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Severaldecompositionsof theorthogonalprojectorPX = X(X′X)−X′
are proposed with a prospect of their use in constrained princi-

pal component analysis (CPCA). In CPCA, the main data matrix X

is first decomposed into several additive components by the row

side and/or column side predictor variables G and H. The decom-

posed components are then subjected to singular value decomposi-

tion (SVD) to explore structures within the components. Unlike the

previous proposal, the current proposal ensures that the decom-

posed parts are columnwise orthogonal and stay inside the column

space of X . Mathematical properties of the decompositions and their

data analytic implications are investigated. Extensions to regular-

ized PCA are also envisaged, considering analogous decompositions

of ridge operators.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Multivariate data matrices analyzed by principal component analysis (PCA) are often accompanied

by auxiliary information about the rows and columns of the data matrices. For example, the rows

of a data matrix may represent subjects for whom some demographic information (e.g., gender, age,

level of education, etc.) may be available. The columns, on the other hand, may represent stimuli

definedby several attributes, and the values on the attributes characterizing the stimulimaybe known.

Constrained principal component analysis (CPCA; [1,2]) incorporates such information in PCA of the

main data matrix.
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In CPCA, a main data matrix is first decomposed into several components according to the external

information (External Analysis). Columnwise and/or rowwise regression analyses are used for this

purpose with the external information on the rows and/or columns of the data matrix as predictor

variables. The decomposed components are then subjected to PCA to investigate structures within the

components (Internal Analysis).

Let X denote an n by p data matrix, and let G and H denote, respectively, n by q and p by smatrices

of row and column predictor variables. Consider the following three regression models:

X = GC1 + E1, (1)

X = B1H
′ + E2, (2)

and

X = GMH′ + B2H
′ + GC2 + E3, (3)

where B’s, C’s, andM arematrices of regression coefficients, and E’s arematrices of disturbance terms.

Model (1) is for the case in which only G is available, Model (2) in which only H is available, andModel

(3) in which both G and H are available. In (3) we require

G′B2 = O, (4)

and

C2H = O (5)

for model identification purposes. The ordinary least squares (OLS) estimation of the regression coef-

ficients in these three models leads to the following decompositions of X:

X = PGX + QGX, (6)

X = XPH + XQH, (7)

and

X = PGXPH + QGXPH + PGXQH + QGXQH, (8)

where PG = G(G′G)−G′ and PH = H(H′H)−H′ are, respectively, the orthogonal projectors onto

Sp(G) (the range space of X) and Sp(H), and QG = In − PG and QH = Ip − PH are their orthogonal

complements.

Once the data matrix X is decomposed according to the external information (External Analysis),

the decomposed parts are subjected to PCA (Internal Analysis). Computationally, this amounts to sin-

gular value decomposition (SVD) of the terms in the decompositions. (A computational short cut for

the SVD will be described in Proposition 6.) Internal Analysis allows us to investigate structures spe-

cific to a particular part in the decompositions. For example, SVD(PGX) (the SVD of PGX) specifically

analyzes the portion of X that can be accounted for by G, SVD(QGX) the portion of X left unaccounted

for by G, SVD(PGXPH) the portion of X that can be explained by both G and H, etc. In this way, CPCA

can highlight certain aspects of the data matrix more clearly compared to the conventional PCA. CPCA

has been widely used (e.g., [3–5]), and software for CPCA is available from at least two sources [6,7].

While there is nothing wrong with the basic idea of the conventional CPCA presented above, the

decomposition given in (6) takes thedatamatrixX out of Sp(X)byprojecting it onto Sp(G). Thedecom-

position in (7) is not columnwise orthogonal. These facts are somewhat at odd with the spirit of PCA,

which analyzes the variation in X into columnwise orthogonal components. In this paper, we propose

columnwise orthogonal decompositions of X that also stay inside the range space of X . The proposed

decompositions provide alternative ways of decomposing the data matrix in Eternal Analysis of CPCA.

This paper is organized as follows: In Section 2, we introduce basic results on duality useful in

subsequent sections. In Section 3, we present our main results, basic decompositions of the data
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matrix that satisfy the above requirements (columnwise orthogonal decompositions within Sp(X))
along with their data analytic implications. In Section 4, we give a numerical example to illustrate

thesedecompositions. In Section5,wedecompose thedatamatrix intofiner componentsby combining

some of the decompositions given in Section 3. In Section 6, we develop decompositions of the ridge

operator analogous to those of the orthogonal projector. These decompositions can be used to extend

the ordinary (nonregularized) CPCA to regularized CPCA. In the Appendix, we discuss relationships

between our new proposal and the Wedderburn–Guttman decomposition [8–10].

2. Preliminaries

In this section, we introduce a notion of dual basis, which plays an important role in subsequent

sections. Let X denote a matrix as introduced in the previous section. Let

S = X′X, and T = XX′, (9)

and let

S+ = (X′X)+, and T+ = (XX′)+ (10)

denote their Moore–Penrose inverses. Define the matrix X∗ of dual basis of X by

X∗ = (X′)+ = XS+ = T+X = X(X′X)+. (11)

Then,

X = (X∗′)+ = X∗S = TX∗ = X∗(X∗′X∗)+, (12)

indicating that X in turn constitutes a matrix of dual basis of X∗. We may rewrite S, T , S+, and T+ as

follows using X∗:

S = (X∗′X∗)+, T = (X∗X∗′)+, (13)

and

S+ = X∗′X∗, T+ = X∗X∗′. (14)

