
Discrete Mathematics 114 (1993) 305-327

North-Holland

305

Recognition of DFS trees:
sequential and parallel algorithms
with refined verifications *

Ephraim Korach** and Zvi Ostfeld***

Received 10 February 1989

Revised 17 July 1989

Korach, E. and Z. Ostfeld, Recognition of DFS trees: sequential and parallel algorithms with refined

verifications, Discrete Mathematics 114 (1993) 305-327.

The depth-first search (DFS) algorithm is one of the basic techniques used in a very large

variety of graph algorithms. Every application of the DFS involves, besides traversing the graph,

constructing a special structured tree, called a DFS tree, that may be used subsequently.
In a previous work we have shown that the family of graphs in which every spanning

tree is a DFS tree is quite limited. Therefore, the question: Given an undirected graph G = (V, E) and

an undirected spanning tree r, is T a DFS tree (T-DFS) in G? was naturally raised

and answered by sequential linear-time algorithms. Here we present a parallel algorithm which

solves this problem in O(t) time complexity and uses 0(jEl/t) processors, where t>log 1 VI,

on a CREW PRAM. We also study the problem for directed graphs. A linear (0(IEI)) time

algorithm for solving it in the sequential case and a parallel Kimplementation of it, which

has O(log* I VI) time complexity and uses 0(/ V 12.“76) processors on a CREW PRAM, are

presented.

An important feature of our algorithms, that we call rejned ver$cation, is that some of

their decisions are endowed with proofs that can be verified with a better complexity than

that of the algorithms themselves: In the undirected case, if the answer of the algorithm is

negative then it outputs a proof for the fact that can be verified in O(t) time complexity

with O((V I;‘[) processors, where t >log I V 1, on a CREW PRAM. In the directed case, if T is not

a DFS tree in G then the sequential algorithm supplies an 0 (I VI) time proof for that fact and the

parallel implementation supplies a proof for the fact that can be verified in 0 (r) time complexity with

0(I VI/t) processors, where t > log I V 1, on a CREW PRAM. If T is a DFS tree in G then the parallel

implementation of the algorithm outputs a proof that can be verified in O(r) time complexity with

O(IEl/‘t) processors, where t>log/VI, on a CREW PRAM. Hence, all the verifications have an
optimal speed-up.

*A preliminary version of this work was presented at the Binarional French-Israeli Symposium on

Comhinutorics and Algorithms, Jerusalem (November, 1988).

**First author’s permanent address is: Ben-Gurion University of the Negeo Beer-Sheva 84105, Israel.
***The work of the second author was performed in partial fulfilment of the requirements of the MSc.

degree in the Computer Science Department, Technion, Haifa.

0012-365X/93/$06.00 % 1993-Elsevier Science Publishers B.V. All rights reserved

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82490222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

306 E. Korach, Z. Ostfrld

1. Introduction

The depth-first search (DFS) algorithm is a basic technique used in a very large

variety of graph algorithms. The history of this algorithm (in a different form) goes

back to 1882 when Tremaux’ algorithm for the maze problem was first published (see

4, p. 183). The impact of DFS grew rapidly since the Hopcroft and Tarjan version of it

was published (see [13-15, 281). This algorithm is used in many areas of computer

science, and recently it also has penetrated the field of parallel and distributed

algorithms (e.g. [l, 3, 12, 20, 22, 26, 301).

Every use of the DFS, besides traversing the graph, constructs a special structured

tree, called a DFS tree, that may be used subsequently. Previous results [16] have

shown that the family of graphs in which every undirected spanning tree is a DFS tree

is quite limited. Therefore, the problem: Given an undirected graph G = (V, E) and an

undirected spanning tree T, is T a DFS tree in G? was naturally raised and answered

by linear-time algorithms in [16] and independently in [lo]. The solution to this

problem might be useful in many applications. For example, when we would like to

run a DFS in an undirected graph where the weights of the edges are all distinct and

would like to obtain the unique minimum spanning tree as a DFS tree. DFS is also

used in many algorithms in the field of artificial intelligence. In particular, the

structure of the DFS tree is important in the constraint satisfaction problems (e.g. see

[9]). In [9] it is proved that the problem of finding a special DFS tree (optimal with

respect to its depth) is NP-hard. The algorithms presented here enable us to test very

efficiently whether a given tree with a desired structure is a DFS tree.

In Section 3, we present a parallel algorithm for solving this problem. This

algorithm has O(t) time complexity and uses 0(IE I/t) processors, where t >, log 1 VI,

on a concurrent-read exclusive-write parallel random access machine (CREW

PRAM). In addition, if the decision of the algorithm is negative then it outputs a proof

that can be verified in O(t) time complexity with O(l VI/t) processors, where

t >log I VI, on a CREW PRAM. The proof consists of

(i) a spanning subgraph G’ of G with 0 (I VI) edges, supplied by the algorithm,

where T is a spanning tree of G’ and it is not a DFS tree in G’, and

(ii) the algorithm itself.

By checking that G’ is a subgraph of G and rerunning the same algorithm on G’, one

can have the proof.

Both the algorithm and the verification have an optimal speed-up in the sense that

the time-processor product is the time required by an optimal sequential algorithm

(verification). Since the verification has a better complexity than that of the algorithm

itself, we call this property of the algorithm rejned uerijication (see Section 2).

Motivation for refined verifications is given in the sequel.

In Sections 4 and 5, we study the analogous problem for directed graphs. In Section

4, a linear-time algorithm for solving the problem in the sequential directed case is

presented. In addition, if the decision of the algorithm is negative then it supplies

a spanning subgraph G’ of G with 0(1 VI) edges, and, analogous to the undirected

Recognition qf DFS trees 307

case, this constitutes an 0(1 VI) time proof to justify the decision. In Section 5, an

efficient parallel implementation of the algorithm from Section 4, based on parallel

implementation of matrix multiplication, is presented. By using the methods in [7],

the algorithm has O(log* 1 VI) time complexity using 0(IE 12.376) processors on

a CREW PRAM. If Tis not a DFS tree in G then the algorithm supplies a verification

for that fact that can be verified in O(t) time complexity by 0(/ VI/t) processors, where

t >log I VI, on a CREW PRAM (a notable refined verification). If T is a DFS tree in

G then the algorithm supplies a verification for the fact that can be verified in O(t)

time complexity with O(l E I/t) processors, where tglog (VI, on a CREW PRAM

(both verifications have an optimal speed-up). A parallel algorithm for recognizing

a DFS tree in a digraph, based on similar ideas, was independently’ presented in [23].

In the case of a positive decision, [23] also includes a computation of a DFS

numbering, that we use to obtain a refined verification. However, it does not contain

a refined verification for a negative decision.

In the following, we present some motivations for refined verifications and a table

that summarizes our results.

The fact that our algorithms supply verifications that can be verified in a better

complexity than the complexity of the algorithms themselves is important not only

from the theoretical point of view but also in practical situations such as in the

following example: Assume that we have a network with a set of working stations,

which are low-power and busy computers, and a set of central powerful computers.

Assume that the stations ask the powerful computers to solve problems and that the

network is not completely reliable (i.e. errors may occur during communications). The

powerful computers send back to the stations the answers together with refined

proofs, and the stations just have to verify the proofs to be sure that no error occurred

during the communication process. In a situation where the stations are busy or not

powerful enough to solve a problem but can afford verification of a refined proof, it

will be best for them to use the central computers.

