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Legumes produce a high diversity of secondary metabolites which serve as defence compounds against herbi-
vores and microbes, but also as signal compounds to attract pollinating and fruit-dispersing animals. As
nitrogen-fixing organisms, legumes produce more nitrogen containing secondary metabolites than other plant
families. Compoundswith nitrogen include alkaloids and amines (quinolizidine, pyrrolizidine, indolizidine, piper-
idine, pyridine, pyrrolidine, simple indole, Erythrina, simple isoquinoline, and imidazole alkaloids; polyamines,
phenylethylamine, tyramine, and tryptamine derivatives), non-protein amino acids (NPAA), cyanogenic gluco-
sides, and peptides (lectins, trypsin inhibitors, antimicrobial peptides, cyclotides). Secondarymetaboliteswithout
nitrogen are phenolics (phenylpropanoids, flavonoids, isoflavones, catechins, anthocyanins, tannins, lignans, cou-
marins and furanocoumarins), polyketides (anthraquinones), and terpenoids (especially triterpenoid, steroidal
saponins, tetraterpenes). While some secondary metabolites have a wide distribution (flavonoids, triterpenes,
pinitol), however, others occur in a limited number of taxa. The distributions of secondary metabolites with an
irregular occurrence are mapped on a molecular phylogeny of the Fabaceae, reconstructed from a combined
data set of nucleotide sequences from rbcL,matK and ITS genes. Inmost cases, the distribution patterns of second-
ary metabolites do not agree with the phylogeny of the plants producing them. In contrary, the distribution of
many secondarymetabolites is patchy and irregular. Thus, the use of phytochemical data to reconstruct a phylog-
eny of plants is often not informative and can be misleading. The patchy distribution may be due to convergent
evolution, a contribution of endophytic fungi or more likely, to an early acquisition of the key genes of secondary
metabolism in the evolution of land plants among others by horizontal gene transfer from bacteria. Thus it would
be a matter of gene regulation whether these genes are active in some but not all taxa.

© 2013 SAAB. Published by Elsevier B.V. All rights reserved.
1. Introduction

Phytochemical investigations have revealed a high structural diver-
sity of plant secondary metabolites, comprisingmore than 21,000 alka-
loids, 700 non-protein amino acids (NPAA), 200 cyanogenic glucosides
and glucosinolates, N20,000 terpenoids, N10,000 polyphenols, N1500
polyacetylenes and fatty acids, 750 polyketides, and 200 carbohydrates
(reviewed in Bell and Charlwood, 1980; Conn, 1981; Harborne, 1993;
Roberts and Wink, 1998; Seigler, 1998; Dewick, 2002; DNP, 1996;
Wink, 2008a, 2010a,b).

The synthesis and storage of secondary metabolites can be regarded
as a strategy of plants for defence and communication. Plants are sessile
and cannot run awaywhen attacked by herbivores nor do they have the
complex immune system of animals against bacteria, fungi, viruses and
parasites. In order to defend themselves against herbivores, competing
plants and pathogens, plants have evolved a diversity of secondary
rin; NPAA, Non-protein amino
s; 5HT2 R, 5-hydroxytryptamine
R, nicotinic acetylcholine recep-
2, adrenergic receptorα2; AChE,

by Elsevier B.V. All rights reserved
metabolites with a wide range of pharmacological and toxicological
properties (reviewed in Fraenkel, 1959; Levin, 1976; Swain, 1977;
Rosenthal and Berenbaum, 1991; Brown and Trigo, 1995; Wink, 1988,
1993a, 2007, 2008a;Wink and Schimmer, 2010). In addition, plants em-
ploy secondary metabolites for communication as signal compounds to
attract pollinating insects, fruit dispersing animals, or rhizobial bacteria
(reviewed in Cipollini and Levey, 1997; Wink, 2008a). Some com-
pounds serve for nitrogen storage, UV protection and as antioxidative
agents (reviewed in Hartmann, 2007; Wink, 1988, 2003, 2008a,b).