We also define the orthogonal projector onto Sp(X) = Sp(X∗) (the range spaces of X and X∗, which

are identical) by

PX = XX∗′ = X∗X′ = PX∗ = TT+ = T+T, (15)

and the orthogonal projector onto Sp(X′) = Sp(X∗′) by

PX′ = X′X∗ = X∗′X = PX∗′ = SS+ = S+S. (16)

Observe thatPX′ reduces to the identitymatrixof orderp ifX is columnwisenonsingular (i.e., rank(X) =
p). Note also that

S+ = X′T+2X, and T+ = XS+2X′, (17)

where T+2 = (T+)2, and S+2 = (S+)2. In some of the definitions above, e.g., in the definition of PX ,

the Moore–Penrose inverse of S is not necessary (any g-inverse S− of S suffices), but unless otherwise

stated, we consistently use the Moore–Penrose inverse that applies to all situations, since delineating

which g-inverses may be used in which situations is not the main purpose of this paper.
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We note parenthetically that X∗ is a matrix analog of Green’s function for X in functional analysis,

and S+ and T+ that turn X into X∗ (see (11)) are matrix analogs of reproducing kernel for X in the

Hilbert space. Similarly, X is a matrix analog of Green’s function for X∗, and S and T that turn X∗ into

X (see (12)) are matrix analogs of reproducing kernel for X∗.
The above relationship between X and X∗ has an interesting implication in regression analysis. Let

Y denote a matrix of criterion variables, and let X denote a matrix of predictor variables, which are

usually not orthogonal to each other. (If X is columnwise orthogonal, X∗ = X .) Let Ŷ denote thematrix

of predictions derived through the OLS estimation of regression coefficients. Then,

Ŷ = X(X∗′Y) (18)

= X∗(X′Y). (19)

Eq. (18) indicates that

A = X∗′Y (20)

is the matrix of regression coefficients applied to X to obtain Ŷ . At the same time, (20) indicates that

A represents the matrix proportional to the covariance between X∗ and Y . (In the rest of this paper,

we may simply refer the matrix of the form (20) as the covariance between X∗ and Y .) Eq. (19), on the

other hand, indicates that

B = X′Y (21)

is the matrix of regression coefficients applied to X∗ to obtain Ŷ , while (21) indicates that B is also

the matrix of covariances between X and Y . In general, the matrix of regression coefficients is called

a weight matrix, while the matrix of covariances a structure matrix. In this terminology, A is the

weight matrix for the predictor variables X , and B the structure matrix. This relation is reversed for

the predictor variables X∗, that is, B represents the weight matrix, and A the structure matrix.

The duality between X and X∗ also has a similar implication in PCA. Let X = UDV ′ = XŨDV ′
represent SVD(X), where U = XŨ, and X∗′

U = Ũ(= VD−1). That is, Ũ represents the matrix of

weights applied to X to derive U, thematrix proportional to component scores, and at the same time it

represents thematrix of covariances between X∗ and U. (In the rest parts of this paper, wemay simply

referU as thematrix of component scores.) The transpose of Ũ, i.e., Ũ′, is thematrix of weights applied

to U to derive X∗. The SVD of X∗, on the other hand, is expressed as X∗ = UD−1V ′ = X∗Ũ∗D−1V ′,
where U = X∗Ũ∗, and X′U = Ũ∗ = S+Ũ = VD. This means that Ũ∗ represents the matrix of weights

applied to X∗ to derive U, and also the matrix of covariances between X and U. The transpose of Ũ∗,
i.e., Ũ∗′

is also the matrix of weights applied to U to derive X .

Something analogous happens in common factor analysis with oblique factors. A matrix of factor

scores X is called primary, while the corresponding X∗ (most often appropriately scaled) reference.

However, which one is called primary or reference is essentially arbitrary. If one is called primary, the

other becomes reference. See [11].

3. Basic decompositions

In this section, we present basic decompositions of orthogonal projectors PX and PX′ onto Sp(X)
and Sp(X′), respectively, and derive analogous decompositions of the data matrix. Let X , X∗, G, and H

be as introduced earlier. Then, the following proposition holds:

Proposition 1. Let K and L be such that H′K = O and Sp(H) ⊕ Sp(K) = Sp(X′), and G′XL = O and

Sp(X′G) ⊕ Sp(L) = Sp(X′). Then, the following decompositions of PX hold:

(A) PX = PXH + PX∗K , (22)
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(B) PX = PX∗H + PXK , (23)

(C) PX = PTG + PX∗L, (24)

and

(D) PX = PPXG + PXL. (25)
The two terms on the right-hand side of the above decompositions are mutually orthogonal.

Proof. It can readily be verified thatXH andX∗K in (A) aremutually orthogonal (H′X′X∗K = H′PX′K =
HK = O), and that Sp(XH) ⊕ Sp(X∗K) = Sp(X), since Sp(H) ⊕ Sp(K) = Sp(X′). The other decompo-

sitions in the proposition can be similarly proven, since they can be systematically derived from (A).

Decomposition (B) is obtained by interchanging X and X∗ (or by interchangingH and K) in (A). Decom-

position (C) is obtained by replacing H by X′G in (A). Decomposition (D) is obtained by interchanging

X and X∗ (or by interchanging H and K) and replacing H by X′G in (A). �

Decomposition (A) is themost basic one [12,13], and is motivated as follows. Suppose that we have

a regression model,

Y = XA + E (26)

similar to (1), and thatweestimate the regression coefficientsAunder thehypothesis thatH0:K
′A = O.