The fact that our algorithms supply proofs to justify negative answers which are

based on an 0(/ VI) subgraph of G is important also in the following example:

Consider a graph G which represents a network where edges may fall at random. After

we have obtained a proof that a specific spanning tree T of G is not a DFS tree in G,

the proof remains valid until one of the nontree edges in it falls. If, in addition, G is

a dense graph, and we would like to wait until enough edges fall so that T becomes

a DFS tree in G, then there is a high probability that we wait for a long time until the

proof is not valid anymore. Only at that moment, we have to rerun the algorithm.

In Section 6, some open problems are presented.

Other related characterizations and algorithms appear in [18,271. Another motiva-

tion for recognition of DFS trees in undirected graphs-

tion-can be found in [161.

a model of computa-

‘A preliminary version of our paper is appeared in May 1988 (see 1171).

308 E. Korach, Z. Ostfeld

Table 1

Summary of our results: complexity of the algorithms and of the verifications supplied by them

Graph

G=(V,E)

Implemen-

tation

Type of

complexity

Recognition

algorithm

Negative

verification
Positive

verification

Undirected’

Undirected

Sequential

Parallel6

Time O(lEl)

Time WY
Processor O(lEllt)
Product O(lEl)

Directed

Directed

Sequential

Parallel6

Time

Time

Processor

Product

O(lVl)

WY
WI VI/t)
O(I VI)

O(lVl)

O(tY
O(l VI/t)
O(l VI)

WEl)3

O(tp3
O(lEl/t)
O(lEl)

0(lEl)3

ws
O(lEllt)
O(lEl)

’ This algorithm does not appear in this paper but in [16].

2For t>loglVI.

3 The verification is, in fact, the algorithm itself.

4 Where the product of two N x N matrices can be computed in O(N”) arithmetic operations for w > 2

(see 121, Theorem A.11). It is known [7] that 3a>O such that w=2.376-a.

5 Since ~~2.376, the product is 0(I V12.76).

6 The model of computation is a CREW PRAM.

2. Some definitions and conventions

Let T be an undirected spanning tree in an undirected graph G = (V, E) and let SE V.

T, is the tree T with an orientation that makes s the root. T is called a DFS tree

(T- DFS) in G if there exists a vertex SE V such that T, is a DFS tree (T- DFS) in

G (i.e. T, can be constructed by a DFS run in G).

Let T be a directed spanning tree in a digraph G. T is a T-DFS in G if it can be

constructed by a DFS run in G. (Note that we use the same term for undirected graphs

and digraphs.)

Let (a, 6, c, d, e,f, g, h} be vertices in a directed tree T. If there is a directed path in

T from a to b, we say that a is an ancestor of b and b is a descendant of a. A vertex is an

ancestor and a descendant of itself. d is called second-x,, e if there is a tree edge c+d
and d is an ancestor of e in T. f is called the lowest common ancestor of g and h if(i) f is
a common ancestor of g and h in T, and (ii) any common ancestor of g and h in T is an

ancestor off.

In this paper, the refined verifications are, in fact, deterministic algorithms. For the

analysis of the verifications, we add to our model the following natural basic assump-

tions: (i) The input of the problem is already stored in the memory and, therefore, we

do not consider the complexity of reading the input as part of the complexity of the

verification. (ii) We assume uniform cost criterion-RAM (e.g. see [2, p. 121). There-

fore, a processor can access in 0 (1) time complexity any cell in the memory. Hence,

there are some cases where the complexity of reading the input of the verification is

Recognition qf’DFS trees 309

less than the complexity of reading the input of the original problem and there

are some cases where the time (the time-processor product in the parallel

case) complexity of the verification itself is even less than the complexity of reading

the description of the problem by the original algorithm. Another assumption

(that we use in Corollaries 3.10 and 4.24) is that the time complexity required for any

algorithm in order to know the description of a graph (or a subgraph) with E edges is

fl(lEl).
To simplify the discussion, we assume that all graphs in this paper are without loops

and parallel edges. This assumption does not affect the complexity of the sequential

algorithm presented here. As for the parallel algorithms, by using the sort algorithm

from [S], which has O(log /E I) time complexity and uses 0(1 E I) processors on an

exclusive-read exclusive-write parallel random access machine (EREW PRAM), we

can eliminate loops and parallel edges in a graph G = (V, E).
We say that a parallel algorithm (verification) has an optimal speed-up if the

time-processor product in it is equal to the lower bound of the time complexity of the

sequential algorithm (verification) for the same problem.

Where no confusion may arise, we use n instead of (V (and m instead of (E (for

a given graph G = (V, E).

3. Parallel recognition of DFS trees in undirected graphs

Previous results [16] have shown that the family of graphs in which every spanning

tree is a DFS tree is quite limited. Therefore, the problem: Given an undirected graph

G = (V, E) and an undirected spanning tree T, is T a T-DFS in G? was naturally raised

and answered by linear-time algorithms in [161 and independently in [lo].

In this work, we present a parallel algorithm which solves this problem in O(t) time

complexity and uses O(l E I/t) processors, where t>log I VI, on a CREW PRAM. In

addition, if the decision is negative then the algorithm outputs a proof that can be

verified in O(t) time complexity with O(l V//t) processors, where t2logI VI, on

a CREW PRAM. The proof consists of the following two parts:

(i) A spanning subgraph G’ of G with 0(I VI) edges, supplied by the algorithm,

where T is a spanning tree of G’ and it is not a DFS tree in G’ (and, hence, by [16,

Proposition 3.11, T is not a T-DFS in G).

(ii) The algorithm itself.

By checking that G’ is a subgraph of G and rerunning the same algorithm on G’, one

can have the proof. So, in a sense, this algorithm is a ‘self-refinement’ algo-

rithm-complexitywise.

Both the algorithm and the negative verification have an optimal speed-up.

Definition 3.1: Let T be an undirected spanning tree in an undirected graph G = (V, E)
and let SE V. T, induces a partition of E into three types of edges:

(i) Tree edges.

310 E. Korach. Z. Ostfeld

(ii) Buck edges: An edge (a, ~)EE - T is a back edge with respect to T, if a is either

an ancestor of b or a descendant of b in T,.

(iii) Cross edges: The rest of the edges in E.

Observation 3.2. Let T be an undirected spanning tree in an undirected graph G = (V, E),

where (s, a, bj E V and let 7c,, a and 7c,, b be the paths in Tjiiom s to a and from s to b,
respectively. (a, b) is a cross edge with respect to T, if and only if b$n,, a and a#x,, *.

Proposition 3.3. Let T be an undirected spanning tree in an undirected graph G = (V, E).
Let (r,s, u, v} G V and let T, and T, be two orientations of T rooted at r and s,

respectively. A nontree edge e =(u, V)EE is a cross edge in T, if an only if one of the
following conditions holds relative to T,:

(1) e is a cross edge and r is neither a descendant of u nor a descendant of v.

(2) e is a back edge (assume w.l.o.g., that u is an ancestor of v) and there is a vertex
WE V suck that (i) w is second-q,, “, and (ii) r is a descendant of w and is not a descendant

of v.

Proof. Follows from Observation 3.2. 0

Proposition 3.4 Tarjan [28, Theorem 11). Let T be an undirected spanning tree in an
undirected graph G =(V,E) and let SE V. T, is a T-DFS in G if and only if every edge

(a, b)EE- T is a back edge in T,.

Corollary 3.5. Let T be an undirected spanning tree in an undirected graph G = (V, E);

then T is a T-DFS in G if and only if there is some rE V suck that G contains no cross
edges in T,..

