Proposition 2.1, and the estimate

1
IDf(H)ISCop(H +7)2|fI(H), (2.33)
which follows from @.31) and monotonicity of the square root]

We shall also need to consider commutatfrs f(H)] with functions of H. For
smooth functions, the easiest way to do this is to use the Helffer—Sjostrand formula
[D,HS]. Specifically, we restrict our attention to functions which are finite in one of
the following norms:

700 =3 [ 10wl e m=12.... (2.34)
r=0
If I fll. < oo with m>2, then we havdD,HS]
f(H) = /df(z)(z - H), (2.35)
where the integral converges absolutely in operator norm
~ 1
17D [ 187@ e <elll < oo, (2.36)

with ¢ independent ofn >2. Herez = x + ly, f(z) is an almost analyticextension
of f to the complex plane, andfdz) = Znﬁ f(z)dx dy, with 0: = 0, + idy. For
various purpose it is useful to note that

~ (Rez)P—1
/ ldf (2l W§Cp|||f|||m < 00, (2.37)

for m>p + 1. (See[HuS, Appendix B] for details.) Note that if € S(R) we have
Il fll: <ooforallm=1,2,.... We recall that{. denotes the dense linear subspace
of functions with compact support.
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Proposition 2.4. Let f € C*°(R) with || f]l3 < co. Then

() f(H)YHe C D(H)N D(X).
(i) The operator[x, f(H)] is well defined or*{. and has a bounded closur¢here
exists a constanC, 3 < oo such that

11X, fCDIT< Copll fll3. (2.38)

Proof. The Combes—Thomas argumd@T] shows thatR(z)Hc C D(X), with R(z) =
(H —2z)~ 1, whenever Iny # 0. In fact, we haveR(z)Hc C D(e“@Xly with the explicit
estimate

1 .
1O R(2) 11 < Cp T for every unit cubey,, (2.39)

where p(z) = Cy 5 [Imz|/((Rez) + [Imz]). (See[GK2, Theorem 1] for details in this
context. We denote by the sandg ; possibly different constants depending only on
the parameters and § given in (2.2).) We conclude that

Rez
(2, limz] < (Rez),

1
ma [Imz| = (Rez),

1
”XR(Z)Xy” gca,/ﬁ,ymgca,ﬁ,y (2-40)

which gives (i) in light of @.37).
Furthermore, we see thpt, R(z)] is well defined orfHc. In particular, forny € H:ND
we have

[X, R(z)I(H — 2){y =Xy — R(2)X(H — ), (2.41)

where (H — z)i € He, since H is local. Asy is compactly supported, the components
of xyy are inD by Proposition2.3(ii). Thus

(H = 2)[X, R@IH — 2y = (H — )Xy — X(H — 2y = 2iD(A)Y, (2.42)

where to obtain the last equality it is useful to consigee C° initially and pass to
Y € HeN'D by a limiting argument. Thus

[X, R()I(H = 2)§ = 2iR(2)D(A)R(2)(H — ), (2.43)

wheneveryy € Hc. N D, which is a domain of essential self-adjointness fér Thus
(H — 2)HcND is dense, and we conclude that R(z)] is a bounded operator with

[X, R(z)] = 2i R(z)D(A)R(z). (2.44)
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Specifically we have

X, RI<2 | R@)VH +7] -

H J—D(A) H IR, (2.45)

with the middle factor bounded by Propositi@3(iii), and the first and last factors
bounded by./|z + y]/|Im z| and 1/|Im z| respectively. Plugging these bounds into the
Helffer—Sjostrand formula (2.35), and using (2.37), we find

. «/ 7
I, DI Cyp [ 17 - <Gl <. O (2.46)

2.2. Time-dependent electric fields

Consider a quantum particle in the presence of a background poténtial, a
magnetic vector potentiah(x), and a time-dependent spatially uniform electric field
E(r). We will refer to the time-dependent self-adjoint generator of the unitary evolution
as the Hamiltonian.

One’s initial impulse might be to add the electric potental) - x to the magnetic
Schrodinger operato (A, V) and consider the Hamiltonian:

H(@t)=HA, V) +E@#) -x = (—iV—AX)2+Vx) +E@) - x. (2.47)

However, this choice is not dictated by the physics under consideratiorfact, there
is an infinite family of choices for the Hamiltonian, related to one another by time-
dependent gauge transformations, all equally valid from the standpoint of the underlying
physics.

The operators defined by.47) suffer from the fact that they are unbounded from
below, and for general, V it is not obvious if there is a unitary propagatdi(z, s)
obeying

l@,ﬁ(l‘, S) = ﬁ(t)ﬁ(t9 S)a
{ U(s,s)=1. (2.48)
However, there is a physically equivalent choice of Hamiltonian
H({t)=(—iV—A—F0)>+Vx) =HA+F@),V), (2.49)

with F(z) = ft(’) E(s)ds (with perhapstg = —o0), for which the propagator can be
shown to exist for quite generd, V. It turns out that there is a general theory of
propagators with a time dependent generdt¥rTheorem XIV.3.1] which applies to
H (¢) but does not obviously apply t&/ (). Note thatH = H (tp).
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What is the justification for taking Hamiltoniar2.49)? In classical electrodynamics

(Maxwell's equations), one expresses the electric and magneticHigld) andB(x, )
in terms of a “scalar potential(p(x, t) and a “vector potential’A(x, 7):

E(x,1) =—0;A(x,1) — V(x, 1),
B(x,t) =V x A(x, t). (2.50)

The key observation is thdE and B are not changed iA and ¢ are perturbed by a
“gauge transformation™

Alx,t) — A(x,t) + Va(x, 1),

¢(x,t) = P(x, 1) — Ora(x, t). (2.52)
In particular, A and ¢ are not uniquely determined by the “observable” fielHsand
B. Note that a spatially uniform electric field(r) may be obtained from the time
dependent vector potenti&l(z).

This nonuniqueness carries over to one particle quantum mechanics. Consider a
Hamiltonian associated to an electron in the presence of the electromagnetic field
described byA(x, r) and ¢(x, 1):

H(Ax, 1), p(x, 1)) = (—iV — A(x, 1)) + ¢(x, 1), (2.52)

acting on 12(R?%) (in units with the electric charge equal to one). To implement the
gauge transformatior2(51), we must also transform the wave functigtx, t) by

Y(x, 1) > @X5DY(x, ). (2.53)

Indeed, ify(x, r) obeys the Schrbédinger equation

0 (x, 1) = HAA(x, 1), p(x, )W (x, 1) (2.54)
then it is easy to check thafiprmally,

10,6 (x, 1) = —(Bra(x, 1)E* SN (x, 1) + iS00 (x, 1)

=[O HAE 1, dx, ) — da(x, )| €5 (x, 1)

= H(A(x, 1)+ Voa(x, 1), p(x, 1) — do(x, )EX DY (x,1). (2.55)
Effectively the gauge transformatio2.63) implements a “moving frame” in 4(R¢),

and we must transform the Hamiltonian accordingly to account for the shift in the time
derivative in Schrédinger’s equation.
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The possibility always exists to “choose a gauge” with= 0 and work only withA:
take d;a(x, 1) = ¢(x, t), effectively replacingp by zero andA by A+ft(’) V(x,s)ds.
Generally, this gauge transformation is not used in time-independent quantum mechan-
ics, since it replaces Eime-independenscalar potential with dime-dependentector
potential, introducing an extra level complexity. However, our Hamiltoniamisn-
sically time-dependent, and there is not really any greater complexity to be found
working with A(x, 7) in place of ¢(x, t).

For the problem at hand, we do not want to take the extreme step of setting the scalar
potential identically to zero. Instead it is convenient to fix a time-independent scalar
potential ¢(x, 1) = V(x) and a time dependent vector potentelx, r) = A(x) + F(r)
with F(r) = ft(’) E(s)ds. This leads to the Hamiltonia# (t) presented inZ.49). Note

that onC*(RY) we have
H@) = G () [(—iV YN v] G, (2.56)
where G(r) denotes the gauge transformation

[G(OY1(x) = €FOT Y (x). (2.57)

Repeating the formal calculation leading @55), we find that ify/(r) obeys Schrodin-
ger equation

10 (t) = H(Y(1), (2.58)

then, formally,
i0,G ()" (1) = [(—iv ~ A2V HE® -x] GO (@) = HOGO (), (2.59)

although this begs the question of whetldalr)*y/() is in the domain of eitheE(z) - x
or H(t).

While there is no physical reason to work with one particular gauge, it is comforting
to know that the choice truly does not affect the results. One difficulty is that we do
not know (in general) if strong solutions to the Schrddinger equation

i, = Haw, (2.60)

exist with H (r) given by @.47). Thus we must consider weak solutions. Given a time-
dependent Hamiltoniak (¢) with Cg"([RRd) C D(K (1)) for all + € R, aweak solution
to the Schrodinger equatiaidy, = K ()Y, is a mapt — y, € L2(R?) such that

10/, b,y = (K. yp,) for all ¢ € CE(RY). (2.61)
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It is easy to see that the weak solutions of the Schrédinger equafds®}) @nd (2.60)
are related by the gauge transformatiofir): y, is a weak solution of (2.58) if and
only if the gauge transformed (r)*y, is a weak solution of (2.60).

2.3. Time-dependent Hamiltonians and their propagators

We assume throughout that(x) and V (x) satisfy the Leinfelder—Simader conditions
and E(r) € C(R; RY). (If in addition E(r) € L1((—o0, 0]; R?) we takerg = —o0.)

Proposition 2.5. H(t), given in(2.49),is essentially self-adjoint oni‘go(Rd) with

H(t) = H — 2F(1) - (=iV — A) + F(1)?> on CZ(RY) (2.62)
= H — 2F(t) - D(A) + F(1)?> on D(H). (2.63)

Hence
D:=D(H)=D(H(t)) forall reR, (2.64)

and onD we have that for allf and s,
H(t) = H(s) — 2(F(t) — F(s)) - D(A) + (F(1)2 — F(5)2). (2.65)
In addition, all H(¢) satisfy the lower bound given i2.9):

B
1—«a

Hlt)> — for all 7 € R. (2.66)

Proof. Clearly A(x) + F(z) and V(x) satisfy the Leinfelder—-Simader conditions with
the parameters, f§ independent of, henceH (¢) is essentially self-adjoint OGgO(R"),
(2.62) follows from (2.3), and we have (2.66). Equality (2.63) follows from (2.62) and
Proposition 2.3(i), and implies (2.64).]

Lemma 2.6. Let G(¢) be as in(2.57). Then

G1)D =D, (2.67)
H@t) = GH)HG()*, (2.68)
D(A + F()) = D(A) — F(t) = G()D(A)G(1)*. (2.69)

Moreover i[x;, H(t)] = 2D(A+F(r)) as quadratic forms o®ND(x;), j =1,2,..., d.
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Proof. The lemma follows from 2.56) and Propositions 2.5 and 2.3

We now discuss the existence of a propagdidr, s) satisfying
io,U(t,s)=HMOU@t,s), U(s,s)=1I. (2.70)
We note that
H@)+y>1 foralltel, (2.71)
wherey is given in @.10). We also set

C(t,s)=(H(t) — H(s))(H(s) + )t
= (F(t) — F(s)) - {=2D(A) + (F() + F6)}(H(s) + )7L (2.72)

By Proposition2.3(i), we have
oA @ + 7Y <[y + 7 FIF@I<C oL @73)

with C, g a finite constant. Sincé&'(¢) € CY(R; RY), we conclude that botl (z, s) and

é C(t,s) (with ¢ # s5) are uniformly continuous and uniformly bounded in operator
norm for ¢, s restricted to a compact interval. Moreover,

C=lim % C(t.s) = 2E(1) - (D(A) = FO)(H(1) +9) "
=2E() - G(1)DA)(H + )" *G(1)* (2.74)
exists, is continuous in operator norm, and satisfies
ICON<2C, glE@)I. (2.75)

Theorem 2.7. The timedependent Hamiltoniat (¢) has a unique unitary propagator
Ul(t,s), i.e., there is a unique two-parameter family(z, s) of unitary operatorsjointly
strongly continuous irr and s, such that

Ut,rU(r,s) =U(t,s), (2.76)
Ut =1, (2.77)

U(t,s)D = D, (2.78)
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i0,U(t,s)y = H@®)U(t,s)yy for all y € D, (2.79)
i0;U(t, s =—=U(t,s)H(s)y for all y € D. (2.80)

In addition, W(zr,s) = (H(t) + p)U(t, s)(H(s) +7)~1 is a bounded operatorjointly
strongly continuous it and s, with

max{s,r}
IW (2, 5)]| < ehintsn 1€@Tr (2.81)

the operatorsU (¢, s)(H (s) +7) "t and (H(t) +7)"1U(t, s) are jointly continuous irr
and s in operator norm and

10U (t, s)(H(s) +7) "2 = HOU(t, s)(H(s) + )72, (2.82)
i0((H@) +9)72U(t,5)) = —(H@) +9) 72U, s)H(s), (2.83)

in operator norm
Furthermore, if we define the unitary operataig(z,s), k =1,2,..., by

Uy, s) = g tmOH(mt ) % <s,t <m+ lE (2.84)
wherem e Z,i=1,2,...,k, and
Ur(t,r) = Ui(t, s)Ui(s,r) for all ¢,s,r, (2.85)
then
UG, $)(H(s)+ )7 = im Ukt )(H(s) +7) 7" (2.86)

in operator norm, uniformly for, s restricted to a compact interval.
Proof. The uniqueness and unitarity of the propagalte, s) follows from existence
and the fact thatd, ¢, = H(t)¢, with H(t) self-adjoint impliesd; | ¢, |> = 0.

