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Elevated circulating levels of saturated free fatty acids (sFFAs; e.g. palmitate) are known to provoke inflammatory
responses and cause insulin resistance in peripheral tissue. By contrast, mono- or poly-unsaturated FFAs are pro-
tective against sFFAs. An excess of sFFAs in the brain circulation may also trigger neuroinflammation and insulin
resistance, however the underlying signaling changes have not been clarified in neuronal cells. In the present
study, we examined the effects of palmitate onmitochondrial function and viability as well as on intracellular in-
sulin and nuclear factor-κB (NF-κB) signaling pathways in Neuro-2a and primary rat cortical neurons. We next
tested whether oleate preconditioning has a protective effect against palmitate-induced toxicity. Palmitate
induced both mitochondrial dysfunction and insulin resistance while promoting the phosphorylation
of mitogen-activated protein kinases and nuclear translocation of NF-κB p65. Oleate pre-exposure and then re-
movalwas sufficient to completely block subsequent palmitate-induced intracellular signaling andmetabolic de-
rangements. Oleate also prevented ceramide-induced insulin resistance. Moreover, oleate stimulated ATP while
decreasing mitochondrial superoxide productions. The latter were associated with increased levels of peroxi-
someproliferator-activated receptor-γ coactivator-1α (PGC-1α). Inhibition of protein kinase A (PKA) attenuated
the protective effect of oleate against palmitate, implicating PKA in the mechanism of oleate action. Oleate in-
creased triglyceride and blocked palmitate-induced diacylglycerol accumulations. Oleate preconditioning was
superior to docosahexaenoic acid (DHA) or linoleate in the protection of neuronal cells against palmitate- or
ceramide-induced cytotoxicity. We conclude that oleate has beneficial properties against sFFA and ceramide
models of insulin resistance-associated damage to neuronal cells.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

A high concentration of saturated free fatty acids (sFFAs) in the cir-
culation provokes inflammation in various tissues [1,2], including
liver, muscle, adipocytes [3,4] and brain [5,6]. In vitro studies show
that one sFFA (palmitate) activates the intracellular nuclear factor-κB
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(NF-κB) signaling pathway in myotubes [7–9], adipocytes [10] and
endothelial cells [11]. Adipose tissue in particular is prone to sFFAmedi-
ated inflammation, triggering the release of cytokines tumor necrosis
factor-α (TNF-α) and interleukin (IL)-1 and -6 [1,3,12]. These proin-
flammatory cytokines may cooperate with elevated sFFAs to sustain or
aggravate inflammation in obese animals.

Thenuclear factor-κB (NF-κB) family of transcription factors includes
p65/RelA, RelB, c-Rel, p100/p52 and p105/p50 [13,14]. The p65 and p50
heterodimer is most ubiquitous and is well known to regulate gene ex-
pression in response to harmful cellular stimuli such as reactive oxygen
species (ROS), inflammatory cytokines, lipopolysaccharides (LPS) and
palmitate [12,13,15]. In its inactive state, NF-κB is complexedwith inhib-
itory κBα (IκBα) proteins thereby masking the nuclear localization sig-
nals.With degradation of IκBα by IκB kinaseβ (IKKβ), NF-κB dissociates
from the IκBα complex and translocates into the nucleus to induce
expression of target genes [14,15]. For instance, translocation and pro-
moter binding of NF-κB in myotubes exposed to palmitate result in the
expression of TNF-α [8]. It is also known that in reverse, TNF-α can acti-
vate NF-κB [16]. Conversely, inhibition of NF-κB signaling reduced
palmitate-induced cytotoxicity [17]. Thus, NF-κB signaling plays an im-
portant role in palmitate-induced intracellular inflammatory responses.
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Palmitate activates the NF-κBmachinery via stimulation ofmitogen-
activated protein kinase (MAPK) signaling pathway. For example,
palmitate increases phosphorylation of extracellular signal-regulated
kinase (ERK) 1/2, c-JunN-terminal kinase (JNK) or p38MAPK inmuscle
[9,18], pancreatic cells [19] and human hepatocytes [20]. The activation
of the MAPK signaling pathway has been implicated in both the gener-
ation of proinflammatory cytokines [21] and in the pathogenesis of in-
sulin resistance [1,22]. Palmitate-induced insulin resistance has been
identified in several animal and cell lines. However, palmitate either
may ormay not provoke insulin resistance in hypothalamic neuroendo-
crine cells in recent reports [23,24]. Elevated levels of plasma sFFAs re-
sulted in insulin resistance in animals fed high-fat diets [6,25]. Recent
in vitro studies demonstrate that palmitate treatment also induces
both mitochondrial dysfunction [26,27] and insulin resistance [8,28] in
cultured muscle cells. Since palmitate-induced insulin resistance is
closely associatedwithmitochondrial dysfunction [27,29], it is postulat-
ed that mitochondrial dysfunction is what triggers insulin resistance
[30]. On the other hand, insulin resistance can induce mitochondrial
dysfunction in type 2 diabetes [31].