Proof. Follows directly from Proposition 3.4 and the definition of a T-DFS. 0

In the following, we present an efficient parallel algorithm for checking whether

a given undirected spanning tree is a T-DFS in an undirected graph G. The algorithm

is based on some ideas and techniques from [lo, 29, 311.

The parallel algorithm

PAR-CHECK (G, T) (Check in parallel whether T is a T-DFS in G.}

input: An undirected graph G and an undirected spanning tree T of G.

output: A decision whether T is a T-DFS in G. If the decision is positive then the

algorithm gives as an output the set of vertices S = {SE I/: T, is a DFS tree in G).

variables: J g, count, sum {these variables are four arrays indexed by the vertices of

V}, count_cross (this is a three-dimensional array indexed by the edges of E,

Recognition of DFS trees 311

where each entry is partitioned into three parts, side 1, side 2 and root, where each

part corresponds to a vertex and each vertex knows its appropriate sides}.

begin {of the algorithm}

(1) Choose a vertex SE V and compute T, (s is the root of the tree).

(2) For every vertex XE V, set f(x) to be the father of .x in T, (f(s) = null).

Set all the entries in count_cross to be 0.

(3) For every edge eE E - T,
begin

(3.1) If e=(u,u) is a cross edge in T, then

begin

{The two sides of coun_cross (e) correspond to u and u.>

count_cross (e) [u] := count cross (e) [u] - 1;

count_cross (e) [u] := count cross (e) [v] - 1;
count_cross (e) [s] := count_cross (e) [s] + 1;

end {of (3.1))

(3.2) Else {e=(x,y) is a back edge in T,)

begin

if x is an ancestor of y then begin u := x; v := y end

else { y is an ancestor of x} begin u := y; u := x end;

find WE V such that w is second-q,, L‘.

{The two sides of count cross (e) correspond to v and w.}

count_cross (e) [v] := count-cross (e) [v] - 1;

count_cross (e) [w] := count_cross (e) [w] + 1

end {of (3.2))

end (of (3)).

(4) For every vertex x~V, compute count (x), which is the sum of values of

count_cross (e) [x] for all edges egE.

(5) For every vertex XE V, compute sum (x), which is the sum of values of count (u)
for all vertices UE V, where u is an ancestor of .x in T,.

Decision (of algorithm PAR CHECK): For all XE V, T rooted at x is a T-DFS in G if

and only if

sum(x) = 0. T is a T-DFS in G if and only if there

is at least one vertex XE V such tht sum (x)=0.

end {of algorithm PAR-CHECK }.

Theorem 3.6. Algorithm PAR-CHECK (G=(V, E), T) is correct.

Proof. Let e = (u, U)EE - T and let {s, U, v, x} z V such that s is the vertex chosen by the

algorithm at step (1). Assume that e is a cross edged in T,. Since we add one to

count cross (e) [s] (and, hence, to count (s)), it is clear that if x is a either a descendant

of u or a descendant of v then sum(x) is not affected by the changes in the step (3.1).

Otherwise, e contributes one to sum(x). Now, assume that e is a back edge with respect

to T,, where u is an ancestor of v, and let WE V be second-n,, c” Then the operations in

312 E. Korach, Z. Osifeld

step (3.2) of the algorithm affect sum(x) if and only if x is a descendant of w and is not

a descendant of u. In the latter case, e contributes one to sum (x). Hence, by Proposi-

tion 3.3, for every vertex XE V, sum(x) is the number of cross edges in TX and, by

Corollary 3.5, the decision of the algorithm is correct. 0

Schieber [24] has shown how to obtain the following lemma by a slight modifica-

tion of the algorithm of [25].

Lemma 3.1 (Schieber [24]). Let T be a rooted tree with n vertices. It is possible to

answer a set of q queries of the form: ‘Which vertex is second-n,, v? ‘for any set of q pairs
of vertices ((u, v), u is an ancestor of v in T}, in O(t) time complexity using O((n +q)/t)

processors, where t >log n on a CREW PRAM.

In a previous version of this paper, we have shown how algorithm PAR-CHECK

(G = (V, E), T) can be implemented in 0 (log n) time complexity using O(m) processors,

on a CREW PRAM (where n = 1 V 1 and m = 1 E I). Schieber has improved our result as

follows.

Theorem 3.8 (Schieber [24]). Algorithm PAR-CHECK (G = (V, E), T) can be implemented
in O(t) time complexity using O(m/t) processors, where t alog n, on a CREW PRAM.

Proof (the main ideas of this implementation were sketched in [24]). Step 1 of the

algorithm is computed by O(n/logn) processors in O(logn) time complexity on an

EREW PRAM. We use the Euler tour technique presented in [29, 31-J. We will

implement it, however, using the optimal parallel list-ranking algorithm in [6]. Every

tree edge is replaced by two antiparallel edges and then an Euler circuit is created in

the new graph. After we set s to be the root of T, we refer to the Euler circuit as a path

which begins in one of the edges emanating from s. Step 2 is trivially done by O(n)

processors in O(1) time complexity. Step 3 is implemented as follows: First we use the

parallel implementation of the preprocessing algorithm in [25], which has O(logn)

time complexity and uses O(n/log n) processors on an EREW PRAM. Then we are

able to answer each LCA query in 0(1) time complexity, using a single processor. This

way, we recognize cross and back edges (note that e =(x, y) is a cross edge if and only if

the lowest common ancestor of x and y is neither x nor y). The computation of

w (second-z,, li) in step 3.2 is done according to Lemma 3.7.

The parallel additions and subtractions in step 4 can be done in O(logn) time

complexity with O(m/logn) processors on an EREW PRAM (see the algorithm in

[19]). The computation of step 5 is done in O(logn) time complexity with O(n/logn)
processors on an EREW PRAM using the optimal algorithm for computing prefix

sums in [19]. We use the Euler path that is obtained from the tree T,. For every edge

v-f(v), we assign the value count (v) and, for every edgef(v)+v, the value -count (u).
Consider the last part of the path that starts with the edge v-f(v). Clearly, the sum of

the values of the edges along this subpath plus the value of count(s) is the desired

Recognition of DFS trees 313

sum(v) (and, clearly, sum(s)=count(s)). Finally, the decision can be done in O(log n)

time complexity with O(n/log n) processors on an EREW PRAM. Cl

Theorem 3.9. If T is not a T-DFS in an undirected graph G = (V, E) then we can modify

the algorithm PAR-CHECK (without affecting its complexity) so that, in addition, it

supplies a rejined verification j& that fact. The veri$cation is done in O(t) time

complexity by O(l V l/t) processors,for t >1og 1 V/, on a CREW PRAM.

Proof. In the following, we present the modified algorithm MODIFIED_

PAR-CHECK:
(1) Choose a vertex SE V and compute T,. G” := G{G” is an auxillary graph}.

(2) For every nontree edge e=(U, v) in G, if e is a cross edge in T, then

G” := G” - eu { (x, u), (x, 2;), (I.?, I?)), w h ere x is the lowest common ancestor of u and v in

T,, t2~ V is second-n,,, and U*E V is second-n,,,. The edges (x, u), (x, 2;) and (2;, 6) are

called new edges and the edge e is the source of those three new edges.

(3) Delete all parallel edges in G”.

(4) For every vertex in G”, choose one back edge incident to it in which the other

end is closest to the root (s). Then delete all back edges that were not chosen by any

vertex.

(5) For every vertex in G”, choose two cross edges incident to it (if there is only one

edge, choose it). Then delete all cross edges that were not chosen by any vertex.