To prove the existence of the propagator we agMyTheorem XIV.3.1] (see also
[RS1, Theorem X.70]) with

A(t) = —i(H(1) + 7). (2.87)
Note that

C(t,s) = ADAG) =1 = (A1) — A(s)A(s) L. (2.88)
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The hypotheses dfY, Theorem XIV.3.1] (and [RS1, Theorem X.70]) require that (a)
0¢ a(A(®)), (b) A(r) have a common domain, and (€Xz, s) and C(¢) = lim;_,(t —
s)~1C(t,s) are uniformly bounded and strongly continuous fos restricted to a
compact interval. ClearlyD(A(¢t)) = D(H(t)) = D for all ¢, and it follows from
(2.71) that O¢ a(A(¢)) for all . Boundedness and continuity 6f(¢, s) and C(¢) were
discussed before the statement of the theorem.

Thus the hypotheses of [Y, Theorem XIV.3.1] are satisfied. If we set

Ut,s) =T, s), (2.89)

wherel?(t, s) is the propagator for the () given in[Y, Theorem XIV.3.1] (and [RS1,
Theorem X.70]) ifs<t, and U(¢,s) = U(s,t)* if s>r, we obtain unitary operators
U(t,s), strongly continuous it and s, satisfying (2.76)—(2.79). To prove (2.80), we
use the chain rule: SincE (¢, s)U (s, t) = I, it follows from (2.78) and (2.79) that for
¢ € D we have, withyy = U(s, 1),

0= 0,U(t,s)U(s,t)p = d;U(t, Y + Ul(t, s)0sU(s, 1)
= aSU(tv S)W - lU(tv S)H(S)U(Sa f)(P = 6SU(ts S)lp - lU(ts S)H(s)lpv (290)
sinceD = U(s, 1)D.

Estimate 2.81) is given in [Y, Theorem XIV.3.1]. A careful reading of the proof
of [Y, Theorem XIV.3.1], using our stronger hypotheses 6xy, s), shows that the
operatorsU (¢, s)(H (s) + )~ and (H(t) +7)~ Uz, s) are jointly continuous in and
s in operator norm, and we have (2.82). Since the adjoint operation is an isometry in
operator norm, (2.83) follows from (2.82).[1

To compute the linear response, we shall make use of the following “Duhamel
formula”.

Lemma 2.8. Let UQ(r) = e """ For all y € D andt,s € R we have

t
U, )y =UQ@ —s)p+i / UQ ¢ — r)@2F@) - DA) = F)DU(r, s)y dr.
(2.91)

Moreover

I1:im0 Ut,s) =UQ@ —s) strongly. (2.92)

Proof. Eq. 2.91) follows simply by calculating), U@ (s — 1)U (z, s)y with ¥ € D,
using (2.78), (2.79), and (2.63). The strong limit in (2.92) follows from (2.91) for
vectors inD, and hence everywhere since all the operators are unitéary.
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3. Covariant operators and the trace per unit volume
3.1. Measurable covariant operators
We fix the notatior{ = L2(R?) and let#. = L2(R?), the dense linear subspace of
functions with compact support. We sét= L(H., H) to be the vector space of linear

operators or{ with domain#.. Elements ofL need not be bounded.
We also fix “magnetic translations™ for eache Z¢ we define a unitary operator

Ua) = €95 T (a), with (T(@)¥)(x) = Y (x — a), (3.1)

whereS is a givend x d real matrix. Note that: — U (a) is a projective representation
of the translation grou@? since

U(a)U (b) = e S0 (a + b), (3.2)
and thatU (a) leavesH. invariant, in fact
U@)pU@)* = tpyq- (3.3

Let (Q, P) be a probability space equipped with an ergodic group); a € 7%} of
measure preserving transformations. We study operator-valued m&ps~> L, which
we will simply call operatorsd,,. We identify maps that agreé-a.e., and all properties
stated are supposed to hold fBra.e. w.

Definition 3.1. Let A = A, :Q — L. Then

(i) Ay, is measurable ifip, A,y) is a measurable function for alh, € Hc. (Or,
equivalently, if A, is strongly measurable o#, i.e., A,y is a measurablé{-
valued function for ally € Hc.)

(i) A, is covariant if

U(a)ApU(a)* = Ay for all a e 74, (3.4)
(iif) A, is locally bounded if
lAwi, ]l < oo and |z, Awl <oo for all x € 7% (3.5)

We let e denote the vector space of measurable covariant operatgrswith
Kme,b being the subspace of locally bounded operators. We define the Banach space

Koo =1{Aw € Kme; lAvlloo < 00} C Kmglb, (3.6)
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where

lAwlle = Aol llLe@,p)- 3.7

If Ay € Koo, We identify A, with its extension toX (i.e., with its closureA,,). If
we define multiplication infCo, by Ay B, := Ay By, and the adjoint by(A,,)* := A%,
then Ko, becomes aC*-algebra.

WheneverA,, € Kmcib, we haveD(A}) D H, since y, A, is bounded for allx.
We defineAi) to be the restriction ofA} to #c. It follows that Aff) € Kmelb, and
the mapA,, — Ai, is a conjugation iNKCmcp. (Note thatA,, € Kmclp if and only if
there exist symmetric operatof,, C., € Kme such that||Byy, |l + |Cwy, |l < oo for
all x € 74 and A, = By, +iC,. In this caseA’, = B, —iC,,.)

Thus, givenA, € Kmcib, We have thatd}) is densely defined and thereforg, is
closable. The closure of,,, denotedA,,, has a polar decomposition afit, is a core
for the self-adjoint operatofA,,|. We will abuse notation and denote the restriction of
|Aw| t0 Hc by |Awl|. It is not hard to see that,,| is covariant, i.e., it satisfies3(4).
Similarly, local boundedness d¢fi,| is a simple consequence of the identities

Aol = 1Awxll and |y Aol | = I Aol Xl (3.8)

It is also true thaiA,| is measurable, spA,,| € Kmclb, but this requires a little more
work.

Lemma 3.2. Let Ay, € Kmcb, and consider the polar decompositiofy, = Uy |A|.
Then|Ay| € Kmew and U, € Ko. We also havef(|A,l) € Ko for any bounded
Borel function f on the real line

Proof. Let Ay, € Kmep. We start by proving that|A,|?+1)~! is strongly measurable
on H, from which it follows thatg(|A,,|?) is also strongly measurable for any bounded
Borel functiong on the real line. It then follows thaf (|A|) € Ko for any bounded
Borel function f on the real line (covariance is easy to see). Pickin@) = 7y_, ,; (),

it is clear thatf, (|A,|) — |Aw| strongly onH¢, and henceA,,| is strongly measurable.
We conclude thatA,| € Kmclb-

To prove measurability of| A, |°+ 1)~1, we pick an orthonormal basisp, },en for
the subspacé{y = ){O’H%LZ(R‘I, Zo(x)dx) of H, and set(pf,“) =T(a)e, fora e 7°.
Then {qu,a)}neN’aEZd is a an orthonormal basis fak, which we relabel ag¢,},en,
and Iet?fl\C be the subspace of finite linear combinations of #)és. Note that?fnl\C is
a dense subspace &f. and hence is a core fot,,, sinceA,, is locally bounded.

Let P, be the orthogonal projection onto the finite-dimensional subspace spanned by

¢1a ¢2’ ey ¢I’l' We set

MY = (AP Ap P, (3.9)
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a bounded operator sineg, is locally bounded. Since we haye, Mo(f)tp) = (Ay Py,
Ay, Pyy) for ¢, € H, we conclude thatMO(?) is weakly, and hence strongly, mea-
surable on#. Proceeding as ifiPF, Proof of Lemma 2.8], we see theM((jl) + 1)1
is measurable ort{ (basically, because a matrix element of the inverse may be ex-
pressed as a ratio of determinants, which are measurable functions). We now show
that (M + 1)~ — (|Aq)? + 1)~! weakly asn — oo, and hence(|Aq |2 + 1)L is
measurable or. .

For this purpose, leb, € Hc. For sufficiently largen we have

(Ap®, Ap(ME + 1)) = (A Pagp. Ap Pa(MEY + 1)~ 1)

= (o, MM + 1)1y, (3.10)
and hence
(Aw@, AoMS + 171 + (o, MY + 17N = (. ¥). (3.11)

Now let ¢ € D(A,). Givene > 0 we pick ¢ € Hc such that
I — Pl + [Aw(d — @) < &. (3.12)
Since
40 Pa(ME + D7HZ = (MG + D7 MG MG+ DHI< (3.13)
we have

(A — @), AwMS + D7) + (p — 0, M + )7 X) — (0 — @, )]
<3Bs|yll, (3.14)

wheneven) E andn is correspondingly large. Therefore, it follows froi3.11) that
for all ¢ € D(A,) we have

Nim (Ao, AoMg” + D7) + (9, (M + D7) = (9. ¥) (3.15)

for all Y € He.
Taking ¢ € D(A¥A,) C D(Ay), we get

lim (A% A, + D, (Mg + D7) = (6. ) (3.16)
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for all Y € 7, and hence for ally € . Writing 7 = (|A,|2 + 1)¢, we get

i, M + D7) = (1Al + D7, ¥) (3.17)

lim
n—0oo

for all 1, € . We conclude thatM{” + 1)=1 — (J4,|2 + 1)~1 weakly.
We now turn to the partial isometr§/,,. We recall that

U = lim Aw(Agl+¢)~t strongly onA. (3.18)
E—>

Thus U,, is clearly covariant and measurable, 8g € Ko.. O

Lemma 3.3. Let Ay) € Kmcb. Then for eachn,

1
DS -2
AD = (%|A§,|2 i 1) Ag € Koo, (3.19)
with A7 <n, and A" — A,, strongly on%e.

1

Proof. We clearly haveA((f}) € Kmc since (711 |A3§)|2 + l) 2 € K by Lemma3.2. As
1

(% |Afo|2 + 1) 2 5 strongly, we conclude tha&\g‘) — A, strongly onHe.

Thus we only need to show thamg})n <n. To do so, let

_ 1
AD (% 1A% |2 + 1) 2 A, (3.20)

and recall| A% || <n. Since A* is the restriction ofA* to 7., we have|A* [2<|A}|2
as quadratic forms (sdfkS3, p. 375]) and hence

— -1 -1
<%|Ai|2+1> < (%|A*w|2+1) (3.21)
by Reed and SimofRS3, Theorem S.17]. We conclude that

1A I<IAS I<n. O (3.22)

Lemma 3.4.If Ay, € Kmcib, Bw € Koo, @and By, Ay € Kmclb, We have thatD(AY) D
B} Hc and

(BoAw) o = ALB} e for all ¢ € He. (3.23)
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Remark 3.5. Note thatB, A, is not necessarily ifCmc b, Since we have no control
on ||z, BoAol for x € 7.

Proof. For any ¢,y € Hc we have

(@, BoAwl) = (BwAw) o, ). (3.24)

On the other hand,
(¢, BoAwY) = (By,p, Aw). (3.25)

It follows that

Blo € D(AY) for all ¢ € Hc (3.26)

and @.23) holds. O

Let us define

Ko = {Aw € Kmelb; BwAw, BuAl € Kmeib if By € Koo)- (3.27)

Note thatKo C Kmcip iS a vector space, and ity we can define left and, using
Lemma 3.4, right multiplication by an element df:

By OL Ao = BpAw, (3.28)
A Or Bw = A& Bo |, (3.29)

where A, € Ko and B, € K. Note that forB,, € Ko we haveB(f,* = B, since we
identify B, with its closure, so3.28) could also have been written as

By, OL Ap = BE)*Aw- (3.30)

Proposition 3.6. Let A, € Ko and B, Cy, € Koo We then haveB, O Ay, Ap, Or
By, € Ko. Moreover

+
Ao Ok Bo=(By 0L AL) (3.31)
By ©pL Ay O Cyy = (Bw oL Aw) OrCy» =By OL (Aw Or Ca))’ (3-32)

(Bo OL Aw Or Co)* = C}, ©1 AL Or B}, (3.33)
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{By OL A O Co}@ = BoAXChp for all ¢ € He.