From the above, sFFAs induce intracellular MAPK signaling, NF-κB
activation, mitochondrial dysfunction and insulin resistance in
cells. By contrast, polyunsaturated n-3 fatty acids (PUFAs) such as
docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are
known to prevent or alleviate inflammation and insulin resistance [32,
33]. Interestingly, several recent in vitro studies in myotubes reported
that coincubation of palmitate with oleate, a monounsaturated n-9
fatty acid, prevents palmitate-induced cytotoxicity, insulin resistance
and mitochondrial dysfunction [27,28,34,35]. While excessive circulat-
ing sFFAs may also trigger inflammation and insulin resistance in
brain as in peripheral tissue, the signaling cascade has not been clarified
in neuronal cells. This possibility has obvious relevance to the possible
connection between obesity-induced insulin resistance in the brain
and neurodegeneration, for instance in mild cognitive impairment
(MCI) and Alzheimer's disease (AD) [36,37]. In the present study, we
examined the effects of palmitate onmitochondrial function and cell vi-
ability as well as on insulin and NF-κB signaling in neuronal cells. Next,
we tested whether oleate has a protective effect against palmitate-
induced toxicity and if preconditioning alone was sufficient. We found
that palmitate induced mitochondrial dysfunction and insulin resis-
tance associated with phosphorylation of MAPK and nuclear transloca-
tion of NF-κB p65. Pre-exposure to oleate completely blocked these
palmitate-induced intracellular signaling and metabolic derangements,
an effect outlasting its removal. Oleate also prevented ceramide-
induced insulin resistance. Mechanistically, inhibition of protein kinase
A (PKA) attenuated the protective effect of oleate against palmitate.
Oleate increased triglyceride (TG) levelswhile palmitate increased diac-
ylglycerol (DAG) synthesis and we show that oleate blocked palmitate-
induced DAG as another explanation for its preconditioning protection
effect. Finally, oleate preconditioning was superior to docosahexaenoic
acid or linoleate in the protection of neuronal cells from such insults.
These findings recommend that oleate has beneficial properties against
sFFAs and ceramide models of neuronal cell injury.

2. Materials and methods

2.1. Cell culture

Mouse neuroblastoma Neuro-2a (N2a) cells were purchased from
ATCC (Manassas, VA). Cells were cultured in Dulbecco's modified
Eagle medium (DMEM; Invitrogen, Carlsbad, CA) containing 10% fetal
bovine serum (FBS; Invitrogen), 25 mM D-glucose, 2 mM L-glutamine,
1 mM sodium pyruvate and 1% penicillin/streptomycin and maintained
at 37 °C in 5%CO2. N2a cellswere used under 15 passages after purchase
and maintained at below 80% confluence. Neuronal phenotypes were
confirmed in N99% cells with neuron-specific makers γ-enolase and
β-tubulin (not shown). Primary rat cortical neurons (PCNs) were
cultured from E18 Sprague–Dawley rat fetal cortex (Charles River, Wil-
mington, MA) as described [38]. Briefly, isolated fetal cerebral cortex
was dissociated into single cells and then seeded to 12-well plates coat-
ed with poly-D-lysin at 4 × 105 cells per well. PCNs were cultured in
neurobasal medium (Invitrogen, Carlsbad, CA) containing 2% B27 with-
out insulin, 25 mM D-glucose, 0.5 mM L-glutamine and 1% penicillin/
streptomycin for 7 days before experiments.