(6) Replace each remaining new edge in G” by its source to obtain G’.

(7) Run the algorithm PAR-CHECK (G’, T).
Clearly, both G’ and G” contain 0(1 VI) edges. One can see that T is a DFS tree in G iff

it is a DFS tree in G’ and that the implementation of steps (l-6) can be done in O(t)

time complexity with 0(I E I/t) processors, for t 3 log I V 1, on a CREW PRAM. By

checking that G’ is a subgraph of G and rerunning the algorithm on G’, one can have

the desired verification. 0

The results of Theorems 3.8 and 3.9 can be summarized as follows.

Corollary 3.10. Algorithm MODIFIED_PAR_CHECK can be implemented in O(t)

time complexity with 0(I E I/t processors, where t 3log 1 V /, on a CREW PRAM. In
addition, ifthe decision of the algorithm is negative then it supplies a rejined verijication
for its decision. The negative verijcation has O(t) time complexity and uses 0(I VI/t)
processors, where t >log I VI, on a CREW PRAM. Both the algorithm and negative
verification have an optimal speed-up.

Proof. In order to prove the optimality of the speed-up of the algorithm, let us assume

that there is at most one vertex SE V such that T, is a T-DFS in G. Clearly, we cannot

have a proof that T is a T-DFS in G unless we go over all the edges in G- T (every

edge that we ignore may be a cross edge relative to TJ. Hence, 0(I E I) is an optimal

314 E. Korach, Z. Ostfeld

speed-up for a positive verification and, therefore, it is an optimal speed-up for the

algorithm itself.

As for the optimality of the negative verification, observe the infinite family which

contains the pairs (Gi, Ti) of the following form:

Gi=TiU{(U,, u~)T (Ui-3, Ui)}Uf(Uj, Uj+z): 2<j<i-3}.

For every graph Gi = (Vi, Ei) which belongs to the above family, Ti is not a T-DFS in

Gi. However, for every edge e~Ei_ Ti, Ti is a T-DFS in Gi - c. Hence we cannot have

a proof that Ti is not a T-DFS in Gi unless we go over all the nontree edges (there are

0(1 Vi 1) such edges). Hence, 0(1 Vi /) is an optimal speed-up for a negative verification

for this family and, therefore, it is an optimal speed-up for a negative verification in the

general case. 0

4. Recognition of DFS trees in digraphs with a refined verification

In this section, we present a linear-time algorithm for deciding whether a given

directed spanning tree T is a T-DFS in a directed graph G = (V, E). If the decision of

the algorithm is negative then it supplies a spanning subgraph G’ of G with 0(I VI)

edges, and, analogously to the undirected case, this constitutes an 0(I VI time proof to

justify the negative decision.

Definition 4.1. A directed spanning tree Tin a digraph G = (V, E) induces a partition

of E into four types of edges:

(i) Tree edges (?).

(ii) Forward edges (k): An edge x-+y~E - i’is a forward edge if x is an ancestor of

y in T.

(iii) Back edges (h): An edge x+y~E is a back edge if y is an ancestor of x in T.

(iv) Cross edges (6): The rest of the edges in E.

Definition 4.2. Let V be a set of vertices. We say that Vhas an order induced byfif and

only if f: V+{ 1, 2, . . , (V/) } is a bijection.

Definition 4.3. Let G = (V, E) be a digraph, where V has an order induced by f: The

order is compatible (in G) if, for every edge x+y~E,f(x)<f(y).

Definition 4.4. Let T= (V, E) be a directed tree. An order of V’ induced byfis called

DFS-T-order if there is a DFS run on the tree such that, for every vertex UE V,f(u) = i if
and only if u is the ith vertex to be discovered during the DFS run.

Clearly, every DFS run (numbering) induces a DFS-T-order.

Recoptwn of DFS trees 315

Proposition 4.5. A directed spanning tree T in a digraph G =(V, E) is a DFS tree
(T-DFS) if and only tf T has a DFS-T-order induced by f that is compatible in
d = (V, fu$v&?), where Fare the tree edges, p are theforward edges, b are the back
edges with the reverse direction and ? are the cross edges with the reverse direction.

Proof. For the ‘only if’ part, see [S, p. 631.

As for the ‘if’ part, let us assume that every edge e=u+v is labeled by the pair

(B, H), where (i) B=O if eE? and B= 1 otherwise; (ii) H =f(v). Consider the DFS

algorithm with the additionalfreedom-breaking rule: ‘whenever we have to choose an

unused edge, we choose an edge with the label which is smallest lexicographically’. We

denote this modified DFS algorithm M-DFS.

The proof of the ‘if’ part follows from the following claim, that can be proved by

induction on 1 El, for every given 1 VI.

Claim. Let T be a directed spanning tree on V - a given set of vertices- and assume
T has a DFS-T-order induced by f: For every digraph G =(V, E) that contains T, such
that f is compatible in G^, the above M-DFS algorithm, starting at the root of T, will give
T (as a T-DFS) and, for each vertex UE V, f(v)=i if and only if v is the ith vertex
discovered during the search.

Coroltary 4.6. Let G’ = (V, E’) be a subgraph of G =(V, E) and let T be a spanning tree
of G’. Zf T is not a DFS tree in G’ then T is not a DFS tree in G.

Proof. Assume that T is a DFS tree in G. By Lemma 4.5, there is a DFS-T-order in

T that is compatible in 6. Since G’ is a subgraph of G, the same DFS-T-order is also

compatible in e’=(V, ?uP’uBue’), where ? are the tree edges, E’ are the forward

edges in G’, B’ are the back edges in G’ with the reverse direction and ? are the cross

edges in G’ with the reverse direction (note that 6’ is a subgraph of 6). Hence, by

Lemma 4.5, T is a DFS tree in G’, a contradiction. 0

Definition 4.7. Let T be a directed tree and let x, y be two vertices in T. TX is the

directed subtree induced by all the descendants of x in T (x is the root of TX). Two

directed subtrees TX and TV are called brother subtrees if x and y are brothers in

T (have a common father in T).

Definition 4.8. Let T be a directed spanning tree in a digraph G =(V, E), where

e=x-+y is a nontree edge in G and let ZE V be the lowest common ancestor of x and

y in T. We define the following elementary reduction operation (PT(G, e):

(1) If ee$uh then QT(G,e)=(V, E-e) (i.e. e is deleted).

(2) If ece then 4jr(G, e)=(V, E -eu{x+j}), where XE V is second-z,, x and YE V is
second-z,, Y (i.e. e is replaced by another cross edge a+j, where x and y are in the

brother subtrees T,* and T;, respectively).

316 E. Korach, Z. Osrfeld

Definition 4.9. Let T be a directed spanning tree in a digraph G = (V, E). We define the

following set Q;(G):

(i) GE@*,(G).

(ii) If G’e@j(G) and e is a nontree edge in G’ then QT(G’,e)~@;(G).

Definition 4.10. G’ is a minor digraph of (G, T) if G’E@T(G).

Lemma 4.11. Let T be a directed spanning tree of a digraph G. T is a DFS tree in
G=(V, E) if and only ifit is a DFS tree in every minor digraph of (G, T).

Proof. One can see that any single implementation of @r does not change the

compatibility of a DFS-T-order induced by f: By Lemma 4.5, the proof is com-

pleted. 0

Definition 4.12. A digraph G is irreducible relative to a spanning tree Tif @t(G)= {G}.