Plants not only synthesize the defence compounds but store them in
high concentrations in the vacuole (in the case of hydrophilic com-
pounds), resin ducts, trichomes, laticifers or cuticle (for lipophilic com-
pounds) (reviewed in Wink, 1993c, 1997, 2010a,b), where they do not
interferewith the plant's ownmetabolism. Some secondarymetabolites
aremadede novo in case of an herbivore or pathogen attack (sometimes
called phytoalexins). Plants always produce a complex mixture of sec-
ondary metabolites which usually consists of members from different
groups, such as polyphenols, terpenoids and others (Wink, 2008b).
There is experimental evidence that a synergistic potentiation of bio-
logical activities is achieved by combinations of individual defence
compounds in a mixture (Wink, 2008b). The composition of individual
compounds and their concentrations is not static but differs from
organ to organ,within a developmental cycle of a plant and furthermore,
.
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within and between populations. This variation, which leads to complex
mixtures of secondarymetabolites, is probably a strategy against the se-
lection of specialised herbivores or pathogens (reviewed inWink, 2003,
2008a,b). When antibiotics were applied in medicine as single entities,
many bacteria have evolved resistance against them: Ifmixtures of anti-
biotics, which attack differingmolecular targets inmicrobes,would have
been employed instead, such a development, that generates a severe
medical problem at present, could probably have been prevented.

2. Occurrence of secondary metabolites in Fabaceae

What had been discussed before for the occurrence and function of
secondary metabolites in plants in general, more or less applies for
members of the family Fabaceae. With 745 genera and over 19,500
Fig. 1. Structures of some secondary metabolites of legumes. A. Isoflavones and coumarins; B.
Erythrina and pyridine alkaloids, E. pyrrolizidine and quinolizidine alkaloids.
species legumes represent the third largest plant family (reviewed in
Lewis et al., 2005; www.mobot.org). Being such a large family, the enor-
mous diversity of legume secondary metabolites does not surprise.
Because legumes can fix atmospheric nitrogen (most members of
Papilionoideae and Mimosoideae, but only 25% of Caesalpinoideae;
Sprent and McKey, 1994), legumes can produce more nitrogen-
containing secondary metabolites (especially, NPAAs, glucosinolates,
amines, and alkaloids) than other non-nitrogen fixing plants. Interesting-
ly, legumes produce fewer mono-, sesqui- and diterpenes than other
plants (e.g., Asteraceae, Lamiaceae, Rutaceae). The nitrogen-containing
defence compounds often accumulate in seeds where they serve a dual
function: In addition to being toxic they are used as nitrogen storage
compounds which are remobilized during germination and seedling de-
velopment (Wink and Witte, 1984).
anthraquinones, C. cyanogenic glucosides and non-protein amino acids, D. simple indole,
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Table 1
Overview of secondary metabolites in the Fabaceae, their occurrence, pharmacological and toxicological properties.

Secondary metabolite Examples from Fabaceae Main occurrence Pharmacological and toxicological activities

Alkaloids and amines
Quinolizidine alkaloids (QA) Sparteine, lupanine, anagyrine, cytisine,

matrine, lupinine
Genistoid clade; Ormosia clade; Sophora
secundiflora; Calia, Bolusanthus

Neurotoxins; modulation of nAChR and
mAChR; Na+ channel blocker

Pyrrolizidine alkaloids (PA) Monocrotaline, senecionine Crotalaria; Lotononis Mutagenic and carcinogenic; modulators of
several neuroreceptors, including 5HT2,
mACh, GABA, D2 and α2.

Indolizidine alkaloids Swainsonine, castanospermine Astragaleae; Castanospermum Inhibitor of endoplasmic hydrolases
Piperidine alkaloids Ammodendrine Genistoid clade Causes malformations in embryos

2-Piperidine carboxylic acid,
4-hydroxy-2-piperidine carboxylic acid

Many members of all three subfamilies

Pyridine alkaloids Trigonelline In all subfamilies; abundant in IRLC clade
and Phaseoleae sens. lat.