2.2. Reagents

Sodium salts of palmitate, oleate, cis-4,7,10,13,16,19-docosa-
hexaenoic acids (DHA) and linoleate and fatty acid-free bovine
serum albumin (BSA) were purchased from Sigma (St. Louis, MO).
For western blots, anti-phospho-ERK1/2 (pERK1/2, Thr202/Tyr204),
ERK1/2, phospho-JNK (pJNK, Thr183/Tyr185), JNK, phospho-NF-κB
p65 (pNF-κB p65, Ser536), NF-κB p65, IκBα, lamin A/C, caspase-3,
caspase-9, phospho-Akt (pAkt, Ser473) and Akt antibodies were pur-
chased from Cell Signaling Technology. Anti-PGC-1α, actin (Sigma), tu-
bulin (Cymbus Biotechnology), heat shock protein (HSP) 90 (Stressgen,
San Diego, CA) and γ-enolase (Santa Cruz Biotechnology, Santa Cruz,
CA) antibodieswere purchased from the citedmanufacturers. Recombi-
nant human tumor necrosis factor-α (TNF-α; Invitrogen), interferon-γ
(IFN-γ; Invitrogen) and insulin (Sigma) were dissolved in dH2O and
stored at−20 °C. PKI, an inhibitor of protein kinase A (PKA), was pur-
chased from Invitrogen and dissolved in dH2O. U126, a highly selective
inhibitor of MAPK/ERK kinase1/2, was purchased from Santa Cruz.
Rotenone, an inhibitor of mitochondrial complex I, and antimycin A,
an inhibitor of mitochondrial complex III, were purchased from Sigma.
Myriocin, an inhibitor of serine palmitoyltransferase, was purchased
from Sigma. N-Acetyl-D-sphingosine (C2 ceramide), N-acetyl-D-
erythro-sphinganine (C2-dihydroceramide), retinoic acid and Oil
Red O were purchased from Sigma. The chemicals were dissolved in
DMSO at a concentration of 10 mM and stored at−20 °C.

2.3. Fatty acid preparation

Fatty acid stock solutions (20 mM) of palmitate, oleate, DHA and li-
noleate were complexed to fatty acid-free BSA in cell culture medium.
Briefly, sodium palmitate, oleate, DHA and linoleate were dissolved
each in 0.1 M NaOH at 70 °C for 30 min and then added to cell culture
medium containing 3.3 mM of fatty acid-free BSA. The fatty acids and
BSA stock mixtures were incubated at 37 °C for 1 h to complex FFAs
with BSA. The physiological ratio of fatty acids to BSA is 1–1.5:1 in nor-
mal condition. However, the ratio can reach up to 6:1 in human diabetic
patients [39]. Thus, we employed this ratio (6:1) for the present study.
Control BSA was prepared by mixing 1 ml of 0.1 M NaOH with 9 ml of
cell culture medium containing 3.3 mM of fatty acid-free BSA.