Definition 4.13. Let T be a directed spanning tree of a digraph G. A minor digraph G’

of (G, T) is a minimal minor if G’ is irreducible relative to T.

Observation 4.14. Let G=(V, E) be a digraph which is irreducible relative to T. Then

G contains neither forward edges of T nor back edges of T, and X-YE E is a cross edge of
T only if x and y are brothers in T.

Lemma 4.15. Let T be a directed spanning tree of a digraph G = (V, E); then the minimal
minor digraph G’ = (V, E’) of (G, T) is unique and can be obtained by ajnite number of

elementary reduction operations.

Proof. The tree T remains unchanged after every reduction operation. Therefore, in

every reduction operation, an edge in Buk is either deleted or remains in gvl?. For

every edge eE e, we can observe three possible outcomes of every reduction: (i) e is not

affected; (ii) e is replaced by another edge in t; (iii) e is deleted. It follows that in G’ all

the edges in &k are deleted (according to Definition 4.8(l)) and every cross edge

x+y~E, where x and y are in the brother subtrees T.J and T,+, respectively, has a unique

image x+j~E’ in the minimal minor digraph (according to Definition 4.8(2)). Hence,

we can get a minimal minor digraph after performing at most I? I+ 1 h I+ 1 k I reduc-

tion operations. 0

Observation 4.16. Let G =(V, E) be an irreducible digraph relative to a spanning tree T.
A directed circuit in G contains only cross edges.

Proof. It is obvious that for every tree edge x-y, d(x)<d(y), where d(v) is the distance

of the vertex VE V from the root of T. From Observation 4.14, it follows that every

nontree edge x-+y in G is a cross edge where d(x)=d(y). Hence, every circuit may not

contain a tree edge. 0

Recognition of DFS trees 317

Lemma 4.17. Let G = (V, E) be an irreducible digraph relative to a spanning tree T.
Then T is a T-DFS in G if an only if G is acyclic.

Proof. Only if Since T is a T-DFS in G, then by Proposition 4.5, G=(V, Tut) has

a compatible order. Hence, G has no dicircuit and, by Observation 4.16, G is a acyclic.

If: Since G is acyclic, the vertices can be labeled by a bijection g: V-+{ 1,2, . . , 1 V// }

such that, for every edge XijXjE E, g(Xi) >g(Xj) (e.g. g is the result of a topological sort

in G). Let us assume that every edge e = U-+V is labeled by the pair (B, H), where (i)

B = 0 if eE T and B = 1 otherwise; (ii) N = g(t’).

The proof of the ‘if’ part follows from the following claim, that can be proved by

induction on IEI, for every given 1 V(.

Claim. Let T be a directed spanning tree on V, a given set of vertices. Let G =(V, E) be

an acyclic digraph which is irreducible relative to T and let V have an order induced by
a bijection g, as described above (recall that T and g induce a labeling of the edges in E).

Then, the modified DFS algorithm (M-DFS, described in the proof of Proposition 4.5)

starting at the root of T will give T as its DFS tree in G.

The algorithm for checking whether a given directed spanning tree T is a T-DFS in

a given digraph G has two phases. In phase one, we build the minimal minor digraph

and, in phase two, we check whether it is acyclic. Phase two has a linear-time

implementation, which is based on the following observation.

Observation 4.18. A digraph G contains a direct circuit ifand only iffor every DFS forest

in G ther is a back edge.

Proof. The ‘if’ part is obvious since any back edge in a DFS tree creates a cycle. As for

the ‘only if’ part, if G is not acyclic then it has at least one strongly connected

component C with more than one vertex. By [28, Corollary 111, the vertices of

C define a subtree of a tree of every DFS forest in G. Hence, in every DFS forest, there

is at least one back edge which enters the root of the subtree defined by the vertices of

c. 0

Corollary 4.19. Given a digraph G and an arbitrary DFS forest F in G, G contains no

directed circuit if and only if there is no buck edge for F.

The structure of the algorithm is as follows.

DI_CHECK(G, T) {Check whether T is a T-DFS in G.}

input: A digraph G and a directed spanning tree T in G.

output: A decision whether T is a T-DFS in G.

PHASE ONE: BMM(G, T) {Build minimal minor}
input: A digraph G and a directed spanning tree T in G.

318 E. Korach, Z. Ostfeld

output: The minimal minor digraph of (G, T).

begin {of phase one}

(1) Deleting all the back and forward edges of G to get G1.

(2) Creating a minor digraph Gz of (G,, T) by using Definition 4.8 (2) for

every cross edge e in G1.

G2 is the output of phase one {i.e. G2 =BMM(G, T)}.

end {of phase one}

PHASE TWO: CAlI {Check the acyclicity of a &graph.}

input: A digraph Gz {the output of phase one}.

output: A decision whether Gz is a acyclic.

begin {of phase two}

in it.

(1) Build a DFS forest in G2.

(2) Check whether there are back edges in this forest.

Decision {of phase two}: G2 is acyclic if and only if there are no back edges

end {of phase two}

Decision {of algorithm DZ_CHECK}: T is a T-DFS in G if and only if G2 is acyclic.

Lemma 4.20. BMM (G, T) computes the (unique) minimal minor digraph of(G, T).

Proof. Follows from the proof of Lemma 4.15 and the fact that we have applied

Definition 4.8(2) for every cross edge in G. 0

We now present an efficient sequential implementation of algorithm BMM. Step

1 of the algorithm is done by using a DFS algorithm in G along T. In step 2 of the

algorithm, we want to replace each cross edge e = x-y by the cross edge R [e] = ,i+j,

where x and y are in the brother subtrees T* and Tg, respectively, and R is an array

indexed by the cross edges of G1 (= the cross edges of G).

First we find the lowest common ancestors of (x,y) in T, for every cross edge

e=x-+y in G1 (by using the algorithm in [l l] or in [25]). The results are organized in

an array LCA indexed by the cross edges of G1.

After computing LCA, we use a modification of the DFS algorithm for computing

R as follows.

NCE(G1, T, LCA) {Compute the new cross edges.}

input: A digraph G1 =(V, E) (the output of step l}, T {a spanning tree in G,} and an

array LCA

(computed as above}.

output: An array R indexed by the cross edges of G1. For every cross edge e=x+y

in G1, where x and y are in the brother subtrees Tf and Tg, respectively, R [e] = a+j.

begin {of the algorithm}

(1) Mark all the edges of T ‘unused’; v:=r, where YE V is the root of c

(2) If all the tree edges emanating from v are used then go to (4);

Recognition of DFS trees 319

(3) Choose an unused tree edge v:,u mark e ‘used; f(u):= U; s(v):=% u:=u;

go to (2);
(4) For every cross edge e where u is either the tail of e or the head of e, do begin

z:= LCA [e]; 6: =s(z) {clearly, s(z) is second-n,, uj

If u is tail (e) then tail (R [e]) := 2:;

Else {L. is head (e)} head (R[e]):= C:

end;

(5) If v#r then v:= f(u) and go to (2);

else {v = r, all the vertices have been scanned} halt.

R is the output of algorithm NCE {i.e. R= NCE(G1, T, LCA)}.

end {of the algorithm NCE}.

R contains all the new cross edges where duplications may occur. After computing

R, we compute k, which is the result of eliminating duplications in R, and create

a digraph G2 = (V, ?ui?), which is the output of phase one. For every cross edge e in

Gi, there is a cross edge in i which represents the cross edge R [e]. G2 is the minimal

minor digraph of (G,, T) (and of (G, T)).