Antimicrobial

β-Carboline alkaloids Harman, harmalan, tetrahydroharman,
leptocladine

Petalostyles labicheoides, Acacia
complanata, Burkea africana, Prosopis
nigra, Desmodium gangeticum

MAO inhibitor; serotonin receptor agonist;
DNA intercalation; mutagenic

Simple indole alkaloids Physostigmine Physostigma venenosum, Dioclea spp. AChE inhibitor
Erythrina alkaloids Erysodine, erysopine, erythraline,

erythroidine,
Erythrina Neuromuscular blocking agent

Simple isoquinoline alkaloids Salsoline, salsolidine Desmodium, Alhagi, Cytisus, Dendrolobium Dopamine antagonist
Imidazole alkaloids Cynodine, cynometrine Cynometra spp.
Polyamines Spermine, spermidine Mainly Phaseoleae Growth regulator
Phenylethylamines N-Methyl phenylethylamine; Mainly Acacia spp.; Caesalpininoideae Psychoactive
Tyramines N-Methyltyramine; hordenine;

N-methylmescaline
Mimosoideae, Desmodieae Psychoactive; insect feeding inhibitor

Tryptamines N,N-Dimethyltryptamine; bufotenin;
N-methyltryptamine

Mimosoideae Serotonin receptor agonist; hallucinogenic

Histamine N-Cinnamoylhistamine Acacia spp., Spartidium
NPAA Canavanine, albiziine,

carboxyethylcysteine,
2-acetamido-2-aminoproanoic acid,
djenkolic acid, willardiine,
homoarginine, mimosine,
4-hydroxypipecolic acid

Widely present in all tribes (except those
with alkaloids)

Antimetabolites; anti-herbivore and antimi-
crobial activities

Cyanogenic glucosides Prunasin, linamarin, lotaustralin,
proacacipetalin

Acacia spp.; Holocalyx balansae,
Lotononisspp., Lotus spp., Ornithopus spp.,
Trifolium repens, Phaseolus lunatus

Release HCN; inhibitor of respiratory chain;
strong animal poison

Peptides
Lectins Abrin, robin Abrus precatorius, Robinia Inhibitors of ribosomal protein biosynthesis
Protease inhibitors Trypsin inhibitors Several Fabaceae Inhibition of trypsin in herbivores
Antimicrobial peptides (AMP) ApDef1 Adenanthera spp. Potent antimicrobial

Cyclotides Clitoria Antimicrobial

Phenolics
Simple phenols Vanillin, syringic acid, ferulic acid,

gentisic acid, gallic acid,
p-hydroxybenzaldehyde

Widely distributed Antioxidants; antimicrobial

Flavonoids Quercetin, kaempferol, etc. Widely distributed, in all tribes Antimicrobial and anti-herbivore activities;
antioxidants

Isoflavones Genistein, daidzein, formononetin, Widely distributed only in SF
Papilionoideae

Antioxidants; phytoestrogens; antimicrobial

Pterocarpans Maackiain, glycinol, acanthocarpan,
cristacarpin, glyceollin, medicarpin,
phaseollin, pisatin, variabilin

Several members of Papilionoideae Antimicrobial; antifungal; phytoalexin;
antioxidants

Rotenoids Rotenone Amorpheae, Dalbergioids, Phaseoleae,
Millettioids sens. strict.

Fish poison, insecticide; inhibits
mitochondrial respiratory chain

Catechin Catechin, epicatechin, catechin gallate,
epigallocatechin gallate (EGCG)

Mostly trees Antimicrobial and anti-herbivore activities;
antioxidants

Anthocyanins Delphinidin, peonidin, cyanidin Widely distributed Antioxidants; flower pigments; attraction of
pollinators

Tannins Mostly catechin type Mostly trees Antimicrobial and anti-herbivore activities
Lignans Syringaresinol; hydnocarpin A few taxa in Cercideae, Cassiaeae,

Mimosoideae, Chamaecrista
Cytotoxic

Coumarins and furanocoumarins Umbelliferone, scopolin, psoralen,
bergapten, xanthotoxin

FC: mostly in tribe Psoraleae FC: DNA intercalation and DNA alkylation;
mutagenic; antimicrobial

Polyketides Anthraquinones: chrysophanol, emodin,
rhein

Few species in Cassiinae, Ormosia clade,
Millettioid sens. strict.