2.4. Nuclear, cytosolic and total protein extraction

To extract total proteins, N2a cells or PCNs were washed in cold PBS
and lysed in lysis buffer (20mMTris–HCl, pH 8, 150mMNaCl, 10% glyc-
erol, 2 mM EDTA, 1% Nonidet P-40 (NP-40)) containing protease inhib-
itor cocktail (Roche,Mannheim,Germany) at 4 °C for 30min. Thewhole
cell lysate was centrifuged at 14,000 rpm at 4 °C for 10 min and the su-
pernatant saved at−20 °C for western blot analysis. To fractionate nu-
clear and cytosolic proteins, N2a cells were scraped from culture
dishes andwashedwith cold PBS. Cells were gently suspended in hypo-
tonic buffer (20 mM Tris–HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2) and
then incubated at 4 °C for 15 min. NP-40 detergent was added at a
final concentration of 0.5%. The cells were immediately vortexed for
10 s and then centrifuged at 3000 rpmat 4 °C for 5min. The supernatant
was saved for cytosolic fraction. The pellet was washed with PBS and
then lysed in lysis buffer at 4 °C for 30 min. The lysate was centrifuged
at 14,000 rpm at 4 °C for 30 min, after which the supernatant was
saved as the nuclear fraction. The concentration of each nuclear,
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cytosolic and total protein was determined using a Bio-Rad Protein
Assay kit (Bio-Rad, Richmond, CA).
2.5. Western blot

Each protein sample (20 μg) was heated at 95 °C for 10 min in
Laemmli sample buffer, separated on 10% SDS polyacrylamide gels or
NuPAGE 4–12% Bis–Tris gels (Invitrogen), and then electrotransferred
onto polyvinylidene-difluoride (PVDF) membranes. The membranes
were blocked in 5% nonfat dry milk in Tris-buffered saline (TBS;
20 mM Tris, pH 7.6, 0.8% NaCl) containing 0.1% Tween 20 (TBST) for 1
h and then hybridized with primary antibodies (1:500–2000 dilution)
in blocking buffer at 4 °C overnight. After incubation with primary anti-
bodies, the membranes were washed with TBST, incubated in HRP-
conjugated secondary antibodies (1:4000 dilution; Cell Signaling
Technology) in blocking buffer at room temperature for 1 h, and then
washed with TBST again. The signal was detected using enhanced
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2.6. Cell viability

For 24 h coincubation or preconditioning experiments, N2a cells
were cultured to 60–70% confluence in 96-well plates. Prolonged incu-
bationwith palmitate or ceramide up to 96 hwas performed in 24-well
plates. 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-
benzene disulfonate (WST-1) solution (Roche, Mannheim, Germany)
was added per well for the last 4 h of the experimental period. WST-1
reduction was detected using absorbance at 490 nm by a Vmax micro-
plate reader (Molecular Device, Sunnyvale, CA).

2.7. Intracellular ATP and mitochondrial superoxide levels

The level of intracellular ATP was measured using ATP Biolumines-
cence Assay Kit HS II (Roche, Mannheim, Germany). Briefly, N2a cells
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were collected in lysis buffer (100 mM Tris–HCl, 4 mM EDTA, pH 7.8,
1% Triton X-100). After centrifugation, cell supernatant was mixed
with the luciferase reagent at 1:1 ratio. Bioluminescence was measured
using a CytoFluor 4000 microplate reader (Perseptive Biosystems,
Framingham, MA). The level of mitochondrial superoxide production
was measured using the MitoSOX Red reagent (Molecular Probes,
Eugene, OR). The reagent is a cell-permeant, fluorogenic dye that is
highly selective for the detection of superoxide inmitochondria in living
cells. N2a cells were incubated in Hank's balanced salt solution contain-
ing 5 μMof theMitoSOXRed at 37 °C in 5% CO2 for the last 10min of the
experimental period. Cells were washed with PBS and then collected in
the lysis solution. Fluorescence was measured at 530 nm (excitation)
and 580 nm (emission) by a CytoFluor 4000 microplate reader.
2.8. Thin layer chromatography (TLC)

Lipids were extracted from N2a cells in chloroform/methanol
(2:1, vol/vol) as described [40]. The amounts of DAG and TGwere mea-
sured by TLC as described [41]. Briefly, the lipid extract from N2a cells
was separated using hexane/ethyl acetate (3:2, vol/vol) on a silica gel
TLC plate. The plates were then soaked in 10% phosphomolybdic acid
solution for 10 s, dried under hot air, and immediately heated at
200 °C for 2 min. The spot density was measured from the plates
using ImageJ software.
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2.9. Oil Red O staining