Lemma 4.21. BMM (G = (V, E), T) has time complexity 0(IE I).

Proof. It is obvious that the complexity of step (1) is O(lEl).

As for step 2, the computation of LCA is done using the algorithm in [1 l] or in [25]

for finding lowest common ancestors in a static tree in an off-line model. Both

algorithms get, as an input, a static tree and a collection of queries about lowest

common ancestors and give, as an output, answers to those queries. The time

complexity of those two algorithms is 0(1 E I). The computation of R (algorithm NCE)

is, in fact, a modified DFS algorithm and has time complexity 0(I E I). The rest of step

2 (removing duplications from R and completing the creation of GJ has time

complexity which is linear in the number of cross edges of G. 0

Since both phases of DI_CHECK are linear in the number of edges of G, we can

conclude the following corollary.

Corollary 4.22. Algorithm DI_CHECK (G = (V, E), T) is correct and has 0(I E I) time

complexity.

Theorem 4.23. If T is a spanning tree which is not a T-DFS in G = (V, E) then algorithm

DZ CHECK can supply an O(l VI) t’ lme complexity proof for that fact.

Proof. Let G” = (V, put”) be the minimal minor digraph of (G, T). If T is not

a T-DFS in G then there is a circuit in G” which contains only cross edges. It is easy to

modify the algorithm (without affecting its complexity) in order to find a set of edges

320 E. Korach, Z. Ostfeld

1 e;, e;, ... , eg} E e” which form a simple circuit in G” and to recognize a set of cross

edges e’={el, ez,. . . , e,> in G such that R [ei] =ej’ for all i= 1, 2, . . . , p. Hence,

G’ = (V, ?u?) is a subgraph of G with 0(/ VI) edges, where T is a spanning tree which

is not a T-DFS in G’. By checking that G’ is a subgraph of G and rerunning the

algorithm DZ CHECK (G’, T), one can have an O(l VI) time proof that T is not

a T-DFS in G. 0

Corollary 4.24. Algorithm DIPCHECK (G=(V, E), T) has an optimal (0(IEI)) time

complexity. In addition, in the case of a negative answer, the algorithm outputs a proof

for the fact that can be verijied in an optimal (O(l VI)) time complexity.

Proof. Assume that G has at least two cross edges relative to T. Clearly, we cannot

have a proof that T is a T-DFS in G unless we go over all the edges in G - T (every

edge that we ignore may be a cross edge which causes the creation of a circuit in the

minimal minor digraph of (G, T)). Hence, O(lEl) is an optimal time complexity for

a positive verification and, therefore, it is an optimal time complexity for the algo-

rithm itself.

As for the verification of a negative answer, consider the infinite family of pairs (CL,

Ti) shown in Fig. 1.

Similarly to the proof of Corollary 3.10, one can see that we have to scan

all the nontree edges (there are O(l Vii) such edges) to have a negative

proof. 0

5. Parallel recognition of DFS trees in digraphs with refined verifications

In this section, we describe how to implement algorithm DZ_CHECK (G, T) in

O(log’ n) time complexity with 0(n2.376) p rocessors on a CREW PRAM. In addition,

the parallel implementation supplies proofs which have a better complexity than that

of the algorithm (rejned verijkations).
In the case of a negative answer, the algorithm outputs a proof for the fact that can

be verified in O(t) time complexity with O(n/t) processors, where t 3logn, on

a CREW PRAM. In the case of a positive answer, the algorithm outputs a proof for

Gi:

Ti = ((Vl,Vj) : 2Sjj4' }

Fig. 1

Recognition of DFS trees 321

the fact that can be verified in O(t) time complexity with O(m/t) processors, where

t > log n, on a CREW PRAM. In both cases, the verification has an optimal speed-up.

A parallel algorithm for recognizing a DFS tree in a digraph was independently

presented in [23].

5.1. Parallel implementation of algorithm DI CHECK

The algorithm has two phases which are identical to the phases of the algorithm

presented in Section 4. In phase one, we build the minimal minor digraph and, in

phase two, we check whether it is acyclic.

5.1.1. Parallel implementation of phase one (algorithm BMM)

The implementation of phase one (algorithm BMM) is done as follows:

(i) Compute z(e), the lowest common ancestor of x and y in T for every nontree

edge e=x+y in G.

(ii) Delete the back and forward edges of G (step 1 of algorithm BMM). Note that

e = x+y is a forward edge if and only if z (e) =x and e is a back edge if and only if

z(e) = y.

(iii) (Step 2 of BMM) Replace every cross edge x-ty by the cross edge a--+j, where

x and y are in the brother subtrees T* and TQ, respectively.

Lemma 5.1. Algorithm BMM(G, T) can be implemented in O(logn) time complexity

where O(m/log n) processors are used on a CREW PRAM.

Proof. The implementation of (i) is done by using the algorithm in [23]. The

implementation of (ii) is trivial and can be done in O(1) time complexity with O(m)

processors. The implementation of (iii) follows from Lemma 3.7. 0

5.1.2. Parallel implementation of phase two (algorithm CAD)

Phase two can be implemented as follows: Let A be the adjacency matrix of

a digraph G =(V, E). G is acyclic if and only if A2’=0 for k=r log n 1. By the

result of [7] for matrix multiplication and the result in [21, Theorem A.11 for

parallel implementation of matrix multiplication, A2 can be computed in O(logn)

time complexity using O(n2.376) p rocessors on a CREW PRAM. Hence, by perform-

ing matrix multiplication k times, we can get A” and decide whether G is

acyclic.

Proposition 5.2. Given a digraph G with n vertices, we can check in O(log’n) time

complexity with 0(n2.376) p rocessors on a CREW PRAM whether G is a acyclic.

Corollary 5.3. Given a digraph G with n vertices and a directed spanning tree Tin G, we

can check in O(log’ n) time complexity with 0(n2.376) processors on a CREW PRAM

whether T is a T-DFS in G.

322 E. Kormh, Z. Ostfeld

Proof. Follows immediately from Lemma 5.1 and Proposition 5.2. 0

Note. Improving the complexity of checking the acyclicity of a digraph will improve

the complexity of our solution.

5.2. Rejined zjercjications of DI_CHECK

In the following, we show how the parallel implementation of algorithm

DI_CHECK (G=(V, E), T) can be modified, without affecting the complexity

stated in Corollary 5.3, to supply a proof for a negative answer that can be

verified in O(t) time complexity with O(n/t) processors, where t>logn, on a

CREW PRAM.

Let G be a digraph which is irreducible relative to a spanning tree T. Let B = A”,

where A is the adjacency matrix of G and k =r log 1 VI 1. Since T is not a T-DFS in G,

there is an entry in the matrix B, B(i,j)>O, which corresponds to a path of length 2k in

G. The following algorithm finds one such path.

FP(G=(V,E)) {find path}

input: A digraph G which is not acyclic. G is represented by its adjacency matrix A.

In addition,

we are given the set of matrices {A2’ for I=O, . . . , r log 1 V/I 1) that we computed

in the parallel implementation of phase two of algorithm DIpCHECK (see the

parallel implementation of phase two).

output: A path of length 2” in G, where k =r log I V(1.

begin (of the algorithm}

(1) Find i, j such that A2”(i,j)>O;

(2) Output the path created by the execution of RS (k, i,j) {The procedure RS is

given below.}

end {of algorithm FP}.