This hypothesis can equivalently be expressed as H0: A = HA0 for some A0. Estimation under H0 splits

PX into the sum of PXH , the portion of PX that can be explained by H0, and PX∗K , the portion of PX that

cannot be explained by H0. (Motivations for the other decompositions will be given later.)

SincePXX = X ,weobtain the correspondingdecompositionsof thedatamatrixX bypremultiplying

X by (22)–(25).

Proposition 2. Let K and L be as defined in Proposition 1. Then,

(A′) X = PXHX + PX∗KX, (27)

(B′) X = PX∗HX + PXKX, (28)

(C′) X = PTGX + PX∗LX, (29)

and

(D′) X = PPXGX + PXLX. (30)

The two terms on the right-hand sides of the above decompositions are columnwise orthogonal, and they

are all within Sp(X).

Proof. The orthogonality of the two terms in each of the above decompositions is assured by the

orthogonality of the projectors premultiplied to X . That all of them reside within the column space

of X may be seen by observing that they can all be written in the form of XW for some W , and that

Sp(XW) ⊂ Sp(X). (Concrete forms of W will be given in Proposition 3.) �

Decomposition (A′) is obtained by projecting X onto Sp(XH) and taking its residual Sp(X∗K) =
Sp(X − PXHX). This decomposition was implicitly used by Guttman [8,9] for extracting factors in the

group centroid method of factor analysis. The relationship between Guttman’s original formulation

and the current one will be elaborated in the Appendix. This decomposition (and the equivalent de-

composition (a) to be given in Proposition 3) is similar to (2). It is not identical (PXHX �= XPH), however,

despite the fact that PXHX = PXPHX and Sp(PXHX) = Sp(XPH).
Decomposition (B′) is obtained by applying Decomposition (B) to X . Decomposition (B) in turn is

obtained by interchanging the roles of X and X∗ in (A), but why do we want to do that? There are

at least two possible reasons: the first one is related to the duality between X and X∗. If we write
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PXHX = XJ, and PX∗HX = X∗J∗, J represents the weights applied to X to derive PXHX in (A′), and
similarly J∗ represents the weights applied to X∗ to derive PX∗HX in (B′). At the same time, the former

represents the covariances between X∗ and PXHX , since X∗′PX∗HX = X∗′XJ = J, while the latter the

covariances between X and PX∗HX , since X′PX∗HX = X′X∗J∗ = J∗. This means that H used with X

regulates the weights applied to X to derive PXHX , while H used with X∗ regulates the covariances

between X and PX∗HX . For example, suppose H is a vector of ones (i.e., H = 1p). This H applied to X

enforces the weights applied to X to be a constant, while that applied to X∗ enforces the covariances

between X and PX∗HX to be a constant. This point will be illustrated by a numerical example in the

next section.

Second, consider (2) as a special case of the growth curve model (GCM: [14]), where G is missing

(or set equal to In). The maximum likelihood estimate of B1 under the distributional assumption of

vec(E) ∼ N (0, � ⊗ In), where � may be singular, is given by

B̂1 = XS+H(H′S+H)−, (31)

so that

B̂1H
′ = X∗H(H′X∗′X∗H)−H′X∗′X = PX∗HX, (32)

which is identical to the first term in Decomposition (B′). Note thatH′X∗′X = H′PX′ = H′ in the above

derivation.

In Decomposition (C′), we take X′G as the weight matrix to be applied to X , rather than projecting

X directly onto Sp(G) as in (1). This keeps the subspace of projection inside Sp(X). Rao [15, Section 11]

tried to find a subspace in Sp(X) orthogonal to a given G, and obtained what amounts to the following

decomposition of X:

X = XPX′G + XQX′G. (33)

This decomposition is similar to (C′), but not identical (i.e., PXQX′GX �= XQX′G , despite the fact that

PQX′GX = PXL and Sp(PXQX′GX) = Sp(XQX′G)). Furthermore, this decomposition is not columnwise

orthogonal in the usual identity metric. The above decomposition may be regarded as being derived

by setting H = X′G in (2) instead of (27).

Note 1. Decomposition (33) may be rewritten as X = PTG/T+X + PXL/T+X , where the two terms

on the right-hand side are term by term equal to those on the right-hand side of (33), and where

PXH/T+ + PXK/T+ = PX . The two terms on the left-hand are columnwise orthogonal only with respect

to the nonidentity metric T+. Similarly, (2) may be rewritten as X = PXH/T+X + PXK/T+X . Again, the
two terms on the right-hand side are columnwise orthogonal onlywith respect to T+. (See Proposition

3 for more details of this kind of projectors.)
In Decomposition (D′), we project G onto Sp(X) (rather than the other way round as in (1)) to

obtain the subspace Sp(PXG) in Sp(X), and then project X onto this subspace. This is equivalent to

weighting X by X∗′G, the matrix of regression coefficients obtained by regressing G onto X , which is

also proportional to the matrix of covariances between X∗ and G (or to the groupmeans if G is a group

indicator matrix). When G represents a matrix of dummy variables indicating group memberships,

this is similar to defining a discriminant subspace inside Sp(X). The CPCA of PPXGX and canonical

discriminant analysis (CDA) of X with G are not identical, however. Whereas the former obtains the

SVD of PPXGX under the identity rowmetric, CDA typically obtains the SVD under a nonidentitymetric,

namely, GSVD(PPXGX)I,S+ (generalized SVD with the column metric S+), where S+ is as defined in

(10). (The matrix S is proportional to the total covariance matrix in CDA.)