DNA intercalator; mutagenic; causes drastic
diarrhoea

Terpenoids
Monoterpenes Linalool, citronellol, limonene Few species with fragrant flowers Attracting pollinating insects; antimicrobial
Triterpenoid saponins Ring skeleton: oleanane, lupane, and

ursane
Widely distributed in all tribes Interaction with biomembranes; cell lysis;

cytotoxic, antimicrobial; antifungal
Steroids Campesterol, β-sitosterol Widely distributed in all tribes Intercalate biomembranes
Cardenolides Corotoxigenin, scorpioside, frugoside,

hyrcanoside
A few taxa of Coronilla and Securigera Inhibitors of Na+/K+ ATPase; strong poisons

Terpenoids
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Table 1 (continued)

Secondary metabolite Examples from Fabaceae Main occurrence Pharmacological and toxicological activities

Tetraterpenes Carotenoids Widely distributed Antioxidants; attraction of pollinating and
fruit-dispersing animals

Carbohydrates Pinitol (a methoxy inositol) Widely distributed Osmoticum
Organic acids Fluoroacetic acid In a few Australian taxa; Gastrolobium,

Gompholobium, Oxylobium, and Acacia
Inhibitor of citric acid cycle; metabolic
poison
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Themain secondarymetabolites of legumes,which include alkaloids,
NPPA, cyanogens, peptides, phenolics, polyketides, and terpenoids are
summarized in Fig. 1 and Table 1 (reviewed in Harborne et al., 1971;
Hegnauer and Hegnauer, 1994, 1996, 2001; Kinghorn and Balandrin,
1984; Seigler, 1998; Southon, 1994; Wink, 1993b; Veitch, 2010). Some
secondarymetabolites have a wide distribution (flavonoids, triterpenes,
pinitol), however, others occur in a limited number of taxa (Table 1). It
should be kept in mind that our information on the occurrence and dis-
tribution of secondary metabolites in legumes is incomplete because
several taxa have not been studied so far. In other instances, phytochem-
istswere rather interested to publish the finding of new compounds and
not to report the detection of knownmetabolites. Furthermore, a central
data base does not exist for secondarymetabolites, whichwould include
new phytochemical findings published later than the pioneering work
of Hegnauer, Harborne and Southon (Harborne et al., 1971; Hegnauer
6.0

Fig. 2. Phylogeny of Fabaceae (cladogram) reconstructed from a 50% consensus tree based
and Hegnauer, 1994, 1996, 2001; Southon, 1994). Unfortunately, the
existing literature also holds records of wrong identifications of second-
ary metabolites and of legumes, a fact which can distort the distribution
patterns, described in this review.

Most of the secondary metabolites exhibit some biological, pharma-
cological or toxicological activity (Table 1) (Wink et al., 1998; reviewed
in Teuscher and Lindequist, 2010).Manyof the alkaloids are neurotoxins
or neuromodulators (reviewed inWink, 1992, 1993a, 2000, 2007;Wink
and Schimmer, 2010) and probably evolved for defence against herbi-
vores. Pyrrolizidine alkaloids become activated in the liver of herbivores;
they then alkylate DNA which leads to mutations and even cancer in
animals and humans (reviewed in McLean, 1970; Hartmann and
Witte, 1995; Wink and Schimmer, 2010). A few alkaloids and amines
of legumes exhibit psychotropic activities, such as bufotenine, N,
N-demethyltryptamine, methylmescaline and β-carboline alkaloids
Brogniartieae

IRLC: Trifolieae: Trifolium-Melilotus
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on an ML analysis of rbcL, matK and ITS nucleotide data from over 1276 legume taxa.
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(summary in Wink, 2000; Wink and Van Wyk, 2008). Some of these
legumes have a famous history as hallucinogenic drugs. Some toxins
have immediate effects and thus directly work against herbivores.
Others have longer term consequences. These compounds act indirect-
ly by decreasing the longterm survival and reproductive fitness of
herbivores.

Upon wounding cyanogenic glucosides release HCN after enzy-
matic hydrolysis. HCN is a respiratory poison as it blocks the mito-
chondrial respiratory chain. It is a deadly poison for most animals
(reviewed in Seigler, 1998; Wink and Van Wyk, 2008). NPAA are
analogues of one of the 20 proteinogenic amino acids. When they
are incorporated into proteins, these proteins fold in a different way,
leading to inactive or wrongly active proteins. NPAA can be regarded
as toxic antimetabolites (Rosenthal, 1982) which affect herbivores,
bacteria, fungi and viruses.