Proof. The proof is a simple exercise[]

3.2. The Hilbert spacéC,

Let
K2 ={Aw € Kmc; llAwll2 < oo},
KL = Ko N Koo,

where

1
Aol = {E (I40k013) |
Proposition 3.7. (i) Kz is a Hilbert space with the inner product

({Aw, By)) = Eftr {(AwXO)*BwXO}},

and || ||z is the corresponding norjri.e.,
IAolZ = (Ao, Aw))-
(i) K2 C Kmelb and the conjugatiord,, — Afﬁ, is antiunitary in Ky, i.e.,
((Ao» Bu)) = (B}, AL)).

(iii) For all A, € K2 we have

(Awi0)* = 10A% = 1oAb,
and hence

(Ao Bol) = Eftr {2045 Buro}}

NI
NI

HAolz = {E(104513) |2 = {E (1704013) ]

(iv) £ is dense inC,.

329

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)
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Proof. We first note thatC, is a vector space, since
2
140+ Bol3<E{ (l4070ll2 + 1 Bozoll2)’} <2 (IAwl3 +BuI3).  (344)

Since the right-hand side 08.38) is well defined ford,,, By, € K2, it clearly defines
an inner product.

To show thatkC, is complete it suffices to show that every summable seriefSJn
converges. So consider the series

o0
D MAnollz < 00, Ay € Ka. (3.45)
n=1
It follows that
o0 o0 o0
E <Z ||An,wxo||z> =3 E(lAnwioll2) < Y lAnwllz < oo, (3.46)
n=1 n=1 n=1
and hence
o
Z lAn.wxoll2 < oo. (3.47)
n=1

Using the completeness @ and the covariance property we conclude thgl; A, .
converges strongly ift{c to an operatod,, € Kmc. Since the Hilbert—Schmidt operators
on #H are also complete, we also conclude tAaty, = Z;’Zil Ay, w0 With convergence
in Hilbert—=Schmidt norm. Thus, using Fatou’s lemma,

2

A% = E

2
lim <liminf E
N—o0 ) N—o0

N
Z An,on
n=1

N
Z An,on
n=1

2

N 2 00 2
< ( Jim > |||An,w|||z> = (Z |||An,w|||z> < o0, (3.48)
n=1 n=1

and henceA, € K». Since A, — Zf;’zl Apw = Z;’f’:NH A0, the same argument
gives

2

2
o
< ( > |||An,w|||z) — 0 asN — oo, (3.49)
2 n=N+1

N

Ao—) Anw

n=1

and henceC, is complete.
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To show Ky C Kmep it suffices to showA?) yg is well defined and almost surely
bounded, sincel,, g is almost surely Hilbert—-Schmidt and thus bounded. Givgne
K2, we setAy, «y = x,Awy, for x,y € 72, a Hilbert—=Schmidt operator. Then note
that (Ar,l),x.,y)* = Xy(Aw,x.y)*Xx and

D E{tr(Apry (Aox.))

yeZz

= > Etr (1 Avy Ly (Aox.y) 1)}

yGZZ

= Z [E{tr(;{x—yA’E(}‘)(U,x—}‘.OXOAj(y)w’x—y’OXx—)‘)}
yEZZ

= Y Etr(oA x—y.0Zc—y Avi—y.0%0)} = Aol (3.50)

)'GZZ

we used 8.4), the invariance of the expectation under the transformatio@s; a €

7%}, and cyclicity of the trace, plus the fact that, as all terms in the expressions are
positive, we can interchange the sum with the trace and the expectation. Proceeding
as in (3.46)—(3.49) we conclude that the operaBy = Zx,yezz(Ay,x)* is in Ko.

(Note that covariance only holds for the sum overaly € 72)) It is easy to see that

B, C A¥,, SOD(AY) O Hc and B, = Al,. Thus

2
,= 2 Etr(An0,y(A6.0,)") = lAull3 (3.51)
yeZz

t
4%

by (3.50), and (3.40) follows using the polarization identity.

Equality (3.41) is an easy consequenceDgii*) D H; (3.42) and (3.43) then follow
from (3.38) and (3.40).

It remains to show thalcgo) is dense inkCy. Let Ay, € Ko, then Ay, Ai, € Kmclb,
and AES), defined in (3.19), is clearly iliﬂgo), and H‘Aw — Ag‘)
convergence argument[]

, 0 by a dominated

Left and right multiplication by elements d€., leave K, invariant.

Proposition 3.8. K2 ¢ Ko. Moreover if A, € K2 and B, € K5 we haveB, O
Ay, Aw Or By € K2 with

I1Bo OL Avll2< I Bollooll Aw 2, (3.52)

lAw ©r Boll2<llBollccll Awll2- (3.53)
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Proof. Since we clearly haveB, ©1 A, € K2 with (3.52), Proposition 3.7(ii) gives
K2 C Kineo- Estimate (3.53) follows from (3.31), (3.52), and (3.40)]

The following lemma will be very useful.
Lemma 3.9. Let B, , be a bounded sequence /&, such thatB, , — B, strongly.
Then for allA,, € K2 we haveB, ,Or Ay — BuOrAy and Ay,Or By — AwOrBw
in Ko.

Proof. It suffices to prove the result for left multiplication in view 08.81). By

considering the sequend®, , — B, we may assumes, = 0. We have, withA,, €
0
2

1By, O1 Awll3 = Etr{xoA% B}, BnwAwrol — O (3.54)

w=n,w

by dominated convergence. SinBg ,, is bounded analigo) is dense inCo, this extends
to generalA,, € K2, O

3.3. The normed spack€;

Let
K1 ={Aw € Kmcib; llAwlls < oo}, (3.55)
K? = K10 Koo, (3.56)

where
Aol = Eftr{)olAwlxo}}- (3.57)

Note that[|Ayll1 is well defined (possibly infinite) for, € Kmcib by Lemma3.2.

Lemma 3.10. Let A, € K1. Then
E{trxoAwxol} <llAwll1 < oo, (3.58)
and hencek{tr{ygAwyo}} is well defined

Proof. Let A, = U,|A,| be the polar decomposition of,,. We have

__1__ 1
10AwXo = XoUwlAwl2|Au|2 yo. (3.59)
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__1 .

Since A, € K1, |Ay|2 € K2 and, by Lemma3.2, U, € K. (More precisely, the
1 1 o . 1

restriction |A,,|2 of |A,|2 to Hc is in K. Note that#H. is a core for|A,|2.) Thus

1 1
UnlAw|2 € K2, and yoUy|A|2 is a Hilbert—-Schmidt operator by (3.41). Hence it
follows from (3.59) thatygAwyo iS trace class. Inequality (3.58) now follows from
(3.59), Holder’s inequality, and (3.43).]

Lemma 3.11.Let A, € K1 and B, € K. ThenB,A,, € K1 and
lBoAwlli <l BollollAwlla- (3.60)
Proof. We have
* * l
|B(qu| = WwBu)Aa) = WwB(uUu)|Aa)| = Ba)Uw|Aw|2|Aw|2 (361)

where W,, and U,, are partial |sometr|es coming from the polar decompositions of

B,A, and A, respectively. S|nce4Aw|2 € K2 and Bwa|Aa,|2 € K2, we may
proceed as in Lemma.10 to conclude thaB,A, € K1 and (3.60) holds. (I

Proposition 3.12. (i) K1 is a normed vector space with the no1.
(ii) The conjugationd,, — Ag, is an isometry onky, i.e.,

o1 = llAwllz. (3.62)
iy K12 is dense ink;.
Proof. We first prove the triangle inequality fdf||1. So letA,, By, € K1. We have
|Au) + Bu)| = (‘)(Aw + Bw) Aw + W Bw, (3-63)

with W,, a partial isometry. It follows from Lemma3.10 and 3.11 that, + B, € K1
and ||Ay + Boll1 <llAwllr + I Bollz. We conclude thakl; is a normed space.
Given A, € K1, we have

X0|A33|XO = OVwAwyo = 7OV(0A(070 =Xo *lAw|U:)XO

1 1
= (XoV&’;lAwI2> <|Aw|2U:)XO) , (3.64)
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where A, = U,|Aq| and AL = V,,|AY|, and the operators in parentheses are Hilbert—
Schmidt by Proposition8.7 and 3.8. It also follows that

44|, <naoha. (3.65)

Since A = A*¥, the reverse inequality follows, yielding.62).

Finally, we prove thaﬂcgo) is dense inkCy. Given Ay, € K4, let Ag’) € K be as in
(3.19). Since
_ _1 _ __
2
Ran (11457 +1) 7 = D(AL]) = D(A}) € DAY, (3.66)
we have
_ 1
* 2
AY" = Ay, (,—1,|A3)|2 + 1) (3.67)
and
— -1
AP = a5 (R1AEP +1)  Ao<ldol, (3.68)

and hencéA™| <|A|. It follows thatA™ e IC&O). To prove that we haviA,,—A™ |1
— 0, we first remark that by a similar argument we have

1A — AL <] Aol (3.69)

So let{p;}ren be an orthonormal basis for the subspagé{, we have

40— 42|, =€ {Z«pk, Ao - A£;”|<pk>} <Moll < o, (3.70)
keN
since A, € K1 and
(@ 140 — AL 100) <(@p 14wl ). (3.72)

On the other hand, using Jensen’s inequality we get

() 2 3
(O 1A — Ao |@g) <A@, 1A — Ay 170) 2

= (Ap — A, | > 0 ask — oo. (3.72)

Thus ||Ag, — Afj})|||1 — 0 by the Dominated Convergence Theoreml]



J.-M. Bouclet et al./Journal of Functional Analysis 226 (2005) 301-372 335

We will denote the (abstract) completion &% by 1.

Proposition 3.13. The normed spacé; is not completgi.e., K1 # K.

(cst

Proof. Let us denote byC and Kicso the subset otonstantoperators iNCmeib

mc,lb
and K1, respectively. In view of3.4), A € icgﬁg?b can always be written in the form
A=Y LU®S U=y, (3.73)
LyeZd

where § = {S,} .,« is a family of bounded operators ipyH such that the series
Y cezd LU ((x)Syyo converges strongly to a bounded operator. A sufficient condition
for the latter is

> USel? < oo (3.74)

xez4

OperatorsA as in 3.73) can be partially diagonalized by a Floquet transform given
by

F= (27:)‘% > EU(—x)y,. (3.75)

xez4

a unitary map fronf{ = L2(R?, dx) to L2(T, dk; yoH), where T? = [-Z, D)¢ is the
d-dimensional torus. Its inverse&s™, is given by

d .
Fr=0Qm72 Y nUE ) o - (3.76)

xez¢

For A as in @.73) with " _,a [1Sx]|?> < oo we have

(FAF*®)(k) = A(k)®(k) for all ® € FHc, (3.77)
where
Alk) = (27{)_% PRCARE S (3.78)
xez4

Since F is unitary, in this case we also have

(FIA|F*®)(k) = |Ak)|Dk) for all ® e FHc (3.79)
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and

Al = tr xolAlzo = 2m) ™ fT A dk. (3.80)

It follows that the completioﬂcfso of IC(lCSD is isomorphic to the Banach space
LAT, @n~Ydk; Ta(roM)),

where T1(yoH) denotes the Banach space of trace class operatoygn

To see that there are elements ik T¢, (27)~9dk; T1(xoH)) that do not correspond
to operators inkC\°’, let us considerA as in @.73) with S, = s,Y for all x € 79,
whereY e Ti(yoH)) and the scalargs,} ;s are chosen suck(k) e LL(T?, dk) but
§(k) ¢ LT,  dk), wheres(k) is defined as in (3.78). (This can always be done.) We
clearly haveA (k) e L1(T¢, (2r)~¢dk; T1(xoH)), but for eache € yoH we have

IAQIZ = | D 15l | 1Y QI = ISR 5 a g, IV 07 = 00 (3.81)

xez4

unlessYo = 0. Thus A ¢ IC&CSD as it does not contairt¢ in its domain. (In fact,

A¢KEN)

Note that we proved that for any € yoH* we can findA € K; K which can-
not be represented by an operator wiphin its domain. In fact, We proved more:
for appropriateY the constructedA has the property that its domain is disjoint
from He. O

Remark 3.14. More generally, it follows from .4) thatA, € Kmcip can always be
written in the form

Z XxU(X)S‘E(—y)w,x—yU(_y)va (382)

x,yezd

where S, = {Sw.x},.7« is @ family of bounded operators g such that the series
Y vezd LU (X)Sw x 1o CONverges strongly to a bounded operator. As3i74), we have

14wz P< D 1S nwyll?. and alsol Az, 5= Y ISi-vwyll3.  (3.83)
yezd yGZd
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In particular,

IAwlz =Y ElSw.yl3). (3.84)

yez!

In the constant case we could writel||1 as in 8.80), but we do not have a similarly
simple expression folf A, |l1.

Although /1 is not complete, it is closed in the following sense:

Proposition 3.15. Let A, € Kmc b and suppose there exists a Cauchy sequehgcg
in 1 such thatA, »xo — Awyo Weakly ThenA, € K1 and A, ,, > Ay in K1.