In the above proposition, projectors are always applied to X from the left. These effects may be

transferred to the right-hand side of X by defining appropriate projectors that operate in the row

space of X . (These are the W matrices mentioned in the proof of Proposition 2.) More specifically, we
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have the following decompositions of PX′ , the orthogonal projector onto Sp(X′), which, when applied

to X from the right yield decompositions of X equivalent to those given in Proposition 2.

Proposition 3. Let K and L be as defined in Proposition 1. Then, the following decompositions hold:

(a) PX′ = P′
SH/S+ + P′

K/S+ , (34)

(b) PX′ = P′
H/S+ + P′

SK/S+ , (35)

(c) PX′ = P′
SX′G/S+ + P′

L/S+ , (36)

and

(d) PX′ = P′
X′G/S+ + P′

SL/S+ , (37)

where the matrices of the form PA/M = A(A′MA)−A′M, where M is a symmetric nonnegative definite

matrix such that rank(A) = rank(MA), are projectors onto Sp(A) along Ker(A′M), as A takes different

matrix arguments. The two terms on the right-hand sides of the above decompositions are orthogonal with

respect to the metric matrix S.

Proof. The above decompositions can be readily verified by a generalization of Khatri’s [16] lemma.

See Khatri [17, Theorem 1]. Also, see Yanai and Takane [13, Lemma 2.4(ii)]. The columnwise orthog-

onality of the two terms on the right-hand sides with respect to S can be directly verified. In (a), for

example, PSH/S+SP′
K/S+ = O, since H′SS+SS+K = H′PX′K = HK = O. The other decompositions in

the proposition are similar. �

Note that in theabovepropositionweactuallyuseprojectors of the formP′
A/M , the transposeofPA/M .

We can always turn them into projectors without transpositions, e.g., P′
A/M = PMA/M+ . However, as

will be seen in Proposition 4, the transposed projectors are always applied toX from the right, implying

that they operate on the rows of X . If the rows of X are brought into column vectors by transposing X ,

then the projector to be applied to them must be of the form PA/M (i.e., we obtain PA/MX′).
Ashasbeenalluded to earlier,weobtain the correspondingdatadecompositionsbypostmultiplying

X by the above decompositions.

Proposition 4. Let K and L be as defined in Proposition 1. Then,

(a′) X = XP′
SH/S+ + XP′

K/S+ , (38)

(b′) X = XP′
H/S+ + XP′

SK/S+ , (39)

(c′) X = XP′
SX′G/S+ + XP′

L/S+ , (40)

and

(d′) X = XP′
X′G/S+ + XP′

SL/S+ . (41)

The two terms on the right-hand sides of the above decompositions are columnwise orthogonal.

Proof. The decompositions themselves trivially follow from Proposition 3. The columnwise orthogo-

nality of the two terms on the right-hand sides of the decompositions is assured by the orthogonality

of the corresponding projectors in Proposition 3 with respect to S = X′X . �

The decompositions in Proposition 2 and the corresponding decompositions in Proposition 4 are

identical. Specifically, we have:
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Proposition 5.

PXHX + PX∗KX = XP′
SH/S+ + XP′

K/S+ , (42)

PX∗HX + PXKX = XP′
H/S+ + XP′

SK/S+ , (43)

PTGX + PX∗LX = XP′
SX′G/S+ + XP′

L/S+ , (44)

and

PPXGX + PXLX = XP′
X′G/S+ + XP′

SL/S+ . (45)

The left-hand and right-hand sides of the above equations are term by term equal.

Proof. The term by term equality can be shown directly. In (42), for example, PXHX = XH(H′X′
XH)−H′X′X = XS+SH(H′SS+SH)−H′S = XP′

SH/S+ , and PX∗KX = X∗K(K ′X∗′X∗K)−K ′X∗′X = XS+

(K ′S+K)−K ′ = KP′
K/S+ . The other decompositions are similar. As has already been pointed out, the

fact that in all cases the effects of projectors applied to the left-hand side of X can be transferred to the

right-hand side is an ultimate proof that all terms in the above decompositions stay inside Sp(X). �

Once the data matrix X is decomposed according to the external information (External Analysis),

each term in the decompositions may be subject to SVD (Internal Analysis). The SVD of the terms of

the form PAX can be carried out economically by the following computational procedure.

Proposition 6. Let F denote a matrix of any orthogonal basis vectors of A. Then, PA = FF ′. Let

F ′X = U∗DV ′ (46)

denote the SVD of F ′X. Then, the SVD of PAX = FF ′X is obtained by

PAX = UDV ′, (47)

where

U = FU∗. (48)

A proof the above proposition is rather rudimentary, and will not be given here. See Theorem 1 of

Takane and Hunter (2001) for some detail.

Note 2. Wemay develop decompositions analogous to those in Proposition 1 for the projector PX/W =
X(X′WX)−X′W , where W is a known symmetric nonnegative definite matrix such that rank(X) =
rank(WX). This projector is of the same form as those in Proposition 3, but it is applied to X from the

left (as opposed to those in Proposition 3) and arises from the weighted LS estimation in regression

analysis. We will not, however, elaborate on this any further in this paper.

4. A numerical example

In this section we illustrate the new family of CPCA up to hitherto presented with a numerical

example. In the data set we use, thirty seven samples in three species of the Lauraceae family of
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wood, 1,Ocotea bullata (Obul); 2,Ocotea kenyensis (Oken); 3,Ocotea Porosa (Opor), aremeasured on six

anatomical properties: (1) VesD (tangential vessel diameter inμm), (2) VesL (vessel element length in

μm), (3) FibL (fibre length in μm), (4) RayH (Ray height in μm), (5) RayW (ray width in μm), and (6)

NumVes (number of vessels per squaremm). The first two species are indigenous to South Africawhile

the third is an imported wood used as a substitute for O. bullata in the manufacture of high quality

furniture. The data are displayed in Table 1.