Polyphenols (including tannins) can form several hydrogen bonds
and even ionic bonds (when their phenolic hydroxyl groups dissociate)
with most proteins and even DNA-bases. They thus modulate the
activity of many proteins, involving enzymes, ion channels, trans-
porters, transcription factors, motor proteins, and cytoskeletal proteins.
As a consequence many polyphenols are pharmacologically active,
being among others antioxidant, anti-inflammatory, antibacterial, anti-
fungal, and antiviral (Wink, 2008b).

Furanocoumarins (FC) are lipophilic and can diffuse easily into
cells where they intercalate DNA. When activated by UV light, they
can form covalent bonds with adjacent pyrimidine bases (such as cy-
tosine or thymine) (Wink and Schimmer, 2010). FC treatment leads
to apoptotic cell death. In the liver FC are converted into epoxides
which can alkylate DNA. When skin comes into contact with FC,
A

Fig. 3. Distribution of secondary metabolites in legumes. Clades which produce a certain clas
(blue) and bufotenine (red), C. coumarins and furanocoumarins, D. cyanogenic glucosides (red
(red), pyrrolizidine alkaloids (green), Erythrina alkaloids (blue), physostigmine (yellow), and
severe inflammation can result (resembling strong sunburn). Thus
FC are mutagenic and do not only interact with animal targets, but
also with DNA of bacteria, fungi and viruses. Therefore, FC have pro-
nounced antimicrobial properties (Wink and Van Wyk, 2008).

In legumes, most saponins are of the triterpene type, with steroi-
dal saponins being rare. Saponins interfere with biomembranes of
most species, where they form complexes with cholesterol. Whereas
the lipophilic core of monodesmosidic saponins intercalates biomem-
branes, their hydrophilic sugar side chains remain outside the cells
and interacts with glycoproteins or glycolipids. Saponins form pores
in membranes and can even lyse cells at higher concentration
(Wink, 2008b). The bitter-tasting saponins are apparently directed
against herbivores and microbes, especially fungi and viruses.

In the class of steroidal compounds, cardiac glycosides (CG), which
inhibit the Na+/K+ ATPase in animals and are thus strongly poisonous
(reviewed in Wink and Van Wyk, 2008), are rare in legumes. Only a
few taxa of the tribe Loteae, such as Coronilla and Securigera, produce
cardiotonic cardenolides (corotoxigenin, glaucotoxigenin, scorpioside,
frugoside, hyrcanoside).
3. Molecular phylogeny and chemotaxonomy

Phytochemists had observed early on that a number of secondary
compounds are not widely distributed in the plant kingdom but
restricted to smaller related groups, such as families, tribes or even
genera. As a consequence the discipline “chemotaxonomy” emerged
(summarized in Swain, 1963, 1966; Smith, 1976; Bell et al., 1978;
Harborne and Turner, 1984). For legumes, corresponding comprehensive
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Fig. 3 (continued).
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treatments include Harborne et al. (1971) and Hegnauer and Hegnauer
(1994, 1996, 2001).

One of the basic ideas was that secondary metabolites had no func-
tion (some regarded them as waste products) (Hartmann, 2007) and
were thus considered as neutral markers which were not subjected to
adaptive evolution as known for morphological traits. As we know
today, this assumption was wrong; as discussed above (1. Introduc-
tion), secondary metabolites have important functions for plants and
are important for their ecological fitness. Therefore, secondarymetabo-
lites must be considered as adaptive traits and convergent evolution a
rule rather than an exception.

The concept of chemotaxonomy proposed to use chemical traits to
establish a systematic framework that should reflect phylogeny. It was
assumed that all taxa, which produce a secondary metabolite with a
limited distribution, should be closely related. Even in the early days
of chemotaxonomy, itwas observed that a certain secondarymetabolite
could be found in a particular taxon (such as a genus or tribe) but that
not all members of this taxon actually produced it. Since a reliable phy-
logeny did not exist until 10 to 15 years ago, chemotaxonomists could
always place taxa together on account of their common chemical traits
and postulate that this would represent their true phylogeny.
This situation changed completely when molecular systematicists
started to use nucleotide sequence data from chloroplast and nuclear
marker genes (summary in Lewis et al., 2005). It was one of the goals
of the 6th International Legume Conference 2013 to reconstruct a new
molecular phylogeny of legumes and to redefine subfamily and tribe
circumscriptions.