Proof. Let A, = Uy|A,| be the polar decomposition. It follows that
UsAnwlo— lAwlxg weakly. (3.85)

Thus, if {¢;}jen is an orthonormal basis for the subspag@(, we have, using Fatou's
Lemma,

lAolls =E Y (9. [Aule;) =E Y lm [{p;, UsAno®;)]
jeN jeN

<liminf E ) [0, UsAnwe;)| < liminf A, olls < o, (3.86)
jeN

and henced,, € K.

For fixed m we have thatd, , — A, IS a Cauchy sequence i1, and that
(Anw — Am.w)xo = (Aw — Am.w)yo Weakly asn — oo. Thus the above argument
gives

lAw — Am,wll1 < II,I;TLICQf lAz,o — Anollt — 0 asm — oo. O (3.87)

Corollary 3.16. Let K12 = K1 N K2 with the norm|| [lz2 = || llo + [l ll2. Thenky 2 is
a Banach space

The corollary is an immediate consequence of Proposit®nd) and 3.15. Its value
is that given a sequence, ., € Kmcp Which converges inCy, if it also converges in
K> then its limit in K1 is actually in K.

Left and right multiplication by elements df., leave K1 invariant.
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Proposition 3.17. K1 C Kg. Moreover if A, € K1 and B, € K« we haveB, O
Awa Aa) @R B(g € ’Cl W|th

1B OL Avlli<IBolloollAwll1, (3.88)
lAw Or Bolli<lIBollcllAwll1- (3.89)

Proof. We have B, ©; A, € K2 and @.52) from Lemma 3.11, so it follows from
Proposition 3.12(ii) that; c K. Estimate (3.89) follows from (3.31), (3.88), and
(3.62). O

We consider one other sort of multiplication, namely the bilinear mapiéo) X
IC(ZO) — K1 given by

Ay © By = 0(Ap, By) = AwBy. (3.90)
Proposition 3.18. We have
lAw © Bolli <IAoll2ll Bullz for all Ag, Be, € 3. (3.91)

Thus < extends by continuity to a bilinear mame do not change notatipro: Kz x
K2 — K1, which satisfieq3.91) and has dense rangén fact,

KO = o(kQ x k) (3.92)
and
KiGRano . (3.93)

Moreover given A, B, € K2, we have

Awo By =AyOL By if Ay e K, (3.94)
AwoBy=AyOr By if Byeky, (3.95)
(Ap ¢ By)* = BY o AY (3.96)

Proof. To prove 8.91) we proceed as in the proof of Lemma 3.11. The inclusion in
(3.93) was exhibited in the proof of Lemma 3.10; note that it also gives (3.92). Eq.
(3.94) is proven by an approximation argument. Eq. (3.96) follows from the special
case whem,, By, € ICéO) and (3.62). Eq. (3.95) follows from (3.94), (3.96) and (3.31).
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To show that we do not have equality i3.93) we proceed as in the proof of
Proposition 3.13. Letd be as in (3.73) withS, = s,Z for all x € Z¢, whereZ €
Ta(roH)) and §(k) € L2(T9, dk) but §(k) ¢ L*(T9, dk). (This can always be done.)
Then A € Ko but Ao A ¢ K1 sinces§(k)2 ¢ LA(T9, dk). O
Lemma 3.19. Let B, ,, be a bounded sequence /iy, such thatB, , — B, strongly.
Then for allA,, € K1 we haveB, ,Or Ay — BuoOrLAy and Ay,Or By — AwOrBw
in K.

Proof. Again it suffices to prove the result for left multiplication in view d3.81).
Since the sequencs, ,, is bounded andC(lo) is dense inK1 it suffices to prove
the result forA,, € IC(lo). But then we can writed,, = C,D, = C © D, With
Cy, Dy, € IC(ZO). Since

Bp,o OL Aw = Bn,wCoDw = (Bn,oCw) Do = (Bn,w OL Cw») © Do, (3.97)
the desired conclusion follows from Lemn3a9 and Proposition 3.18.0]
3.4. The trace per unit volume
Given A = A, € K1 we define
T(A) = E{tr{z0Awo}}- (3.98)
Lemma3.10 says thaf is a well defined linear functional oty such that
[T (A< Al (3.99)
In fact, 7 is thetrace per unit volume

Proposition 3.20. Given A = A, € K1 we have

) 1
T(A) = Lll_r)noo mtr{XALAwXAL} for P-a.e. w, (3.100)

where A, denotes the cube of side=1, 3,5, ... centered at0.

Proof. We have

riia, Aoza ) = Y, WnAod= Y tioAwelol (3.101)
xeZ9nAg xeZ9nAg

Thus @.100) follows from (3.58) and the ergodic theorent
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Lemma 3.21.Let A, By, € K2. Then
T(Aw © Bw) = (A, Bo)). (3.102)
In particular, we have centrality for the trace per unit volume
T(Ay o By) =T (By o Ap). (3.103)
Moreover given Cy, € Koo, We have
T((Co» OL Aw) © By) = T(Aw ¢ (Boy Or Cp)). (3.104)
Note that if A, B, € ICEO) Eqg. 3.103) reads
T(AwBw) =T (BuAw), (3.105)
and Eqg. 8.104) reads

T(CwAuBy) = T(AwBuCo). (3.106)

Proof. It suffices to prove the Lemma fod,, B, € ICEO), in which case it follows

from Propositions3.7 and 3.8 [J
We also have aK, K1" version of centrality for the trace per unit volume:

Lemma 3.22.Let A, € K1 and C, € K, then

T(Cw oL Aw) = T(Aw Or Cw)- (3-107)

1 1
Proof. Just useA,, = (Uy|An|2) ¢ |Ay|2, with Uy,|Ay| the polar decomposition of
Ay, and @.104). O

We will also use the following lemmas.

Lemma 3.23. Let A, € K1 be such that7 (C, ©®1 Ay) = 0 for all C,, € Ks. Then
A, =0.

Proof. Let U,|A,| be the polar decomposition of,,. ThenU,, € Ko and ||Ay|l1 =
T(U%Aw) =0. O

Lemma 3.24. Let B, , be a bounded sequence ki», such thatB, , — B, weakly
Then for allA,, € K1 we haveT (B,.»wOrLAw) = T(BuOLAw) and T (A,Or Bn.w) —
T(Aw OR Bw)-
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Proof. It suffices to consider the cas&, = 0. If UylAy| is the polar
decomposition,
1 1
T(Bn,w OL Ap) =T(Apl2 ¢ {Br.ow OL (UnlAwl2)}) — 0 (3.108)

by dominated convergence. The other limit then follows from Lengi22. [
3.5. The connection with honcommutative integration

There is a connection with noncommutative integratidiy, is a von Neumann
algebra,7 is a faithful normal semifinite trace ofC., and K; = Li(Kw, T) for
i =1,2. (We assume tth(lo) is not trivial, which is guaranteed by Assumption 4.1
in view of Proposition 4.2.) But our explicit construction plays a very important role
in our analysis.

That £ is a von Neumann algebra can be seen a follows. Let

~ [$)
H = L%(Q, P); H) =/ HdP
Q

(see[RS2, Section XIlI.16] for the notation). Then the collectidty, of strongly
measurable mapst = A, @ Q — B(H) with [|[Ayllc < o0, where [|[Ayllo is

as in (3.7), form the von Neumann algebra of decomposable operato?$ RS2,

Theorems XII1.83 and XIlI.84]. If we define unitary operatot&a) on H for a €

7 by (U@®)(w) = U@P(r(—a)w) for ® € H, it follows that Koo = {A, €

Koo: [U(a),Ay] = 0 forall a € 79}, and henceKy is a von Neumann
algebra.

T is a faithful normal semifinite trace (e.g., [T, Definition 2.1]) d@y. That 7
is faithful is clear; to see thaf is normal note that the condition given in [BrR,
Theorem 2.7.11(i)] can be verified using properties of the usual trace and the mono-
tone convergence theorem. To show tWatis semifinite, pick a self-adjoint G
By, € IC(O), note that we have the orthogonal projectio@s . = y_,..(Bw) €

IC(lo) by Lemma 3.2, and hence we conclude tffatis semifinite sinceQ, ., ,/ I
strongly.

Note that if A, € Kmcip then its closured,, is affiliated with Ko, by Lemma 3.2.
The converse cannot be true in view of Proposition 3.13.

4. Ergodic magnetic media
4.1. The ergodic Hamiltonian

We now state the technical assumptions on our ergodic HamiltoHjan
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Assumption 4.1. The ergodic Hamiltoniarw — H,, is a measurable map from the
probability space(Q, P) to the self-adjoint operators 6H such that

Hy = H(Aw, Vo) = (—iV - Aw)z + Vo, (4-1)

almost surely, wheréd,, (V,,) are vector (scalar) potential valued random variables
which satisfy the Leinfelder—Simader conditions (see Sec2idr) almost surely. It is
furthermore assumed tha&f,, is covariant:

U(a)HyU (a)* = Hyayey for all a € 7. (4.2)

Measurable in this context means tHdt, H,¢) is a Borel measurable function for
every y, ¢ € C@O(Rd). As a consequencg (H,) € K for every bounded Borel
function f on the real line. (The only subtle point here is measurability, but that is
well known. Seg[PF].)

Note that it follows from ergodicity that,,_ satisfies (2.2) almost surely witthe
same constants, f.

We remark that much more detailed knowledgeHy is required to verify Assump-
tion 5.1 below, at least fof, = P(E,EF). In particular, one might requir&,, to be of
the form Vi, (x) = >, ¢ n,u(x —a), wheren, are independent, identically, distributed
random variables and is a function of compact support. However, the only fact we
need here regarding localization for ergodic Schrodinger operators is (5.2) below for
suitable functiong:. Thus we prefer to take the general Assumption 4.1 and note that
Assumption 5.1 for{, = P,E,EF) follows, for suitableA,, V., and Er, by the methods
of, for example, [AENSS,BoGK,GK1,GK?5].

It is absolutely crucial to our analysis that the parameterg in the Leinfelder—
Simader conditions may be chosen independentlywofn particular, this allows us to
prove:

Proposition 4.2. Let f be a Borel measurable function on the real line such that
[ f Dy pllcc < o0, where®, , 4 is given in(2.15). Then

(i) We havef (H,) € K\, and if || f20,., glloc < 0o then f(H,) € K.
(i) If f(H,) = g(H,) for someg € S(R), we havelx;, f(Hy)] e K n K,
J 1 2

j=12...,d.
@iy If f(Hy) = g(Hy,)h(Hy) with g € S(R) and 2 a Borel measurable function with
1h?®y 4 plloc < oo, and for somej € {1.2,...,d} we have[x;, h(H,)] € Kz,

then we also havéx;, f(Hy)] € K1 N Ko,

(iv) We haver” e KO NKY, where P = oo g 1(Ho), i€, P = f(Hy) with
f = Z(—oo.g- If in addition we havelx;, P(E,E)] € K, for somej € {1,2,...,d},
then we also havéx;, P(E,E)] € K1.
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(v) If 7 is as in either(ii), (iii), or (iv), we also have
T{lxj, f(Ho)]l} = 0. (4.3)

Proof. Condition (i) is an immediate consequence 8f16). To prove (ii), first note
that [x;, f(Hy)] is in Ky by Proposition 2.4(ii). We recall that [GK4, Eq. (3.8)]

17 £ (Ho) %013 < Cat . povk 1 f @t pllooll g2 () 2 (4.9

for P-a.e.wand allk =1,2,... andv > %, and sefa to be a step function approxima-
tion to the operatok, i.e., a is the operator given by multiplication by the discretized
coordinates: € 7¢: a= > uczd g Note that multiplication byx; —a; is a bounded

operator for eacly € {1, 2, ..., d}; in fact, we havellx; —a;/| g%. Since

[x;, f(Hy)] = [ajf(Hw)] +[x; —aj, f(Hy)], (4.5)

to prove[x;, f(Hy)] € Ko it suffices to provela;, f(Hy)] € K2. This follows from
(4.4) with sufficiently largek:

2

laj, f(HN)xol3 = | D #alaj, f(Ho)lxo

aezd 2
= Y lzalaj. fFCH)0l5 =" 1aj e f (Ho)rolls
aeZ4 aeZd
< Can ok 1fPagpllooliglirz Y lajl?@) ™. (4.6)

acZz4

That [x;, f(Hy)] it is also in K1 follows from (iii), since we can writeg(r) =
{()'g(@)(r)™™ with n € N, ((r)"g()) € S(R) and h(r) = (t)™" is as in (iii) for n
large.