RS (I, i, j) {recursive search)

{It is a recursive subroutine of FP.}

input:Anumber1(0<1<[1ogIV l)andtwoverticesvi,vj(ldi,j<lVl)suchthat

there is a path of length 2’ from Ui to Uj in G.

output: A path (a sequence of edges) of length 2’ from Vi to Vj.

begin {of the algorithm}

(1) If I=0 then return the path which is the edge Vi+Uj;

(2) {l>O} find q such that A2’ ‘(i,q)>O and A2’ ‘(q,j)>O;

{There is at least one 1 <q < I VI such that there are paths of length 2’- ‘from

vi to vq and from uq to Vj.}
(3) Compute in parallel rcfrql := RS(/-l,i,q) and ~~~j’:=RS(/-l,q,j);
(4) Return the path rri,j which is the concatenation of the paths 7~~~~’ and

71 f;j’ created by the executions of RS in (3).

end { of the subroutine RS}.

Recognition qf DFS trees 323

Recall that the set of matrices A2’ was already computed in the parallel implemen-

tation of algorithm DI_CHECK for all 1 =O, . . . , r log (VI 1. This leads us to the

following proposition.

Proposition 5.4. Algorithm FP(G=(V, E)) can be implemented in O(log’ 1 VI) time

complexity with O(l V12/log I VI) processors on a CREW PRAM.

Proof. It is clear that step (1) of the algorithm can be done in O(log I VI) time

complexity with O((VIZ/log I VI) p rocessors on a CREW PRAM. As for the subrou-

tine RS, one can see that the depth of the recursive calls of the subroutine to itself is

O(log I VI) (since I goes from r log 1 I/l 1 d own to 0). Step 2 of RS can be done in

O(log 1 VI) time complexity with 0((VI/log I VI) processors on a CREW PRAM: Go

over I V/ pairs of entries in the matrix of the form (A2’ ‘(i, h), A2’ ‘(h, j)), for 1 <h d I VI,

using one processor for a set of O(log I VI) pairs, and choose (in O(log I VI) time) one

pair in which the two entries are greater than zero. Since the subroutine has no more

than 0(/ VI executions at the same time (the exact number of parallel executions is

2’ log Y ‘-I and the maximum is obtained when I = 0), each recursive level can be done

in O(logI VI) time complexity with O(l VJ2/logl Vi) processors. Since the recursive

depth is O(log I VI), the proof of the proposition is completed. 0

Theorem 5.5. If T is a directed spanning tree which is not a T-DFS in a digraph

G = (V, E) then the parallel implementation of algorithm DI-CHECK can supply a proof

for the fact that can be verijied in O(t) time complexity by O(l Vi/t) processors, where

t>,log I V//, on a CREW PRAM.

Proof. In the first part of the proof, we describe the extra information produced by the

algorithm for the purpose of the verification. In the second part, we prove the

complexity of the verification (as stated in the theorem).

Let T be a spanning tree which is not a DFS tree in a digraph G =(V, E) and let

G”=(V, E”) be a minimal minor digraph of (G, T). By using algorithm FP, we find

a sequence of cross edges (with possible repetition) e” = e;, e:, . . . , ei in G”, which

form a path of length p=2r’og1v’1 in G”. The parallel implementation of the algorithm

can be modified, without affecting its complexity to number each appearance of an

edge according to its place in the above sequence, such that for every appearance of an

edge ei’ in 6” we have num(ey) = i. It is also easy to modify the parallel implementation

of algorithm DI_CHECK (G = (V, E), T) (without affecting its complexity) in order to

find a minimal subset of cross edges cl= {er, e2, . . , eh} in G that satisfies the

following: for every i= 1, . . . , p, there exists a j, 1 <j < h such that R [ej] = e;. Hence,

G’ = (V, TuC’) is a subgraph of G with 0(/ VI) edges, where T is a spanning tree which

is not a T-DFS in G’ (and, therefore, by Corollary 4.6, T is not T-DFS in G).

The verification consists of the following steps:

(1) A verification that G’-as described above-is a subgraph of G.

(2) By using the algorithm in [6], we assign the vertices in T preorder numbering

and postorder numbering.

324 E. Korach, Z. Osrfeld

(3) A verification that for every edge e;=.?+j in c” there exists an edge ej=x+y

in G’ such that R [ej] = ey. Recall that for every edge ej’ the parallel implementation of

the algorithm DZ CHECK supplied the edge ej; so, it is left to verify only that

R [ej] = ei’ . By using the preorder numbering and postorder numbering of the vertices of

T (which were calculated in the last step), we check whether all the following four

conditions hold: (i) i is an ancestor of x in T; (ii) j is an ancestor of y in T; (iii) j and

z? have a common father in T, (iv) z? # j.

(4) A verification that the sequence of edges I?” is a path of length p in G”. Since the

algorithm has numbered each appearance of an edge according to its place in this

path, the verification is easily done in the appropriate complexity.

All the four steps above can be implemented in the complexity stated in the theorem

and, hence, we are done. 0

Theorem 5.6. If T is a T-DFS in u digraph G=(V, E) then the parallel implementation

of algorithm DI CHECK (with a slight modification) supplies an optimal speed-up

verification for the fact that can be verified in O(t) time complexity with O((El/t)
processors,,for t 31og (VI, on a CREW PRAM.

In order to prove Theorem 5.6, we need the following proposition.

Proposition 5.7. If T is a T-DFS in a digraph G=(V, E) then the parallel implementa-

tion of algorithm DI CHECK (with a slight modification) finds a DFS-T-order in _
T induced by f which is compatible in G =(V, TukuBuC), where T, $, h and C are as

described in Proposition 4.5.

Proof. The implementation is as follows:

(1) Build G’=(V, ?vc’)-the minimal minor digraph of (G, T).
(2) Find a DFS-T-order induced by f which is compatible in G’ = (V, Tu?) (where

? are the edges of 6’ in the reverse direction). By the proof of Lemma 4.11, this order

is compatible in G.

The implementation of (2) is taken from [23] and we outline here the main steps of it:

A topological sort of the vertices which are brothers in Tis done. The topological sort

enables us to arrange the incidence list of the edges of T such that, by implementing

the algorithm from [6] on this list, we get a DFS-T-order (preorder numbering)
induced by f which is compatible in 6’. In addition, by the techniques in [6], we

compute a postorder numbering of the vertices of T according to the arranged

incidence list. This process does not affect the complexity of the parallel implementa-

tion of algorithm DI_CHECK as stated in Corollary 5.3. 0

Proof of Theorem 5.6. One can check that the numberings given by the algorithm are

correct by rerunning the algorithm from [6]. After this check, the compatibility of the

given DFS-T-order (in 8) can also be checked in the appropriate complexity as

follows:

Recognition of DFS trees 325

(1) For every edge, check to which of the following groups (?, P, i, ?) it belongs.

The methods are analogous to the methods that appear in the proofs of Theorem 3.8.

and Lemma 5.1.

(2) Check that there is no (cross) edge for which the order is not compatible.

Hence, by Proposition 4.5, one can have a verification that T is a T-DFS in G, the

complexity of which is as stated in this theorem. 0

Corollary 5.8. The parallel implementation of algorithm DI_CHECK (G = (V, E), T)

has an O(log’ 1 VI time complexity and uses 0(1 V12.376) processors on a CREW PRAM.

In addition, in the case of a negative answer, the algorithm outputs a prooffor the fact

that can be verified in O(t) time complexity with 0(I VI/t) processors,for t alog I VI, on

a CREW PRAM. In the case of a positive answer, the algorithm outputs a prooffor the

fact that can be verified in O(t) time complexity with 0(/E I/t) processors, for t >log I VI,

on a CREW PRAM. Both verijications have an optimal speed-up.