We employ a matrix of dummy variables indicating which tree species samples of wood belong to

as G. We use anothermatrix of dummy variables indicating which groups of variables the six observed

variables belong to as H. Specifically,

H =
⎡
⎣ 1 1 0 0 1 0

0 0 1 1 0 1

⎤
⎦

′
,

Table 1

Burden et al.’s [18] data.

(1) (2) (3) (4) (5) (6)

Sample Species VesD VesL FibL RayH RayW NumVes

1 1 78 346 961 223 24 31

2 1 129 406 1165 428 44 11

3 1 111 448 1096 379 40 13

4 1 82 361 1039 316 27 25

5 1 79 324 1048 369 29 26

6 1 103 371 1165 326 26 10

7 1 74 281 1175 324 26 11

8 1 104 387 1290 381 22 12

9 1 91 372 1234 375 26 11

10 1 85 418 1051 347 34 14

11 1 113 314 1253 466 23 10

12 1 94 437 1271 336 36 10

13 1 76 320 1130 347 29 13

14 1 119 359 1280 412 32 11

15 1 79 383 941 333 30 17

16 1 102 567 1221 395 40 11

17 1 114 569 1369 568 52 11

18 1 93 541 1267 347 34 14

19 1 141 621 1527 419 34 15

20 1 95 415 1225 416 38 10

21 2 156 401 1588 512 42 11

22 2 162 502 1591 369 42 8

23 2 147 402 1391 440 32 9

24 2 142 393 1468 443 35 6

25 2 125 322 1530 459 34 11

26 2 103 378 1655 441 34 11

27 2 126 414 1759 459 42 8

28 3 130 471 1072 409 39 15

29 3 139 133 993 342 33 14

30 3 115 352 1048 300 36 14

31 3 153 419 1077 392 48 20

32 3 112 309 1044 358 47 8

33 3 130 325 1166 428 36 12

34 3 130 368 1005 356 39 16

35 3 127 331 1027 473 38 20

36 3 135 370 1104 531 38 15

37 3 122 346 981 393 40 14
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Fig. 1. (A) CPCA of PXHX: component loadings; (B) CPCA of PX∗HX: component loadings; (C) CPCA of PXX′GX: component scores; (D)

CPCA of PPGXX: component scores.

which indicates that variables 1, 2, and 5 belong to group 1, while variables 3, 4, and 6 belong to group

2. The sixth variable x6 was reflected to make it positively correlated with most of the other variables.

The data matrix X was then columnwise centered and normalized so that diag(X′X) = I.

The first analysis pertains to SVD(PXHX) (the SVD of the first term in Decomposition (A′)). Let
PXHX = UDV ′ = XŨDV ′, where U = XŨ, denote the SVD of PXHX . Fig. 1(A) presents the plot of

columns of DV ′, namely component loadings. In this case, two linear composites were formed, each

with equalweights applied to all variableswithin groups, andprincipal componentswere derived from

the two composite variables. The loadings indicate the correlations between the derived components

and the variables in X . This can be seen by observing that U′X = U′PXHX = DV ′. Note that Ũ is the

matrix of weights applied to X to derive U, but it also represents the matrix of covariances between

X∗ and U, since X∗′U = Ũ.

The second analysis involves SVD(PX∗HX) (the SVD of the first term in Decomposition (B′)), which

is denoted by PX∗HX = U∗D∗V∗′ = X∗Ũ∗D∗V∗′
, where U∗ = X∗Ũ∗, and X′U∗ = Ũ∗. Fig. 1(B) displays

the plot of component loadings, i.e., columns of D∗V∗′. In this case, two composite variables were

formed in such a way that they correlate equally with all variables within groups. The component

loadings indicating correlations between the principal components U∗ and the variables in X (i.e.,

U∗′X = U∗′PX∗HX = D∗V∗′) coincide within groups, because U∗ is so constructed. Note that Ũ∗
represents the matrix of weights applied to X∗ to derive U∗, while it also represents the covariance

matrix between X and U∗.
The third analysis concerns SVD(PXX′GX) (the SVD of the first term in Decomposition (C′)). Since

this decomposition involves G, Fig. 1(C) presents component scores rather than component loadings.

In this decomposition, linear composites are formed by weighting variables in X in proportion to

the covariances between X and G, and X is projected onto these composites. Three tree species are

separated fairly well in the space of derived component scores. (To conform to the usual convention,

U was scaled up by n1/2 and plotted in Fig. 1(C and D).)

The fourth analysis pertains to Decomposition (D′), in which G is first regressed onto X , and the

matrix of regression coefficients was used as weights to form linear composites of X , onto which X is

projected. The derived component scores plotted in Fig. 1(D) again discriminate among the three tree

species fairly well, perhaps even slightly better than in the previous analysis.
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Fig. 2. (A) PCA of X: component loadings; (B) PCA of X: component scores; (C) CPCA of XPH : component loadings; (D) CPCA of PGX:

component scores.

For comparisons, results of the conventional PCA of X are presented in the top panel of Fig. 2. Fig.

2(A) displays component loadings, which indicates that the groupings of variables are less clear than

those obtained by CPCA, variable 4 located closer to group 1 (consisting of variables 1, 2, and 5) than to

group 2 (consisting of variables 3, 4, and 6). Fig. 2(B), which displays component scores, also indicates

that the three tree species are less well separated than in the corresponding CPCA.