To prove (iii), we note thalx;, g(H,)] € K by (2.38) and, sincéx;, h(Hy)] € Ko,
xjh(Hy)yo is a bounded operator. Hence

[xj, f(Hw)lyo=[xj, 8(Hu)h(Hw)])o
=[x, 8(Hw)h(Ho) xo + & (Hw)[xj, h(Hw)])o- (4.7)

Noting thatg(H), h(H,) € K2 by (i), we conclude that

[xj, f(Ho)l =[x, §(Hw)] Or h(Hw) + g(Hw) OL [xj, h(Ho)] € K2, (4.8)
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and, as[x;, g(Hy)] € K2 by (ii),
[xj, f(Hw)] =[x}, g(Hy)] o h(Hy) + §(Hy) © [xj, h(Hy)] € K1 (4.9)
Item (iv) is an immediate consequence of (i) and (iii). To see (v), RIS = %oX; Xo

is bounded andy f (He)x 10 = (Xof (Hw)70)(xj o) IS trace class. Sinde;, f(Hy)] €
K1, we conclude thaggx; f (Hw)yg iS also trace class, and

TAlxj. f(Ho)l} = Etr(xox; f(Hw) o) — Etr(xof (Hw)xjx0) =0 (4.10)
using centrality of the ordinary trace tr[]
4.2. Commutators of measurable covariant operators
In this subsection,H, stands either for the time independeht, or for H, ()
incorporating a time-dependent electric field. Bi,A, € K; we meanA,H; C D

and the operatof,,A,, with domain? is in K;.

Definition 4.3. We define the following (generalized) commutators:
@ If Ay € Ko and By, € Koo, then

[B(u, Aw]@ - Bw oL Aw - Aw OR Bu) € K@a (4-11)

s
[Aah Bw]@ - Aw Or B(o - B(o oL Aw - <|:BZ), Afg]@) € ICO- (4-12)

(i) If Ay, By € K2, then

[Bw, Awlo = By © Ap — Aw © By € K1. (4.13)
(i) If A, € Ko is such thatH, A, and HwAi) are in g, then

[Hp, Awlt = HoAw — (HoAR ) € Ko, (4.14)
Remark 4.4. These commutators agree when any two of them make sense. More

precisely:

(@) If Ay, By € Koo then[By, Aple = [Bw, Awl = BoAy — AypBe,, the usual com-
mutator.

(b) Eq. @.13) agrees with either (4.11) or (4.12) if eithBy, or A, are in Keo.

(c) Eq. @.14) should be interpreted as an extension of (4.11) to unbouBgedNote
that (4.11) can be rewritten 48, Aylo = BuAw — (B;;A:f))*, and the right-hand



J.-M. Bouclet et al./Journal of Functional Analysis 226 (2005) 301-372 345

side makes sense as long BgA, and B;Afa are in Kmcp. In addition, @.14)
reduces to the usual commutator &fa N D, as shown in the following lemma.

Lemma 4.5. Let A, € K be such thatH,A,, € Kg. Then
(H(DA(.U):C‘,D = A(:E,le// for all € HcND. (4.15)
In addition, we haveD((H,Aw)™) N D = D(A* Hy,) and

()

(HpAw)"Y = Al Hyy for all € D((HyAw)™) ND. (4.16)
As a consequencd H,A, and H,,,Af) are in g, then
[He, Aplty = HyAuY — ApHyy  for all y e HeND. (4.17)
Proof. If H,A € Kg, for all y € HcND and & € He we have
(HoAw)', &) = (), HoAwé) = (Hol, Awl) = (AL Hu, &), (4.18)

where we used the fact thdi,y € H; since H,, is a local operator. Thus4(15)
follows. A similar argument proves (4.16)[1

The following lemma will also be useful.

Lemma 4.6. Let A, By, € K2, C, € Koo. Then

TA[Cw, Avle ¢ Bo} =T {Cy OL [Aw, Bolo} - (4.19)
Proof. It follows from (4.11), (4.13), and Lemma 3.21[]
4.3. Time evolution on spaces of covariant operators

For P-a.e. w let Uy(t,s) be the unitary propagator given by Theorem 2.7. Note
that U, (2, s) € Keo- (Since we apply Theorem 2.7 independently for eaghthere is
the subtle question of measurability fok,(z, s). However, measurability follows from
construction (2.86), since the propagatdy(z, s) is expressed as a limit of “Riemann
products,” i.e., multiplicative Riemann sums, each of which is manifestly measurable
since it is a product of finitely many propagators'4 () )

It will be important at times to keep track of the dependencelUgfz, s) on the
electric fieldE, in which case we will writeU,,(E, ¢, s). Note that

Uy(E=0,1,5)=U2¢ —s):=ei-9Ho, (4.20)

We omit E from the notation in what follows.
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Proposition 4.7. Let
UL, 5)(Ap) = Uy(t,s) O Ay Or Uy(s, 1) for Ay € IC®~ (4-21)

ThenU(z,s) is a linear operator onKg, leaving Ko, Koo, K1, and K invariant,
with

U, U, s) = UL, s), (4.22)
Uity =1, (4.23)
U@, ) (AN = U@, 5)(AL). (4.24)

Moreover U(z,s) is unitary on Kz and an isometry infC; and K; it extends to
an isometry onk; with the same propertiedn addition (z,s) is jointly strongly
continuous inr and s on K1 and KC».

Proof. The first part of the proposition follows from PropositioBs$, 3.8, and 3.17.

U(t, s) is clearly an isometry orC.. To see thatl{(z,s) is an isometry onC; and
KC2, note that from Propositions 3.8 and 3.17 we have

A, s) (Al S NAolli <NUE, 5)(Aw)li (4.25)

for i =1, 2, where we usedi,, = U(s, 1)(U(t, s)(Ay)). As for (4.24), it follows from
(3.33). _

The joint strong continuity oft{(z, s) on K1 and K> follows from the joint strong
continuity of Uy, (¢, s) on # and Lemmas 3.9 and 3.19[1

Lemma 4.8. Let A, € K; be such thatH,(rg9)A, € K; for somerg € [—o0, 00),
wherei € {®, 1,2, 00}. ThenH,(r)Ay € K; for all r € [—o0, 00).

Proof. In view of (2.65) it suffices to shovwD; ,A., € K; if H,(ro)Ay € K; for some
ro € [—o0, 00). But this follows immediately from (2.73).01

Proposition 4.9. Let A, € K; be such thatH,(rg)A,, and Hw(ro)AfU are in K; for
somerg € [—o0, o0). Then the map — U(¢t, r)(Ay) € K; is differentiable infC;, and

10 U1, 1)(Aw) = —UE, r)([Ho(r), Avlt), (4.26)

with [H, (r), Ayt defined in(4.14).
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Proof. Fix i =1 ori = 2. All the expressions make sense as elements;ofWrite

;i(ua, r+ h)(Ag) — Ut 1)(Ag))
= %(Uwa, r ) — Un(t.r)) OL Aw O Un(r + h. 1) (4.27)
U1, 1) OL Aw Or %(Uw(r R 1) — Uy, ). (4.28)

We first focus on 4.27). SinceH,,(r)A,, € K; by Lemma 4.8, one has

By Or Aw = BwAy = By(He(r) + ) Y (Hy () + 1) Aw
= By(Hoy(r) + )1 0L (Hu(r) + ) Aw. (4.29)

Theorem?2.7 asserts that
1
=Wt 1+ ) = U (t, 1)) (Ho(r) + N = iUy (t, ) He(r) (Hy(r) + )7t

strongly with uniformly bounded norm, @s— 0. Using either Lemm&.19 or Lemma
3.9, and the strong continuity df,,(r, #) in r, we get

. i
lim —(Uwt,r+h) —Uy(t, 1) OL Aw Or Up(r + h,t)
h—0 h

= —Uy(t, ) He(r) (Hy(r) + 7)1 0L (Hy(r) + 1) Aw Or Uy(r, 1)
=—-Uy(t,r) Or Hy(r) Ay Or Uy (r, 1). (4.30)

We now turn to 4.28). Note that ifB,, € Ko then

Aw Or Bw = (B, O A = (Ho(r) + 1) Bw)* OL (Ho(r) + n)AF)E. (4.31)

Since the mapd,, — A*Ut) is an isometry onkC;, the same argument as above implies
that

]Iimo Uy(t,r) O Apy Or ;;(Uw(f, r+h)—Uy(t,r))
¥
=Uy(t, 1) OL (((Hw(r) + 9 Hy (MU (r, 0)* O (Ho(r) + v)Ai)

= Uy(t,r) Or (Ho( AL  Or Up(r,r). O (4.32)

Proposition 4.10. Let A, € K; be such thatH,,(r9)A, and Hw(ro)AZ') are in K; for
somerg € [—o0, 00), Wherei € {1, 2, co}. Then H, (1)U, (t, r) Ay, Hy,()Uy(t, r)A(f,,
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H,(OU(t, r)(Ay), and H,, (1) U(t, r)(Ai,) are in K;, and the map — U, r)(Ay) €
K; is differentiable with

10U, 1) (Aw) = [Hy(t), U(t, ) (Aw)lt, (4-33)

with the proviso that inC, the meaning of the derivative is as a bounded &néd.e.-
weak limit
Moreover, we have

N(Heo (@) + U@ ) (A li ST W (£, D llooll (He (r) +7) Awlli, (4.34)

W He (2), Uz, r)(Aw) 1l

<IWolt, Dlloo (IHo () + D Aol + || (Ho0) + 945

,-) . (4.35)

and, for all p € HcN D,

[Hyp@), U, r)(Ap)]te
= Hy(DUg(t, 1) A¥ Uy (r, 1) — U (1, ) AS Uy (r, 1) Hoy (D). (4.36)

We need the following lemma. (Recall that, = AX* for A, e Kmelb-)

Lemma 4.11. Let Ay, € K with Ho(1)Aw € K; (i € {0, 1,2, 00}). If ¢ € D(AF) N
D((Ho(t)Aw)™), it follows that AX ¢ € D and

(Ho()Aw)™ @ = Hy () AL . (4.37)
As a consequengd, (1)(Ay, O Cy) € K; for any Cy, € K&, and
(ch(t)Aw) OR Cw = Hw(t)Az;ka = H(u(t)(A(u ORr Ca))~ (4-38)

Lemma4.11 can be seen as a generalization of (3.32), wiBgre K is replaced
by the unbounded operatd{,, (1) whose domain does not contaf.

Proof of Lemma 4.11. Let ¢ € D(A(f)*) ND((He (1) Aw)¥) andy € Hc.ND, we have,
using Lemma 4.5,

(Ho()A0) 0, ¥) = (0, (Ho()Aw) W) = (@, AL Hy (W) = (AF @, Hy (D).
(4.39)
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SinceH.ND is a core forH,(r), it follows thatAfU*go €D and
(Hoy (1) Aw)™ @, ) = (Hoy (1) AL 0, ). (4.40)

SinceD N Hc is dense inH (it containsC@O(Rd)), (4.37) follows. [

Proof of Proposition 4.10. Since H,,(r9) Ay, € Ki, ApyHc C D. SinceU,,(t,r)D C D,
the operatorH,(1)Uy(t, r)A, is well-defined onH. and (use Lemma 4.8)

Ho,y®)Uy(t, r)Aw = Hy(O)Uy(t, r)(Hey(r) + V)_l O (Hy(r) + Ay € K;, (4-41)
as Hy, (1) Uy (t, ) (Ho(r) + 7)Y = Wu(t, r) — yUu(t, r)(Hy(r) +7)~ 1 is an element of

K. Estimate 4.34) follows.
Furthermore, as in (4.30), on account of Theorem 2.7 we have

o
}!Imo }_l(Uw(f +h,r)=Uy(t, 1) O Ay Or Uy(r, t + h)

= Hy()Uqy(t, r)(He(r) + V)_l OrL (Hy(r) + ) Ap Or Up(r, 1)

= (Hp(H)Uw(t,1)Ap) Or Un(r, 1), (4.42)
where we used associativity of left and right multiplicationAiip according to Propo-
sition 3.6, and inKy we took a bounded ant-a.e.-weak limit.

By the same reasoning as abobi@)(t)Uw(t,r)Aff, € K;, and we have an estimate

similar to (4.34). Thus we can differentiate the second term as in (4.42) simply by
using the conjugates:

. i
ziano Ay OR E(Uu)(r: t+h)—Ugy(r, 1))

. i
= <)lim0 %(Uw(H—h,r)—Uw(t,r)) oL Agg) =(Ho(1) Uy (1, r)AF)E. (4.43)
Combining @.42) and (4.43) we get

10U, r)(Ap)
= HyO Uy, r)Ap) Or Uy, )—Uy(t, 1) O (Hy@®)Uy(t, r)Ai))x- (4-44)

Recalling thatH, (1)U (t,r)Ay, € K;, it follows from Lemma4.11 that

(Hy () Uy(t,r)Agp) OrR Up(r, t) = Hy(HUy(2, r)Afu*Uw(r, 1)
= Hyp(t) Uy (t, 1) (Aw). (4-45)
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Likewise, sinceH,, (1)U, (t, r)AfU € K;, we conclude that

3 : :
Uo(t. 1) O1 (Ho (Vo (1, ALY = ((Ho (U (1, 1AL Ok Un(r1))

t

_ (Hw(t)u(t, r)(Ai,)) (4.46)

Eq. @.33) follows. Furthermore, by Lemma 4.5 we have
(HoUu(t, VAL ¢ = (Uo(t, AL Hyp = Al U(r, 1) Ho (4.47)

for any ¢ € DN Hc, so @.36) holds.
Bound (4.35) follows from (4.34) and its counterpart t@i,. (]

In the special case whele = 0 we have the following corollary, with
UO(1)(Ap) = US (1) OL Aw Or U (—1) for Ay, € Ko, (4.48)

where U(E)O)(t) = e "Ho as in @.20). The operatolZ; introduced in the following
lemma is usually called theiouvillian.