Proof. By Propositions 5.4 and 5.7, the modifications of the algorithm-the addition

of algorithm FP in the case of a negative answer and finding a compatible order in the

case of a positive answer-do not change the complexity of the algorithm. Hence, the

correctness follows from Corollary 5.3, Theorems 5.5 and 5.6 and the proof of

Corollary 4.24. 0

6. Discussion and open problems

A parallel algorithm for recognizing an undirected DFS tree in an undirected graph

G = (V, E) was presented. The algorithm has O(t) time complexity and uses 0(I E I/t)

processors, where t 3 log 1 VI, on a CREW PRAM. In addition, the algorithm supplies

an optimal speed-up verification to justify a negative answer. This verification has

O(t) time complexity and uses 0(1 VI/t) processors, where t 31og I VI, on a CREW

PRAM.

A linear algorithm for recognizing a directed DFS tree in a digraph G = (V, E) is

presented. The algorithm supplies an 0(I VI) time proof to justify a negative answer.

The algorithm has an efficient parallel implementation which has 0(log21 VI) time

complexity and uses O(i V12.376) processors on a CREW PRAM. This implementa-

tion supplies a proof to justify a negative answer that can be verified in O(t) time

complexity with O(l VI/t) processors, where t>log/ V/I, on a CREW PRAM. If the

answer is positive then this implementation supplies a proof to justify the fact that can

be verified in O(t) time complexity with O(l E I/t) processors, where t >log I VI, on

a CREW PRAM. Both proofs are optimal in the sense that we cannot improve the

time-processor product.

The sequential algorithm for the directed case has an optimal (O(lEl)) time

complexity and the parallel algorithm for the undirected case has an optimal speed-

up. However, the time-processor product in the parallel algorithm for the directed

326 E. Korach, 2. Os<feld

case is O(l V/2.376) (see Table 1). It is left open to decide whether there is an NC

algorithm which improves the speed-up of the parallel solution for digraphs.

A common generalization of the problems presented here and in [16] is to decide

whether a given spanning tree Tin a mixed graph G is a DFS tree. A trivial solution is to

use algorithm DZ-CHECK for every possible orientation of T that makes T a directed

tree (where every nondirected edge in G is replaced by two antiparallel edges). It is left

open to find more efficient algorithms (sequential and parallel) to perform this task.

Acknowledgments

We thank Baruch Schieber for providing Lemma 3.7 and for improving the imple-

mentation complexity of algorithm PAR CHECK that we got in a previous manu- _
script, as stated in Theorem 3.8. This also enables us to simplify the optimal negative

verification we had for this algorithm. We thank Michael Kaminski for pointing

out some references on the complexity of matrix multiplication. This research was

partially supported by Technion V.P.R. Fund-Coleman Cohen Research Fund.

References

[l] A. Aggarwal and R.J. Anderson, A random NC algorithm for depth-first search, Combinatorics

8 (1988) l-12.

[Z] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms

(Addison-Wesley, Reading, MA, 1974).

[3] B. Awerbuch, A new distributed depth-first-search algorithm, Inform. Process. Lett. 20 (1985)

147-150.

[4] N.L. Biggs, E.K. Lyod and R.J. Wilson, Graph Theory 17361936 (Clarendon Press, Oxford, 1977).

[S] R. Cole, Parallel merge sort, Proc. 27th IEEE Symp. on Foundations of Computer Science (1986)

511-516.

[6] R. Cole and U. Vishkin, Approximate and exact parallel scheduling with application to list, tree and

graph problems, 27th IEEE Symp. on Foundations of Computer Science (1986) 478-491.

[7] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progression, Proc. 19th ACM

Symp. on Theory of Computation (1987) l-6.

[S] S. Even, Graph Algorithms (Computer Science Press, Potmac, MD, 1979).

[9] M.R. Fellows, D.K. Friesen and M.A. Langston, On finding optimal and near-optimal linear
spanning trees, Algorithmica 3 (1988) 5499560.

[lo] T. Hagerup and M. Nowak, Recognition of spanning trees defined by graph searches, Tech. Report

A 85/O& Universitlt des Saarlandes, Saarbriicken, West Germany, 1985.
[ll] D. Harel, A linear time algorithm for the lowest common ancestors problem, Proc. 21th IEEE Symp.

on Foundations of Computer Science (1980) 3088319.
1121 X. He and Y. Yesha, A nearly optimal parallel algorithm for constructing depth first spanning trees in

planar graphs, SIAM J. Comput. 17 (1988) 486-491.
1131 J.E. Hopcroft and R.E. Tarjan, Dividing a graph into triconnected components. SIAM J. Comput.

2 (1973) 135-158.
[14] J.E. Hopcroft and R.E. Tarjan, Efficient algorithms for graph manipulation, Comm. ACM 16 (1973)

372-378.

[15] J.E. Hopcroft and R.E. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549-568.

Recognilion qf DFS trees 327

1161 E. Korach and Z. Ostfeld, DFS tree construction: algorithms and characterizations, manuscript,

submitted; A preliminary version of this paper was presented at the 14th Internat. Workshop on

Graph-Theoretic Concepts in Computer Science, Amsterdam, Lecture Notes in Computer Science,

Vol. 344 (Springer, Berlin, 1988) 877106.
[17] E. Korach and 2. Ostfeld, On the possibilities of DFS tree constructions: sequential and parallel

algorithms, Tech. Report no. 508, CS Dept., Technion, 1988.

[IS] E. Korach and Z. Ostfeld, Hamiltonian and degree restricted DFS trees, manuscript submitted.

[19] R.E. Ladner and M.J. Fisher, Parallel prefix computation, J. ACM 27 (1980) 831-838.

[20] K.B. Lakshmanan, N. Meenakshi and K. Thulasiraman, A time-optimal message-efficient distributed

algorithm for depth-first-search, Inform. Process. Lett. 25 (1987) 1033109.

[Zl] V. Pan and J.H. Reif, Efficient parallel solution of linear systems, Proc. 17th ACM Symp. on Theory of

Computation (1985) 143-152.

1221 J.H. Reif, Depth-first search is inherently sequential, Inform. Process. Lett. 20 (1985) 2299234.

[23] C.A. Schevon and J.S. Vitter, A parallel algorithm for recognizing unordered depth-first search,

Inform. Process. Lett. 28 (1988) 105-l 10.

1241 B. Schieber, private communication, March 1989.

[25] B. Schieber and U. Vishkin, On finding lowest common ancestors: simplification and parallelization,

SIAM J. Comput. 17 (1988) 125331262.

[26] J.R. Smith, Parallel algorithms for depth-first searches: I. Planar graphs, SIAM J. Comput. 15 (1986)

8 14-830.

1271 M.M. Syslo, Series-parallel graphs and depth-first search trees, IEEE Trans. Circuits and Systems 31

(1984) 102991033.
[28] R.E. Tarjan, Depth-first search and linear graph algorithms. SIAM J. Comput. (1972) 1466160.

1291 R.E. Tarjan and U. Vishkin, An efficient parallel biconnectivity algorithm, SIAM J. Comput. 14 (1985)

8622874.

1301 P. Tiwari, An efficient parallel algorithm for shifting the root of a depth first spanning tree, J.

Algorithms (1986) 105-119.

[31] U. Vishkin, On efficient parallel strong orientation, Inform. Process. Lett. 20 (1985) 235-240.