Fig. 2(C) shows component loadings obtained by the conventional CPCA, namely SVD(XPH), the SVD
of the first term in Decomposition (2). This is strikingly similar to Fig. 1(B), where the loadings within

the same variable groups take equal values. However, they are quite distinct conceptually. Whereas

in Fig. 1(B) linear composites were formed in such a way that they correlate equally with variables

within the same groups, thereby producing equal loadings within groups, in Fig. 2(C) the observed

data X is totally replaced by the linear composites XPH , and the loadings indicate the correlations

between XPH and the component scoresU, which naturally take equal values within the same variable

groups.

Fig. 2(D) displays component scores obtained by the CPCA of PGX , the first term in Decomposition

(1). The three integers in the figure indicate themap of the centroids of the three species groups in the

space of observed variables to the space of component scores. These three points coincide with the

centroids of the component scores of the wood samples in the three groups plotted in Fig. 1(D). This

may be seen by observing that PGPPXGX = PGX .

5. Finer decompositions

By combining someof the two-termdecompositions in Proposition 1,we can generate the following

four-term decompositions of PX . The symbol like (AC) in the following proposition indicates that it is

a combination of Decompositions (A) and (C) in Proposition 1.

Proposition 7. (i) Let B and C be such that G′XHB = O and Sp(H′X′G) ⊕ Sp(B) = Sp(H′X′), and
G′X∗KC = O and Sp(K ′X∗′G) ⊕ Sp(C) = Sp(K ′X∗′). (Note that Sp(B) is null if rank(XH) = rank(G′XH),
and Sp(C) is null if rank(X∗K) = rank(G′X∗K).) Then, the following two decompositions hold:

(AC) PX = PXHH′X′G + PXH(H′SH)−B + P
X∗KK ′X∗′

G
+ PX∗K(K ′S+X∗K)−C, (49)
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and

(AD) PX = PPXHG + PXHB + PPX∗KG
+ PX∗KC . (50)

(ii) Let B and C be such that G′X∗HB = O and Sp(H′X∗′
G) ⊕ Sp(B) = Sp(H′X∗′

), and G′XKC = O and

Sp(K ′X′G) ⊕ Sp(C) = Sp(K ′X′). (Note that Sp(B) is null if rank(X∗H) = rank(G′X∗H), and Sp(C) is null
if rank(XK) = rank(G′XK).) Then, the following two decompositions hold:

(BC) PX = P
X∗HH′X∗′

G
+ PX∗H(H′S+H)−B + PXKK ′X′G + PXK(K ′SK)−C, (51)

and

(BD) PX = PPX∗HG
+ PX∗HB + PPXKG + PXKC . (52)

The four terms on the right-hand sides of the above four decompositions are mutually orthogonal.

The first and second terms in (49) add up to the first term on the right-hand side of Decomposition

(A), and the third and fourth terms to the second term. The first and third terms in (49) add up to

the first term on the right-hand side of in Decomposition (C), and the second and the fourth terms

to the second term. Similar relations hold for the other decompositions in Proposition 7. Note that

Decomposition (AD) is a special case of the decomposition presented in Theorem 2 of Takane et al.

[19], which was introduced in the context of constrained canonical correlation analysis.

As before, the above decompositions of PX may be applied to X from the left to obtain the corre-

sponding decompositions of X . Again, the projectors applied from the left-hand side of X are trans-

ferrable to the right-hand side by defining the right-hand side projectors appropriately. Each term in

the decompositions may be subjected to SVD for Internal Analysis.

6. Ridge operators and their decompositions

If we use the ridge least squares estimation in External Analysis rather than OLS, we obtain a ridge

operator defined by

RX(λ) = X(X′X + λPX′)−X′ = X(X′MX(λ)X)−X′ (53)

similar to the orthogonal projector we have been dealing with so far, where λ is the ridge parameter

(usually assuming a small positive value), and

MX(λ) = PX + λT+ (54)

is called the left-hand side ridge metric matrix [20,21]. Let X∗ be redefined as

X∗ = X(X′MX(λ)X)+. (55)

Then, we have

RX(λ) = XX∗′ = X∗X′, (56)

and

X′X∗ = X∗′X = RX′(λ) = S(X′M(λ)X)+ = (X′M∗X)+S = X′(XNX(λ)X′)−X, (57)

where

NX(λ) = PX′ + λS+ (58)

is called the right-hand side ridge metric matrix.
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We may derive decompositions of RX(λ) similar to those of the orthogonal projector in Proposi-

tion 1:

Proposition 8. Let K and L be as defined in Proposition 1. Then, we have the following decompositions of

the ridge operator RX(λ) defined in (53):

(Ä) RX(λ) = RXH(λ) + RX∗K(λ), (59)

(B̈) RX(λ) = RX∗H(λ) + RXK(λ), (60)

(C̈) RX(λ) = RTG(λ) + RX∗L(λ), (61)

and

(D̈) RX(λ) = RRX (λ)G(λ) + RXL(λ). (62)

The two terms on the right-hand sides of the above decompositions are orthogonal with respect to MX(λ).

Decomposition (Ä) has been shown to hold in [20,21]. Proofs for the other decompositions are

similar.

By premultiplying X by RX(λ) and applying SVD to the resultant RX(λ)X , we in effect obtain a

method of regularized PCA, in which component loadings are systematically shrunk toward zero. Let

X = UDV ′ denote the SVD of X . Then, RX(λ) can be expressed as RX(λ) = UD(D + λI)−1U′, so that

RX(λ)X = UD2(D + λI)−1V ′, (63)

which gives the SVD of RX(λ)X . SinceD2(D+λI)−1 � D for λ � 0, the elements of the loadingmatrix

are shrunk toward zero relative to the loadings obtained from the original X .