Corollary 4.12. YO (r) is a one-parameter group of operators df, leaving K;
invariant for i = 1,2, co. U9 (¢) is unitary on K> and an isometry orkC1 and Koo,

so it extends to an isometry id1. It is strongly continuous oiiC; and K»; we denote
by £;, i =1, 2, the corresponding infinitesimal generators

U@y =e% for all 1 € R. (4.49)
Let

DO = (A, € Ki; HyAw, HyAL €Ki}, i=1,2 0c. (4.50)

w

ThenDi(O) is an operator core forl;, i = 1,2 (note thatL; is essentially self-adjoint
on DY), and

Li(Ap) = [Hy, Al for all A, e D, i=12 (4.51)

Moreover for every B, € K there exists a sequenadg, , € Dég) such thatB, , —
B, as a bounded andP-a.e.-strong limit

Proof. Most of the Corollary follows immediately from Propositiods7, 4.9, 4.10,
and Stone’s Theorem for the Hilbert spake, the Hille—Yosida Theorem for the
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Banach spacéC;. Since f(Hy)Awg(Hy) € Dfo) for all f, g € C(R) and A, € K,
i =1, 2, 00, we conclude that elements k6, can approximated by sequences‘D@?
as a bounded anB-a.e.-strong limit, and also tha? is a core forl; fori =1, 2,

1

as in the usual proofs of Stone’s Theorem and the Hille—Yosida Theorem.
4.4. Gauge transformations in spaces of measurable operators

The map
G(1)(Aw) = GHALG1)*, (4.52)

with G(1) = € '=E@OX a5 in .57), is an isometry oreo, K, and K, and
hence extends to an isometry 06; and on K. Moreover, sinceG(r) and A
commute, (4.52) holds foA, either inCq or Ks.

Lemma 4.13. The mapG(r) is strongly continuous on botk; and onK, and

lim G(t) =1 strongly (4.53)
t——00

on both K1 and on K,. Moreover if A, € K;, i = 1 or 2, with [x;, Ap] € K; for
j=1,...,d, thenG(t)(A) is continuously differentiable iC; with

0rG(1)(Aw) =1[E() - X, G(1)(Ax)] = iG(O)(E(®) - X, Ap]). (4.54)
Proof. We start by proving the lemma oki,. For A, € K2, we have

gt +h)(Aw) — G0 (Aw) = GG +M)G(—1) — D(Aw). (4.55)
SinceG(¢) is an isometry, continuity follows if we show that

}[@0 G (h) — D(Aw)ll2 =0, (4.56)

whereG; (h)(Ay) = G;(h)(Ay)G:(h)*, with G,(h) = G(t +h)G(—t) being the unitary
. rt+h
operator given by multiplication by the functiomdl " E@xds Thys

(G (h) — D(Ap) = G:(MI(L = G(M))Aw + Aw(G ()" — D] (4.57)
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Since G,(h) is unitary, we have
I(G: () = DA < 2{EIL— Gi(h*) Awiol3 + El Au(Gi(h)* — zoll3]

= 2{EI(L = Gi(W) Awtoll3 + El A0 0(G ()" = D3]
(4.58)

Although G;(h)* ¢ K because it is not covariant, we can use the argument in the

proof of Lemma3.9 to conclude that both terms in (4.58) go to Ohas> 0, obtaining

(4.56). The limit in (4.53) is just continuity at= —oo and is proven in the same way.
The result inK1 now follows from the result inK» using theo map, since for

By, Cy € ICéO), we have onk; that
G(1)(BuCop) = G(1)(Bu)G()(Cyp) = (G()(Bw)) ¢ (G(1)(Cyp)), (4.59)

and, asG(t) are isometries, it suffices to prove strong continuity on a dense subset.

It only remains to prove differentiability and464) assumindx;, Ayl € K;, since
continuity of the derivative follows from (4.56) and the strong continuity just obtained
for G(r). We see by (4.55) that it suffices to show

lim 26, () — D(Aw) = I(E0) -, Aol (4.60)

with convergence irC;. Since[x, A,] € K;, the (Bochner) integral

h
Oh) =i % / du G () ([E(r + u) - X, Ap]) (4.61)
0

is, for eachh > 0, a well-defined element of1. Furthermore, agj;(-) is strongly
continuous, the integrand is continuous and

lim () = i[E@) - X, Ao]. (4.62)

We claim that®(h) = h~1(G,(h) — 1)(A,). Indeed it suffices to verify
hy @)y, = (Gi(h) — D Awiy)) (4.63)

for eachx, y (since y,, , commute withG(r)). But this identity follows since the
derivatives of the two sides are equal, and both expressions vanisk &t (Derivation
is permitted here because of the cut-off inducedybyy,.) U
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5. Linear response theory and Kubo formula

In this section we prove our main resulidle assume throughout this section that
Assumptiongt.1 and 5.1 (stated below hold.

5.1. Adiabatic switching of the electric field

We now fix an initial equilibrium state of the system, i.e., we specify a density
matrix {,, which is in equilibrium, so[H,,, {,,] = 0. For physical applications, we
would generally takel, = f(H,) with f the Fermi—Dirac distribution at inverse

temperatures € (0, oo] and Fermi energyEr € R, i.e., f(E) = lJre/f(—lF*FF) if p<oo
and f(E) = J(—oo,g¢) (E) if f = o0; explicitly
(B.EF) . 1
F, =
=" TrygmE P (5.1)

E|
PU() F) = X(—OO,EF](HU))’ ﬁ = OQ.

The fact that we have a Fermi-Dirac distribution is not so important at first, although
when we compute the Hall conductivity we will restrict our attention to the zero
temperature case with thieermi projection P(£F),

The key property we need is that the hypothesis of either Proposiid(i) or
Proposition 4.2(iii) holds:

Assumption 5.1. The initial equilibrium stat€,, is nonnegative, i.e{,, >0, and, either

(@ gm = g(Hy) with g € S(R), or
(b) ¢, decomposes a§, = g(Hy,)h(Hy,) with ¢ € S(R) and 2 a Borel measurable
function which satisfiesﬂhZ@Mﬁ||oo < oo and

E{[xhHo0]5) < oo. (5.2)

(Condition 6.2) is equivalent tdx;, h(Hy)] € Ky for all j =1,2,...,d.)

Remark 5.2. We make the following observations about Assumpttomh:

(i) By Proposition4.2, either (i) or (iii), we havelx;, {,] € K1 N Ky for all j =
12,....d.

(i) The equivalence betweerb.Q) and[x;, h(H,)] € K for j = 1,...,d follows
from the facts tha#:(H,,) € K2 by Proposition 4.2(i) and

IXh(Hep) xoll2 < NX, A(Ho) 1x0ll2 + 1 (He) xoll2- (5.3)
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Although [x|2 = x - x is not covariant, it follows from §.2) that for anya € 7¢
we have

E{Ixh(Ho)z 5] < oo, (5.4)

and hence the operatofs;, n(H,)] are well defined or#{. for j =1,...,d.

(iiiy The Fermi-Dirac distributionsf %27 (E) := (1+ ef(E—ER)~1 with finite § satisfy
Assumption5.1(a). Just takez(E) = k(E) fPEP(E), where k(E) is any C*®
function which is equal to one foE > — y (defined in (2.10)) and equal to 0 for
E < — yq for somey; > 7.

(iv) For a Fermi projectionP " (B = cc), it is natural to takeh(H,) = PP and
for ¢ any Schwartz function identically 1 opy, EF]. Condition 6.2) does not
hold automatically in this case; rather it holds only fBg in the “localization

regime,” as discussed in the introduction. The existence of a region of localization
been established for random Landau Hamiltonians with Anderson-type potentials

[CH,GK3,W].

Let us now switch on, adiabatically, a spatially homogeneous electric Helde.,
we take (withz_ = min{z, 0}, t;. = maxt, 0})

E(r) = €'-E, (5.5)

and hence
t eﬂf_

The system is now described by the ergodic time dependent Hamiltéhiar), as in
(2.49). We write

(o) =G(,GM" =G0y, e, (1) = f(Hu®)). (5.7)

Assuming the system was in equilibriunvat — oo with the density matrix,,(—o0) =
(s, the time-dependent density matrgx,(r) would be the solution of the following
Cauchy problem for the Liouville equation:

10104, (1) = [Hp(1), 0, (D)]5,
{ M= o0 0 (1) = Lo ©8)

where we have written the commutator-]; in anticipation of the fact that this is to
be understood as an evolution if), i = 1, 2. The main result of this subsection is the
following theorem on solutions td5(8), which relies on the ingredients introduced in
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Sections2 and 3. In view of Corollary 4.12, we replace the commutator in (5.8) by
the Liouvillian at timer:

Lit) =GWL:G(—t), i=12 (5.9)

Note thatZ;(¢) hale.(O) as an operator core for ail since it follows from Lemma
4.8 thatD® = G()D? for i = 1,2, cc.
We have the following generalization of Theorem 1.1.

Theorem 5.3. The Cauchy problem

1010,(t) = Li(1)(0,(1)),
{ lim;— Q(u(t) = éw (510)

has a unique solution in botkl; and Ko, with £;(r), i = 1, 2, being the corresponding
Liouvillian. The unique solutiom,,(¢) is in D&O)(z)ﬂl)éo)(t) C K1N K, for all ¢, solves
the stronger Cauchy problerb.8) in both £, and K5, and is given by

0, = lim U, 5)(Ce) (5.11)
= lim U, 5)(Co(5)) (5.12)
={,)—i /joo dr € U(t, r)([E - X, {,()]). (5.13)
We also have
00(1) = U, 5)()(5)), NI, Olli = Nl (5.14)

for all ¢, s andi = 1, 2, co. Furthermore ¢, (¢) is nonnegativeand if {, = PfF, then
0,,(t) is an orthogonal projection for alt.

Before proving the theorem we need a technical but crucial lemma. We Ryite=
Dj(Aw)-

Lemma 54.Letj=1,...,d.
(i) For all ¢ € Hc we havex;{,¢ € D and

2Dj,(,)Cwq0 = inijw(p — ixijCwq) = i[Hw, xj]Cw(p. (5.15)
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(i) Holxj, {,] € K1NKo. In fact, the operatorsHy,[x;, {1 and [x;, H,(,] are well
defined(as commutatojson Hc, we have

Hylxj, (o] = [xj, Holw] — 2D} »{e On He, (5.16)

and the two operators in the right-hand side (&16) are in 1 N /Co.
(i) HylE - X, {,] € K1N K.

Proof. It follows from (2.3) that

Hyxjd = xjHyp —2iDj ¢ for all ¢ € CE(RY). (5.17)
Thus if € DND(x;) with H,¢ € D(x;), we conclude by an approximation argument
thatx;¢p € D and 6.17) holds for¢.

That[x;, H,{,] € K1N K> follows from Assumption 5.1 and Proposition 4.2(ii)—(iii)
since the functionEg(E) € S(R). In particular, this tells us that,{,Hc C D(x;).
Thus, givengp € Hc, we set¢ = {,¢ € D(x;), so we haveH,¢ € D(x;) and
¢ € D(xj) (becausdx;, {,] € K2). We conclude that (5.15) follows from (5.17). This
proves (i).

Sincex;{, € D for all ¢ € Hc, the operatorH,[x;, {,] is well defined ont,
and (5.16) follows from (5.15). Thdd; ,{,, € K1N K> follows from Proposition 2.3(i).
Thus (i) is proven, and (iii) follows immediately.]

We now turn to the proof of Theorem 5.3.