For this paper amolecular phylogeny ofmore than 1276 specieswas
reconstructed from cpDNA (rbcL, matK) and ncDNA (ITS) (provided by
M. Wojciechowski). The complete 50% consensus file of a Maximum
likelihood analysis was too large to be useful for this evaluation. There-
fore, I used the programme FigTree to reduce the tree to a size which
would fit on a single page. The programme allows for the collapse of
clades with closely related taxa to groups which are in the correct
phylogenetic context (Fig. 2). The resulting phylogeny contains a
few topologies which are not consistent with a recently published
legume phylogeny (LPWG, 2013). These differences are however of
no practical consequences for purposes of this paper. The phylogeny
shown in Fig. 2 confirms many earlier findings from other molecular
studies: Whereas the subfamily (SF) Papilionoideae is monophyletic,
the SF Caesalpinioideae appears to be paraphyletic because the SF
Mimosoideae is embedded in the Caesalpinioideae and clusters
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as a sister to the Peltophorum–Dimorphandra clade. Within the SF
Papilionoideae several of the earlier recognized tribes appear to be poly-
phyletic (e.g. Sophoreae, Dalbergieae) and need to be reorganized into
monophyletic taxa. In this publication, the approach of Lewis et al.
(2005) is followed by not renaming tribes but by referring to clades
(Fig. 2).

When the first phylogenetic trees of Fabaceae became available it
was possible to map the distribution of secondary metabolites on the
trees (Wink and Waterman, 1999; Wink and Mohamed, 2003; Wink
et al., 2010). In this publication, this approach has been repeated by
using a better molecular phylogeny and by extending the phytochem-
ical data: (Southon, 1994; ILDIS and Chapman & Hall data base) and
several individual publications.

From the class of phenolics, isoflavones and rotenone were selected,
because they show a restricted distribution pattern (Fig. 3A,B). Other
phenolics, such as flavonoids, simple phenolics or anthocyanins, are
widely distributed and present in most taxa. Isoflavones are restricted
to members of the SF Papilionoideae. However, a few clades appear
not to produce them, such as Robinieae, Loteae, Sesbanieae, Indigofereae
and theMirbelieae–Bossiaeeae clade (Fig. 3A). In other cases, isoflavones
might have escaped detection. Rotenone, which represents a toxic
isoflavone, only occurs in Papilionoideae, with a predominance in the
tribes Amorpheae, some Dalbergioids (except Pterocarpus clade), some
Phaseoleae and Millettioids (Fig. 3B). Catechins and catechin-derived
tannins are abundant in Mimosoideae and Caesalpinioideae; this trait
appears to be related to the growth type of legumes in that trees more
often produce them than herbs.

Coumarins and furanocoumarins show a patchy distribution
(Table 1) with some isolated occurrences in the Mimosoideae and
Caesalpinioideae. They are more frequent in the Papilionoideae, espe-
cially in the IRLC clade, Loteae, Robinieae, and some Phaseoleae
(Fig. 3C). Furanocoumarins are typical for members of the Psoraleae,
but not all of them produce them. Anthraquinones have a very limited
distribution in Fabaceae, especially in Cassiinae, the Ormosia clade
and some Millettioids (Fig. 3D).

Terpenoids were not selected for this study, because most of
them are widely distributed among legumes, such as triterpenoid sa-
ponins, steroids and carotenoids. Only cardenolides are restricted to a
few (but not all) members of the genera Coronilla and Securigera
(Table 1).

Among nitrogen-containing secondary metabolites a few classes
were analysed in this context, such as cyanogenic glucosides, canavanine
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(as a representative for NPAA), bufotenin, and alkaloids (QA, PA,
β-carbolines, physostigmine and Erythrina alkaloids).