By applying the decompositions of RX(λ) given in the above propositions to X , we obtain a variety

of decompositions of RX(λ)X . By applying SVD to the terms in the decompositions, we obtain a variety

of regularized CPCA’s. As before, the effects of RX(λ) and its decompositions applied to the left of X

can be transferred to the right by appropriately defining the right-hand ridge operators.

Note 3. The ridge LS estimation is not invariant over the scale of predictor variables. It is desirable to

choose a scale for H, for example, that produces XH comparable in scale to the original X . This may

be achieved by redefining a new H by UrV
′
r , where H = UrDrV

′
r is the SVD of the original H matrix,

and r = rank(H). We must also redefine the matrix of regression coefficients by VrDrV
′
rB, where B is

the original matrix of regression coefficients, to make up for the redefinition of H. Note that with the

new definition of H = UrV
′
r , we have H′PX′H = H′H = VrV

′
r = PH′ = P(XH)′ , since Sp(H) ⊂ Sp(X′).

Essentially the same procedure can be used for K to obtain a new K with similar properties.

Again, combining some of the two-term decompositions given above, we may derive four-term

decompositions of RX(λ) analogously to Proposition 7.

Proposition 9. (i) Let B and C be such that G′XHB = O, and Sp(H′X′G) ⊕ Sp(B) = Sp(H′X′), and
G′X∗′KC = O, and Sp(K ′X∗′G)⊕Sp(C) = Sp(K ′X∗′), respectively. Then, the following two decompositions

hold:

(ÄC̈) RX(λ) = RXHH′X′G(λ) + RXH(H′X′MX (λ)XH)−B(λ)

+ RX∗KK ′X∗′G(λ) + RX∗K(K ′X∗′MX (λ)X∗K)−C(λ), (64)

and

(ÄD̈) RX(λ) = RRXH(λ)G(λ) + RXHB(λ) + RRX∗K (λ)G(λ) + RX∗KC(λ). (65)
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(ii) Let B and C be such that G′X∗HB = O, and Sp(H′X∗′G) ⊕ Sp(B) = Sp(H′X∗′), and G′X′KC = O, and

Sp(K ′X′G) ⊕ Sp(C) = Sp(K ′X′), respectively. Then, the following two decompositions hold:

(B̈C̈) RX(λ) = RX∗HH′X∗′G(λ) + RX∗H(H′X∗′MX (λ)X∗H)−B(λ)

+ RXKK ′X′G(λ) + RXK(K ′X′MX (λ)XK)−C(λ), (66)

and

(B̈D̈) RX(λ) = RRX∗H(λ)G(λ) + RX∗HB(λ) + RRXK (λ)G(λ) + RXKC(λ). (67)

The four terms on the righ-hand side of the above decompositions are orthogonal with respect to MX(λ).

The first and second terms in Decompositions (ÄB̈) add up to the first term in Decomposition (Ä),

and the third and the four terms to the second term in (Ä). The first and the third terms add up to the

first term in (C̈), and the second and fourth terms to the second term in (C̈). Similar relationships hold

for the other decompositions. As before, these decompositions can be applied to X to obtain various

decompositions of RX(λ)X , and terms in the decompositions may be subjected to SVD to obtain a

variety of regularized CPCA’s.

Note 4. The ridge operator defined in (53) may be generalized into a generalized ridge operator (GRO)

by:

R
(W,Q)
X (λ) = X

(
X′WX + λQ

)−
XW = X

(
X′WM

(W,Q)
X (λ)X

)−
X′W, (68)

where W is an n by n nonnegative definite matrix of weights such that rank(WX) = rank(X), and

M
(W,Q)
X (λ) = PX/W + λX(X′WX)−Q(X′WX)−X′W (69)

is the generalized ridge metric matrix. By allowing W �= In and Q �= PX′ , a greater variety of regular-

ization are enabled. Let X = UDV ′ denote the GSVD of X with the metric matrices W and Q+. Then,

R
(W,Q)
X (λ)X = UD2(D+λI)−1V ′. This shows that the GRO has the effect of shrinking the (generalized)

singular values of X with respect to W and Q+. The above equation appears identical in form to (63).

Note, however, the key quantities involved (i.e., U’s, V ’s, and D’s) are different. In the former they were

derived from the ordinary SVD of X , while in the present case they were derived from the GSVD of X

with respect toW and Q+.

7. Concluding remarks

In this paper, we presented several decompositions of the orthogonal projector PX with the in-

tention of their use in CPCA, in which the decompositions were first applied to the data matrix X to

derive analogous decompositions of X (External Analysis), and the terms in the decompositions were

then subjected to SVD to examine possible underlying structures within them (Internal Analysis). A

numerical example was given to illustrate the basic procedure. The basic idea of decompositions has

been extended to ridge operators to effectively obtain regularized CPCA.