Proof of Theorem 5.3. Let us first apply Proposition 4.9 and Lemma 4.13 to

00y (t,8) == U, ) (L (5)). (5.18)

We get

10500,(t,8) = —U(1, 5) ([Ho (), Lo ($)]2) +UE, $)(=[E() - X, {p($)])
= U, s)([E(s) - X, L ()], (5.19)

where we used5(7). As a consequence, wita(r) = €7~ E,

t
0w, 1) = 0,(t,s) = i/ dr e U, r)([E - X, {,(M)D). (5.20)
Since

@, r)AE - X, LoD = NE - X, {ollli, (5.21)
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the integral is absolutely convergent and the limitsas> —oo can be performed. It
yields the equality betweerb(2) and (5.13). Equality of (5.11) and (5.12) follows
from Lemma 4.13 which gives

{w= lim {,(s) in both K1 and KC>. (5.22)
§—>—00

Since thel{(t, s) are isometries oifC;, i = 1, 2, oo (Proposition4.7), it follows from

(5.11) thatflo, ()l = I, ll:;. We also geto,, () = ¢, (¥, and hencey,, (1) = g, (1)*
asg,,(t) € K. Moreover, (5.11) with the limit in botfC1 and K2 implies thatg,,(¢)

is nonnegative. Furthermore, {f, = PCE,EF) then g, () is a projection, since denoting
by lim® the limit in K;, i = 1, 2, we have

0o =_lim Pu,s) (PJ)EF)) = lim Dua,s) (PJJEF)) SUCt, s) (PU()EF))

_ ; %) (EF) ; 2 (EF) _ 2
- {s—“)rpoo U, s) (Pw )} o {s—“)rpoo U, s) (Pw )} = 0, (2.
(5.23)
To see thap,,(¢) is a solution of $.8) in KC;, we differentiate expression (5.13) using
Proposition 4.10 and Lemma 4.13; the hypotheses of Proposition 4.10 are satisfied

in view of Lemma 5.4(iii) and the fact thafE - x, {,,(r)] is a symmetric operator.
Moreover, it follows from (4.35) that

NHw (@), U, HAE - X, LoDl < 21Wo(r, NI (Heo(r) + MIE - X, {6 (]
= 2|Wo (., N)II(Ho + DIE - X, (o]l (5.24)

where

sup [[We (1, || <Cr < o0 (5.25)

ryr<t

by (2.81) and (2.75). Recalling (5.13), we therefore get
t
ic?zQw(t)=—if dr € [He, (1), U(t, r)([E - X, {, (M D14 (5.26)

=— |:Ha,(t), {i /T dr €™ U, r)([E - X, {, ()] H
—00 i

t
=[Hw(t>,{cw<r>—i / dreﬂf—ua,r)([E~x,zw<r>]>”, (5.27)
—00 t

=[Hy(1), 0,(D)]1, (5.28)
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the integrals being Bochner integrals . We justify going from 6.26) to (5.27)
as follows: SinceH,,(1)(Hy(t) + 7)1 € Koo and (Hy (1) + 7)1 € Koo, We have, as
operators orH,

/_too dr € Hy, (1) U, r)([E - X, {,(r)])
= (Ho () (Ho () + 7)) O f_too dr € (Ho (1) + ) U, r)([E - X, {6 ()]
= Hy(1) ((H(u(t) +ntor f_too dr € (Ho (1) + ) U(t, r)([E - X, Co)(r)])>
= Hy (1) f_too dr €= U(t, r)([E - X, {,(r)]). (5.29)

Since the mapi,, — Afa is an antilinear isometry, we also have the identity conjugate
to (5.29). We thus have (5.28).

It remains to show that the solution of (5.10) is unique in bGthand K». It suffices
to show that ifv,(z) is a solution of (5.10) with{,, = O thenv,(z) = 0 for all ¢.
We give the proof forky, the proof forC, being similar and slightly easier. For any
s € R, setﬁﬁj)(t) =U(s, D) (vy(@)). If Ay € Dég), we have, using Lemma 4.10 i
and (5.10), that

ia,T{Aw oL vfjf(t)} —i0, TU, 5)(Aw) OL Vo))
=T{[Hw@),U(t, 5)(Ap)]t OL Ve ()}
+T{U, 5)(Aw) OL L1(8)(ver (1))}
=—T{U({, 5)(Aw) OL L1() (Ve (1))}
+TH{U(t, 5)(Ap) OL L1(H) (v (1))} = O. (5.30)

In the final step we have used the fact that for € Dég) and B, € D1 we have

T{[Hw(t)a Aa)]i oL Bw} = _T{Aw oL £1(l‘)(BU))}. (5-31)

Indeed, sinceD(lo) is a core forL41(¢) it suffices to consider,, € Df’). For such

B, (5.31) follows by cyclicity of the trace, with some care needed sihtgr) is
unbounded:

T{[Hw(t), Aplt OL By}

= T{Ho(1)Aw O Bo) = T | (HoA}) O Bo)
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= T{(Ho®) + 1) A0 O (Ho®) + D BE 0k (Hot) + 7}

~T { ((Ho ) + DAL O1 (Holt) + 97 (Ho0) +)Bo |
= —T {Aw OL [Hu(1), Bult} = —=T{Aw OL L1(1)(By)}. (5.32)

We conclude that for all and A, € Dég) we have
T{A0 0L 10} = T {40 0079} = T(Aw 0L va(o)). (5.33)

and hence §.33) holds for allA,, € K« by Corollary 4.12 and Lemma 3.19 (or
Lemma 3.24). Thus7((j)(t) = vu(s) by Lemma 3.23, that isyy,(t) = U(t, s) (Ve (s)).
Since lim_, _ v, (s) = 0 by hypothesis, we get, () =0 for all . O

5.2. The current and the conductivity

From now ong, () will denote the unique solution to (5.10), given explicitly in
(5.13). We set

Do () = D(Aw + F(1)) = G#)D(A,)G ()" = G(1)Du,G ()" (5.34)

Since H,,(t)o,,(t) € K12 we haveg,,(t)Hc C D, hence the operatoi3; ., (t)g,,(t) are
well-defined onH¢, j =1,2,...,d, and we have

D000 = (o™ (Ho®) + 7)) O (Ho() + 7o) € K1z (5.35)

Definition 5.5. Starting with a system in equilibrium in statg,, the net current (per
unit volume),J(17, E; {,,) € R?, generated by switching on an electric figfdadiabat-
ically at raten > O between time—oco and time 0, is defined as

\](’77 E; Cw) = T(V(U(O)Qw(o)) - T(V(L)CU))7 (5-36)

where the velocity operator,,(t) at timez is as in @.24), i.e.,
Vo(t) = 2Do (1) = {2Dj.0()} ;4 (5.37)

a vector of essentially self-adjoint operators Dn(or C°(R)).

Remark 5.6. (a) The term7 (V) = {T (V. wlw)}j=1..4 is the current at time =

—o0. Since the system is then at equilibrium one expects this term to be zero, a fact
which we prove in Lemma.7. It follows that the net current is equal to the first term

of (5.36), which is the current at time 0. We will simply call this the current.
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(b) The current(n, E; {) is a real vector. This follows from the fact that®,,(r) €
K1, and hence/g,,(t) € Ko, the fact thatD; ., (¢),/0,,(t) € K2 by the same argument
as in 6.35), the centrality of/, and the essential self-adjointness of the components
of vy (7).

Lemma 5.7. Let f be a Borel measurable function on the real linguch that
| f Py, plloc is finite. Then

T(Djﬁwf(Hw)) =0. (5.38)

As a consequenceve haveT (VO)P(E,EF)> =0.

This result appears IfBES], with a detailed proof in the discrete case and some
remarks for the continuous case. The latter is treated in [KeS]. Their proof relies on
a Duhamel formula and the Fourier transform. We give an alternative proof based on
the Helffer—Sjéstrand formula.

Proof of Lemma 5.7. First note that by a limiting argument it suffices to consider

f € S(R). In fact, we may find a sequengg € S(R) such that su,p||g,1(T>€,M;||OO <
oo and g, (Hy,) — f(Hg) strongly. Then

Dj,W(f(Hw) — gn(Hgp))

- ! [4])+
=Dj o oL Or (Hy +7)
AR ]
X (f(Hey) — gn(Hw)), (5.39)

where the left-hand factor is i/l by Proposition2.3(i), the middle factor is inCy
by Proposition 2.14, and the right-hand factor is a uniformly bound sequenkggin
converging strongly to zero. By dominated convergence, we conclude thit therm,
and thus the trace per unit volume, converges to zero.

Therefore, suppos¢ € S(R). Let G(t) = ftoo dr f(z), and setF(¢t) = b(1)G (1),
whereb(t) € C*°(R) is such that(r) = 1 forr > —y andb(t) =0 forr < —y—1 (so
b(r) = 1 in a neighborhood of the spectrum &f,). We haveF <€ S(R), G(H,) =
F(Hy), and f(Hy) = F'(Hp).

We now recall the generalization of the Helffer-Sjostrand formula given in [HuS,
Lemma B.2]: given a self-adjoint operatdr and f € S(R) we have

%f‘“’)(A) = /df(z)(z — APt for p=0,1,..., (5.40)

where the integral converges absolutely in operator norm2087§. (See [HuS, Ap-
pendix B] for details.)
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By (2.44) from the proof of Proposition 2.4, we have
[xj, Rw(2)] = 2i Ry(2)Dj Ry (2) € Koo, (5.41)

for Ry (z) = (Hy, —z)~ 1 with Im z # 0. By the usual Helffer—Sjéstrand formuld.g5)
we have

[, F(Hp)] = — / dF()[x), Ru(2)] = —2i f dF () Rw()DjwRu(),  (5.42)

which in particular gives another proof to the fact thaf, F(H,)] € Koo, Which we
already knew by Propositiod.2(ii).

There is a slight technical difficulty due to the fact th,(z)D; R, (z) may not
be in Ky (althoughlx;, F(H)] is). Thus we introduce a cutoff by picking a sequence
hy, € CP(R), |h,|<1, h, = 1 on[—n,n], and apply (5.40) wittp = 0 and 1 to obtain

TAlxj, F(Ho)] OL hn(He)} = —2i / dF () T{Rw(2)D}.wRe(2) OL hn(Hy))

—2i [ AF@T [D)0Ru(e)? 0Lt
=-2iT{Dj o f(Hw) OL hn(Hw)}. (5.43)
In the limit n — oo, we get
T{Dj.wf(Ho)} = 5THF (Hw), x;1} = 0 (5.44)
by Proposition4.2(v). O
It is useful to rewrite the current (5.36), using (5.13) and the argument in (5.29), as
J(n, E; () = T{2Dw(0)(2,,(0) — {,(0))}
= —T{z / " 4 €D, U NE X cw(r)])} . (5.45)
which is justified, since
T (D (0){,(0)) = T(G(0)Du(,G(0)*) = T (Dwlw) (5.46)

by cyclicity of the trace, and all three terms are equal to zero.

The conductivity tensore(y; {,) is defined as the derivative (or differential) of
the functionJ(n, ; {,,): R — RY at E = 0. Note thata(ij; {,,) is ad x d matrix
{000 L))
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Definition 5.8. For # > 0 the conductivity tensos(i; {,,) is defined as

a(n; Cco) = 5EJ(711 0; Cw)v (547)

if it exists. The conductivity tenso#({,,) is defined by
o(ly) =lima(y; {y,), (5.48)
nl0

whenever the limit exists.
5.3. Computing the linear response: a Kubo formula for the conductivity
The next theorem gives a “Kubo formula” for the conductivity.

Theorem 5.9. Let 5 > 0. The currentd(n, E; {,,,) is differentiable with respect t& at
E = 0 and the derivatives(1; {,,) is given by

0
ok () = =T {2 f dr €D o, U (—r)(i[xx, cwn} : (5.49)

wherel/© (r)(Ay) = e "Ho 0 A, O €7Ho,

We also have the analogue {BES, Eq. (41)] and [SB2, Theorem 1F; is the
Liouvillian on K1 (see Corollary 4.12).

Corollary 5.10. The conductivitys ;x (17; {,) is given by
6jk(n: () = =T{2D; (i L1+ ) ilxk. (D} (5.50)
Proof. Since Hy[xx, {,] € K1 N K2 by Lemmab.4(ii), we have

D U O (—r)(ilxk, {p]) =Dj.w(Hy + 1)L O (Hoy + N UQ () (i[xk, (o))
=D o(Hy 4+ 1oL U (=r)(Hy + D)ilxt, (o),
(5.51)

and it follows from 6.49) that
001 (o) = 2T {Dj.(Ho + 7)™ O (L1 + 1) (Ho + il LoD ]

=27 DL+~ ilx. LoD} (5.52)
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since (i L1 + 1) H(Hy + ilxk. (o)) and (L1 + )~ (ilx. {,]) are in K1 N K2 and
hence ink1 (not just in K1), where

(Ho + 7)1 Or L1+ m) HN(He + Pilxk, (o)
= L1+t LoD O (5.53)

Proof of Theorem 5.9. From (5.45) andJ;(, 0; {,,) = 0 (Lemma 5.7), we have

0
oik(n; () = — éiinOZT {/ dr €"D; ,,(0) U0, r)(ilxk, Cw(r)])} , (5.54)

where D; ,(0) = D; »(E, 0) and {,(r) = {,(E,r) depend onE through the gauge
transformationg and U, (0, r) = Uy(E, O, r) also depends olk. (For clarity, in this
proof we display the argumerti in all functions which depend oE&.)