Cyanogenic glucosides occur in a restricted number of species of
the three subfamilies, which appear largely non-related (Fig. 3D),
such as Acacia spp., Holocalyx balansae, Lotononis spp., Lotus spp.,
Ornithopus spp., Trifolium repens, and Phaseolus lunatus.

NPAAs are abundant in tribes which do not sequester alkaloids
(Fig. 3F). Canavanine, a NPAA which was intensely studied (Bell et
al., 1978) is restricted to the SF Papilionoideae, except the genistoids,
dalbergioids, and the Swartzieae–Sophoreae (sens. lat.) complex.
Whereas most members of the IRLC clade sequester canavanine, this
NPAA has not been found in the Cicereae.

Quinolizidine alkaloids occur in almost all taxa of the genistoid
clade, except for Crotalaria and Lotononis sens. strict., which sequester
the biosynthetically unrelated pyrrolizidine alkaloids (Robins, 1993;
Hartmann and Witte, 1995) (Fig. 3F). QA are also found in some
basal branches of the Papilionoids, such as Sophora secundiflora,
Calia, Bolusanthus and the Ormosia clade (Fig. 3F) which are distantly
related to the genistoids.

β-Carboline alkaloids have been detected in a few species of the
Mimosoideae and Caesalpinioideae and in Desmodium gangeticum
(Table 1; Fig. 3F). The simple indole alkaloid physostigmine is
restricted to the genera Physostigma and Dioclea (Fig. 3F). Erythrina-
type alkaloids only occur in the genus Erythrina.

Indolizidine alkaloids have been detected in several species of the
Astragaleae and in Castanospermum. There is evidence, that Astragalus
and Oxytropis harbour an endophytic fungus which is able to produce
indolizidine alkaloids such as swainsonine (Ralphs et al., 2008). The
piperidine alkaloid ammodendrine often co-occurs with QA in the
genistoid clade (Wink, 1993b), whereas 2-piperidine carboxylic acid
and related compounds were discovered in all three subfamilies
(Table 1). The pyridine alkaloid trigonelline is abundant in members
of the IRLC clade, but has also been found in other taxa of the three
subfamilies. Among simple amines, the psychoactive tryptamines
(such as bufotenin; Fig. 3B) have been detected in a few species of
the Mimosoideae, Cassiaeae, Desmodieae and Hedysareae sometimes
together with β-carboline alkaloids.

If the distribution data would be analysed strictly cladistically, the
resulting cladograms would be largely incongruent with molecular
phylogenies. Thus, phytochemical data cannot be used as a direct
taxonomic marker in most instances (as discussed in Wink and
Waterman, 1999). The same is true for morphological traits which
are highly adaptive. However, secondary metabolites nevertheless
represent interesting traits which help to understand the evolution
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of secondary metabolite phenotypes and the adaptation of plants to-
wards a world of dangerous herbivores and microbes.

4. Reasons for the patchy distribution of secondary metabolite

The present evaluation correspondswith themainfindings of earlier
publications (Wink and Waterman, 1999; Wink and Mohamed, 2003;
Wink et al., 2010), indicating that the distribution of several secondary
metabolites (Fig. 3) is only partially congruent with the phylogeny of
the corresponding groups. The result is a patchy distribution pattern.
In this analysis, we have not looked into the distribution of particular
secondarymetaboliteswithin a genus. As exemplified in earlier publica-
tions (Wink andWaterman, 1999;Wink and Mohamed, 2003; Wink et
al., 1995, 2010; and Table 1), even within a genus, we often find that
some unrelated members produce a certain metabolite and others
not. How can we explain such patchy distribution patterns? A few pos-
sibilities are outlined in Fig. 4:

1. The phytochemical analysis is far from complete in legumes;
therefore, gaps and patchy distribution pattern could reflect miss-
ing data. This statement might be true for some compounds and
rare legumes but several legume clades have been extensively
studied, which makes such an omission less likely as a general
explanation.

2. Alternatively, one could assume that the occurrence of particular
metabolites in non-related legume taxa is based on convergent
evolution, suggesting that the biosynthetic pathways evolved in-
dependently and repeatedly in the Fabaceae. The production of
cardenolides in a few members of Coronilla and Securigera might
represent such a convergent trait, because CG occurs island-like
in many unrelated plant families (Wink, 2003).