The numerical example given in this paper is hardly sufficient to explain all important aspects of

the proposed method. Many more realistic examples are necessary to demonstrate its usefulness in

its full capacity. In particular, more specific guidelines as to “which decompositions are useful when"

with concrete examples would be of enormous help for application oriented researchers.
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Appendix A. Relationships with the Wedderburn–Guttman Decomposition

Let X denote an n by pmatrix as before, and letM and N be matrices such thatM′XN is square and

nonsingular. It has been shown by Guttman [8–10] that rank(X − XN(M′XN)−1M′X) = rank(X) −
rank(XN(M′XN)−1M′X) = rank(X) − rank(M′XN). This is called the Wedderburn–Guttman (WG)

theorem. Takane andYanai [22,23] generalized the theoremby identifying the necessary and sufficient

condition under which the regular inverse of M′XN could be replaced by a generalized inverse in

the above formula. It turned out that rank(X − XN(M′XN)−M′X) = rank(X) − rank(M′XN) held

unconditionally. However, for rank(X − XN(M′XN)−M′X) = rank(X) − rank(XN(M′XN)−M′X) to

hold (or equivalently for rank(XN(M′XN)−M′X) = rank(M′XN) to hold) requires a condition. This

conditionalongwith the rank formula is called theextendedWGtheorem.These theorems (theoriginal

and extended WG theorems) imply a decomposition of X of the form

X = XN(M′XN)−M′X + (X − XN(M′XN)−M′X), (70)

which we call the Wedderburn–Guttman decomposition. In this Appendix, we discuss relationships

between our proposal and the above decomposition.

We begin by rewriting the second term in the above decomposition as a single matrix (rather than

a difference between two matrices).

Theorem. Let X be as introduced earlier, and let M, N, M̃, and Ñ be such that

rank(M′XN) + rank(Ñ′X−M̃) = rank(X), (71)

where X− is any g-inverse of X,

M′XX−M̃ = O, (72)

and

Ñ′X−XN = O. (73)

Then, the following decomposition holds:

X = XN(M′XN)−M′X + M̃(Ñ′X−M̃)−Ñ′. (74)

Proof. Let Z1 = [N, XM̃], and Z2 = [M, (X−)′Ñ]. Then, we have

Z′
2XZ1 =

⎡
⎣ M′XN O

O Ñ′X−M̃

⎤
⎦ , (75)

and

XZ1(Z
′
2XZ1)

−∗Z′
2X = XN(M′XN)−M′X + M̃(Ñ′X−M̃)−Ñ′, (76)

where

(Z′
2XZ1)

−∗ =
⎡
⎣ (M′XN)− O

O (Ñ′X−M̃)−

⎤
⎦ . (77)

Clearly, (Z′
2XZ1)

−∗ ∈ {(Z′
2XZ1)

−}. From (75) and (71) we have

rank(Z′
2XZ1) = rank(M′XN) + rank(Ñ′X−M̃) = rank(X). (78)
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(74) follows fromTheorem2.1 ofMitra [24],which states thatXZ1(Z
′
2XZ1)

−Z′
2X = X (i.e., Z1(Z

′
2XZ1)

−Z′
2∈ {X}) if and only if rank(Z′

2XZ1) = rank(X).
Decomposition (74) may be called a rectangular version of Khatri’s [16] lemma. It was initially

assumed that X was symmetric and positive-definite, and thatM and N were identical. In Khatri [17],

this condition was relaxed somewhat, but X was still assumed square. �

Corollary 1. Let X, M, N, M̃, and Ñ be as defined in the above theorem. Let

rank(M′XN) = rank(XN) = rank(M′XX−), (79)

and

rank(Ñ′X−M̃) = rank(M̃) = rank(Ñ′X−). (80)

Then,

XX− = XN(M′XN)−M′XX− + M̃(Ñ′X−M̃)−Ñ′X−, (81)

where the first term on the right is the projector onto Sp(XN) along Ker(M′XX−), and the second term the

projector onto Sp(M̃) along Ker(Ñ′X−).

Proof. Postmultiplying (74) by X , we obtain (81). Conditions (79) and (80) ensure that the two terms

on the right-hand side of (81) are the projectors with the prescribed onto and along spaces. �

Corollary 2. Let X, M, N, M̃, and Ñ be as defined in the above theorem. Let

rank(M′XN) = rank(X−XN) = rank(M̃′X), (82)

and

rank(Ñ′X−M̃) = rank(X−M̃) = rank(Ñ). (83)

Then,

X−X = X−XN(M′XN)−M′X + X−M̃(Ñ′X−M̃)−Ñ′, (84)

where the first term on the right is the projector onto Sp(X−XN) along Ker(M′X), and the second term the

projector onto Sp(X−M̃) along Ker(Ñ).

Proof. A proof is similar to that of Corollary 1, and so is omitted. �

Note that (79) and (82) are equivalent. On the other hand, (80) and (83) are not, unless Sp(M̃) ⊂
Sp(X) and Sp(Ñ) ⊂ Sp(X−).

Note 5. In (81)M′XX− may be redefined as newM′, and in (84), X−XN may be redefined as as new N.

They can be done without loss of generality.

Corollary 3. Let X− = X∗′. Then, (74), (81), and (84) can be rewritten as:

X = XN(M′XN)−M′X + M̃(Ñ′X∗′M̃)−Ñ′, (85)

PX = XN(M′XN)−M′PX + M̃(Ñ′X∗′M̃)−Ñ′X∗′, (86)

and

PX′ = PX′N(M′XN)−M′X + X∗′M̃(Ñ′X∗′M̃)−Ñ′, (87)

respectively.
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Note 6. PXM = M if Sp(M) ⊂ Sp(X), and PX′N = N if Sp(N) ⊂ Sp(X′).
Decompositions (A′), (A), and (a) in Propositions 2, 1, and 3 follow from (85), (86), and (87), respec-

tively, by setting M = XH, N = H, M̃ = X∗K , and Ñ = K . The other decompositions in the three

propositions can be derived similarly.
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