Let us first understand that we can interchange integration and theHimit0, i.e.,
that

0
Tl o) = =2 [ dr@” fim T(D,.(E. OUE. O.r)(Lxi. LuE. D). (6:55)

Note that

D;w(E, 0OUE,O, r)(i[xk, IN(=N3)))
= {D}.w(E. 0)(Hw(E. 0) + 7) " (Ho(E, 0) + ) Uw(E. 0, r) (Ho(E. r) + 7))
OL{(Hy(E. 1) + 1) (i [xk. {y(E. 1))} O Un(E. 7. 0)
= {90 (Dj(Ho +77") | OL Wo(E. 0.1) OL {GE. 1) (Ho +Dlixe. LoD}
OrUu(E, 1, 0). (5.56)

Using (2.73), (4.34), gauge invariance of the norms, (2.81), (2.75), and Lemma 5.4(ii),
we get

sup  [IDj,w(E, O U(E, O, r)(ilxk, {,(E, 1Dl
[EI<1r<0

<Pt + 72| 4 sup 1WoE 0.l [ ICH + Pl Collla < oo,
o IEI<Lr=0

(5.57)

Eq. 6.55) follows from (5.54), (5.57), (3.99), and dominated convergence.
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Next, we note that for any we have
l!jmog(E, s) =1 strongly in Ky, (5.58)

which can be proven by a argument similar to the one used to prove Lefmib3a
Along the same lines, foB,, € Ko We have

ILJTOQ(E, 5)(Bw) = By, strongly inH, with [|G(E, s)(Bw)lleo = IBolleo.  (5.59)

It therefore follows from $.56) that

Jim 71D (E, O U(E. 0, 1) (iLxt. L (E, D)
= lim T {(Dj,w — F;(0) Uy (E. 0, r)(Ho(E, r) +7) oL
(Ho + Plixi, {,] Or Un(E, 1, 0)}
= lim T {D;.0Uu(E. 0. (Ho(E.r) + )™ O (Ho + Plizi. L) Ok US ()]
= lim 7 {D;.0Uu(E. 0. ) (Ho + 9™ {(Ho + 1) (Ho(E. 0 + 97 01
(Ho +Plizi, S0l Ok US ()]

= lim 7 {D;.0Uu(E. 0.1 (o)™ O1 (Hotplizi, Lol 0= US' )] (5.60)

where we used¥(58), (2.92), the fact thdd; ,(E, 0) = D; , — F;(0), (2.72), (2.73),
and Lemma 3.19. (Technically, we have not shown convergence yet. This equation
should be read as saying that if any of these limits exists, then they all exist and
agree.)

To proceed it is convenient to introduce a cutoff so that we can deal Wjth as
if it were in K. Thus we pickf, € CI(R), real valued) f,|<1, f, =1 on[—n,n].
Using Proposition 2.3(i) and Lemma 3.19 we have

T D)0V (E. 0.r) (Hoy + 1) 01 (Hoy + Dlixk £l Ok US ()] (5.61)
= im T {Dj .0 fu(Ho)Un(E. 0.7) O Lz, L] Ok US ()] (5.62)

n—o0

im 7 {U0(E. 0.1) Or ilxk. Lol Ok (U 4)D;.0.fu(Ho)) | (5.63)
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= lim 7 {Uo(E. 0.1 0L (Ho +ilxs, LoD O 0=UL (1)

n—o0

X (Ho+ 97D jo fu(Ho) | (5.64)

=T {Un(E. 0.1 OL (Ho +ilxe, L) Ok U () (Ho + 1) 7'Dj0]

(5.65)

where we used Lemm3.22 to go from (5.62) to (5.63). The step from (5.63) to (5.64)
is justified becauséH,, + 7)™t commutes witht ©. Finally, since(Hy, +7)71D; q, €
K~ (that is, its bounded closure is iKy), we can take the limiz — oo, using
Lemma 3.19 again. (Not& [x¢, {, ¥ = i[xk, {ol.)

Finally, combining (5.60) and (5.61)—(5.65), we get

Jim T1Dj.0(E, O U(E, 0, r)(ilxk, {w(E. 1D} (5.66)

T{U 1) 01 (Ho + il o) 0r UL ¢)Oj0(Ho + 7Y

T{Djo(Ho + 1700 (=) 01 (Ho + )il Lol 02 US ()} (5.67)

D
=T [0}, U@ r)ilw. LoD} (5.68)

where to obtain §.67) we used (5.61)—(5.65) in the reverse direction, vmﬁ?)(r)
substituted forU,,(E, 0, r), and in the last step used again ttiak, +y)~1 commutes
with UQ ().

The Kubo formula (5.49) now follows from (5.55) and (5.68).]
5.4. The Kubo-&tda formula for the Hall conductivity

Following [AG,BES], we now recover the well-known Kubo+&fa formula for the
Hall conductivity at zero temperature. We write

o8 =0 (PSP), and o\Pap) = ojun: PSF). (5.69)

J

Theorem 5.11.1f {, = P(f,EF) is a Fermi projection satisfying5.2), we have
ol = =i PSP o ([ PSP [ PSP]] (5.70)

forall j,k=1,2,...,d. As a consequencehe conductivity tensor is antisymmetric
in particular 6(/5‘F) =0for j=12,...,d.
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Clearly the direct conductivity vamshesiEF) = 0. Note that, if the system is time-
reversible the off diagonal elements are zero in the region of localization, as expected.

Corollary 5.12. Under the assumptions of Theord&mil,if A =0 (no magnetic field
we havea(EF) =0forall jk=1,2,.

Proof. Let J denote complex conjugation oH, i.e., Jo = ¢, an antiunitary operator
on H. The time reversal operation is given (S) = JSJ, whereS is a self-adjoint
operator (an observable). We hayé{; = H., and henced(Ay,)p = JA,J @ gives a
complex conjugation oiC;, i =1, 2, co.

If A =0, we have®(H,) = H,, and thus®(f(Hy,)) = f(Hy,) for any real
valued Borel measurable functiofi. Moreover @(i[x;, PLE,EF)]) = —i[x;, PLE,EF)] and
O(Ay, Bple) = [O(Ay), O(By)le. On the other hand ifA, € K1 is symmetric,

then T(O(Ay)) = T(Ap). Since PSP o ililx;, PSP, ilx, PSPl 0r PSP is
symmetric, it follows from Theorem 5.11 and the above remarks that

05}%) :T{P(EF) oL i I:l[xj’ P( F)] i[xk, P(EF)]] Or PQ()EF)}
’ <&

T PSP ovi[ite), PSP ilse, P 0r PP | = —oP.

and hencar(EF) 0. O

Before proving Theorem 5.11, we recall that under Assumption 5.1 the operator
[xk, P(E,EF)] e K1 N K> is defined onH, ankP(f,EF) — P(E,EF)xk thanks to (5.2).

Lemma 5.13. We have(as operators orfc)

[P&EF% [ PSP PJ)E”]]O] =[x, PSP, (5.71)
©

Proof. Since PEP € Ko and [xx, PSEP] € K1 N Ko, the left-hand side of 571)
makes sense iiC; and K2, and thus as an operator Gi.

Note that the orthogonal projection- 1P(EF) is in K, although it isnotin K1 or
K. Furthermore(l — PSEPYH © He + PCE)EF)’HC C D(x). Thus PEPx (1 — PEP)
and (1 — P(E)EF))ka(EF) make sense as operators g (almost surely), and we have

[xe PSP ] = @ = PSP — PSP — PP onme. (872)

Since PO()EF)(l — P(E,EF)) = 0, the right-hand side of this expression is unchanged if
we replacex; by [xg, P(E,EF)] in the first term and by—[x, P(E,EF)] in the second. As
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technically [xy, PJ)EF)] is defined ontc, we should introduce the produats; g here.
Thus,

E E| E E
[k, PSEP 1= (1 — PEP) o [, PSP 1 0R PSP

+PSF or b, PFP10R 1 — PSP, (5.73)

Now, given anyA,, € Ko we have

I:P(E)EF), Aw] = - [1 - P(E)EF)s A(u:l(D . (574)

©

and thus

E E
2o, [p40, ]|

= PSP oL Apor A= PPy + - PPy oL Ay Ok PSP, (5.75)

©

using thatP " o (1— PFP) = 0. Finally, 6.71) follows from (5.73) and (5.75).00

Remark 5.14. (i) Eq. (5.73) appears in [BES] (and then in [AG]) as a key step in the
derivation of the expression of the Hall conductivity.

(i) In (5.71) we use crucially the fact that we work at temperature zero, i.e. that
the initial density matrix is the orthogonal projectid?iEF). The argument does not go
through at positive temperature.

Proof of Theorem 5.11.We first regularize the velocitp; ., with a smooth function

fn € CCR), |ful<1, fu =1 on[-n,n], so thatD; , fu(Hy) € K1N K2 € K. We
have, using the centrality of the trade (see Lemma 3.22), that

7500 = =T |20, U (=il PSP (5.76)

= — lim_ T {(@D;.0 fu(Ho) ©L U (=r)GiLxi, PSTD)]

— lim T {U®)@D;.0 fu(Ho)) O il RS} (6.77)
n—o0
Next, it follows from Lemma3.22 that, forA,, By, € Ko and Cy, € K1, we have

T{Aw OL [Bw, C(u](a} = T{[Aa), Byl OL Cw}- (5-78)
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It follows, on the account of Lemm&.13, that
T{U© @00 fu(Ho) OL ilxe, PSP}
=T {u<°>(r)(2D, o fn(Ho)) OL [P(E” [P<EF) ik, P(EF)]] } }
Ole

=T {u0) ([P [ PS7. 20,0 o Ho ||) 01 ilae PSP} (579)

where we used thap ¥ commutes witht/ 2.
We now claim that

[PE.2D,0 fu(Ho) | = [ Hon iy, PSP, @ fu(Ho. (5.80)
To see this, we uses(16) to conclude that
[ Hoilxj. PS1], Ok fu(Ho)

t
=2 (Dj,chE)EF)> ORr fn(Hw) - 2Dj,chE)EF)fn(Hco)
= 2(PDj 0 fu (Hor) = Dy PSS i (Ho) )
= 2(PDj 0 fu (Hov) = Do fu (Hor) P ). (5.81)

which is just 6.80). Combining (5.77), (5.79), and (5.80), we get after taking oo,

GARGE {u<°>(r)<[P{gEF> [Hw,z[x,,P(EF)]u )oz[xk,P(E':)]}. (5.82)
©

Here it is useful to note that, by Propositiod.3(i), the restriction to#. of
[P, 2D;0 ] s in Ko N K1 N K2, and

[Hw, i [x.,-, PJ,E”]L - [P(E,EF), 2DA,~,w] € K1nKa. (5.83)

In addition, onkK;, i =1, 2, we have

PP Op (Hyilxj, PSP = Hy (PSP op ilx;, PSP, (5.84)
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and, on the account of Lemm&all,
(Huilx;, PSFPD) or PSP = Hy(ilxj, PSP 0 PEP). (5.85)

It also follows from 6.84) and (5.85) that
Ho [P,,()EF) ilx;, P(EF)]] - [P(E,E P Hyilx;, P‘EF)]] : (5.86)
0] o}

all terms being well defined iC;. Therefore,

PLE)EF) H P(EF) } — [Hw P(E)EF) ; . P(E)EF) ] . 87
I: sI: [x]’ ]:Ii o al: 9l[x]’ ]:IO i (58 )
We thus get
7P = iué)‘))(r) ([H e ,,P‘EF)J]Q] )oi [xk,PéFF)]}
t
=_<< eirlap, <[ pLER) i[xj,P(,(,EF)]]®>,i[xk,P(f)EF)]», (5.88)

where we used3(102) and Corollary 4.12. Recall th&t, -)) is the inner product on
Ho and L> is the Liouvillian in ICo-the self-adjoint generator of the unitary group
U9 (). Combining (5.49), (5.76), and (5.88), we get

o ) = <<i<z:2 +in L2 ([P(EFF), i), PLEFF)]]@) il PLE,EF>J>>. (5.89)
It follows from the spectral theorem (applied £i») that
1!@0(52 +im L2 = Pyerr,:  Strongly in Ko, (5.90)
where Per 2,)L 1S the orthogonal projection ont@er £,)*. Moreover, we have
[P<EF> i [x,, P<EF>]]® € (Ker L2)*. (5.91)

To see this, note that ifi,, € Ker Lo, then for allz we have /@ (r)(A,) = A, and
hence e''fo o A, = A, Ore "o so it follows thatf (Hy,) O A = AwOr f (Hw)
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for all f € S(R), i.e.,, [Aw, f(Hy)lo = 0. An approximation argument using Lemma
3.9 gives[Ay, P(E)EF)]O =0. Thus

<<Aw, [P&EF) z[x,,P(EF)]]O»:(([A(,),P}E Nonilx;, P(EF)]>>=O, (5.92)

and 6.91) follows.
Combining (5.89)-(5.91), and Lemma 4.6, we get

o = l<<[Pé,EF’, iLej PO i, <EF>]>>
:—iT{[PU()EF) z[x],P(EF)]] oi[xk,P(E,EF)]}
©
T { P o [ilx;, PSP ita, PSP | (5.93)
which is just £.70). The theorem is proved]
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