3. A convergent trait could also be due to endophytic fungi, which pro-
duce a number of secondary metabolites on their own (review in
Wink, 2008a). As shown for indolizidine alkaloids, the patchy distri-
bution of these alkaloids might actually depend on such an infection
(Ralphs et al., 2008). Thus horizontal gene transfer could be another
source for distributional diversity of secondarymetabolites in plants.

4. QA are a typical trait of the genistoids suggesting that their ances-
tors already had the genes for QA synthesis and QA storage which
became distributed during phylogeny among all members. As
mentioned before, members of the genera Crotalaria and Lotononis
produce PA instead of QA (Fig. 3F). As the Crotalarieae are deeply
embedded within the genistoids (Fig. 2), their founders must
have obtained the QA genes from their ancestors. I suggest that the
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QA genes were either permanently inactivated in the Crotalarieae or
were just turned off. As seen in Fig. 3F some of the early branches of
Papilionoids already produce QA, suggesting that the corresponding
genes could have been present early on, but that they became
Fig. 4. Scheme to explain the patchy distribution of secondary metabolites.
inactivated in many papilionoid tribes which produce NPAA instead
(Fig. 3E).

5. PAderive froma completely different biosynthetic pathway (reviewed
in Robins, 1993; Hartmann and Witte, 1995); the PA pathway either
evolved de novo in the Crotalarieae or derived from an early ancestor
common for both the Crotalarieae and the Asteraceae. The complex
PA senecionine occurs with an identical stereochemistry in Senecio
and other Asteraceae. The Asteraceae belong to the asterids whereas
legumes are rosids according to APG3. Similar to the situation of QA
genes in genistoids, one could imagine that the early ancestors of
core dicots already had evolved the genes for the PA pathway and
that it was turned on in restricted places only (Fig. 4). Thus, PA occur-
rence would be rather a matter of gene regulation.

As shown in Fig. 4, we thus face the alternative of convergent evo-
lution versus gene regulation and inheritance by descendants not
only in the PA/QA example, but in all groups illustrated in Fig. 3.
How can this problem be solved? In the days of genomics more and
more genomes become available for comparison. As discussed in
Wink et al. (2010) there is evidence that the genes which encode
key enzymes of biosynthesis of flavonoids, indole and isoquinoline
alkaloids are present not only in taxa which actually produce such
compounds, but in most plant taxa (e.g. even in Arabidopsis thaliana
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which does not make alkaloids; Facchini et al., 2004). In several cases
related genes/proteins could be discovered in bacteria and fungi,
suggesting that these genes had evolved much earlier in evolution
(Wink, 2003). The genes might have found their way into plant ge-
nomes by distant horizontal gene transfer (HGT) from endosymbiotic
bacteria from which mitochondria and chloroplasts had derived
(Wink, 2008a,b; Wink et al., 2010). Horizontal gene transfer could also
have taken place in case of endophytic and viral infections (Fig. 5).
When land plants evolved about 400 million years ago, they had to
deal with herbivores and microbes. It is likely that the early plants
used terpenoids and phenolics for defence.When angiospermswhich at-
tract pollinating and seed dispersing animals evolved in the Cretaceous,
more powerful anti-herbivore defences were needed. The dominance of
alkaloids and other nitrogen-containing secondarymetabolites in angio-
spermsmust be regarded in this context (Wink, 2003, 2008a;Winket al.,
2010). As a consequence, secondary metabolism appears to be an early
rather than a recent innovation of plants.

For futurework, we needmore data on the genes responsible for the
biosynthesis and storage of several secondary metabolites in legumes
discussed in Fig. 4 before deciding on the issue whether convergent
evolution or phylogenetic transmission is the underlying mechanism.
Although there is evidence that plant genomes contain hundreds of
genes for the biosynthesis of secondary metabolites, there is as yet no
information on whether all these genes are still functional or not. One
way to solve this problem would be to clone and express the genes,
e.g. from Arabidopsis, and analyse whether specific alkaloids could be
synthesized by recombinant enzymes.
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