PCNs were washed with PBS and then fixed with 4% paraformalde-
hyde for 10 min. PCNs were rinsed again with PBS followed by a wash
in 60% isopropyl ethanol. PCNs were stained with 0.3% Oil Red O solu-
tion for 15 min and then washed with 60% isopropyl ethanol. PCNs
were finally rinsed in dH2O and photographed under light microscopy.

2.10. Statistical analysis

Statistical significance across treatment groups was detected by
two-tailed Student's t-test and/or one-way ANOVA with Newman–
Keuls post-hoc tests (Prism, GraphPad Software). All data are presented
as the mean ± standard error of the mean.

3. Results

3.1. Oleate preconditioning prevents palmitate toxicity

We first tested the hypothesis that palmitate should also decrease
viability of neuronal cells. N2a cells were treated with palmitate, oleate
or BSA for 24 h and WST-1 viability was measured for the last 4 h of
the 24 h period. Palmitate, but not oleate, decreased viability in a
concentration-dependent manner (Fig. 1A). Previous work has shown
in fact that oleate blocks the cytotoxic action of palmitate on myotubes
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[27,35]. Therefore, we first examined if oleate alleviates palmitate-
induced cytotoxicity when it is coincubated in cultures of N2a cells.
N2a cells were concurrently exposed to palmitate (300 μM) and/or ole-
ate (300 μM) or control BSA for 24 h andWST-1 viability wasmeasured
as above. Oleate completely reversed palmitate-induced cell death
(Fig. 1B). Coincubation of palmitate with BSA alone had a much smaller
but still significant effect (Fig. 1B). Other studies have shown a similar
effect in myotubes exposed to palmitate with/without BSA [35] and
that even BSA alone has some anti-oxidative [42] and anti-apoptotic
[43] actions. However, as shown in the results of Figs. 1C and 8, oleate,
not BSA, is the outstanding protectant. We next examined if oleate pre-
treatment alone was sufficient to protect N2a cells from palmitate-
induced cytotoxicity. Importantly, oleate is removed before exposure
to palmitate. N2a cells were preconditioned with oleate or BSA for
24 h. Media containing oleate or BSA were replaced by newmedia con-
taining palmitate or BSA and then incubated for an additional 24 h. Pre-
conditioning with 3 different concentrations (100, 300 and 600 μM) of
oleate, but not BSA, greatly attenuated the effect of palmitate (300 and
600 μM) on viability asmeasured byWST reduction (Fig. 1C). Precondi-
tioning with oleate was also concentration-dependent (Fig. 1C). These
results indicate that oleate preconditioning, but no longer BSA alone,
protects N2a cells from subsequent palmitate-induced cytotoxicity.

To test this effect in N2a's committed to neuron phenotype, cells at
10–20% confluence were differentiated in culture medium containing
1% FBS and 5 μM retinoic acid for 2 days. N2a neurons were then
preconditioned with oleate (300 μM) or BSA for 24 h as above. Oleate
or BSA containing media was replaced by fresh differentiation media
containing palmitate (300 μM) or BSA and incubated for another 24 h
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(in the absence of oleate). Palmitate treatment induced cytotoxicity in-
cluding neurite degeneration in N2a neurons (Fig. 1D, middle panel).
Oleate preconditioning, as well as coincubation, also prevented
palmitate-induced cytotoxicity in N2a neurons (Fig. 1D). The protective
effect of oleate against palmitate was also confirmed in N2a cells using
trypan blue exclusion bymanual cell count (not shown).We also tested
the protective effect of oleate on palmitate-induced cytotoxicity in pri-
mary rat cortical neurons (PCNs). Similar toN2a cells, palmitate induced
neurite degeneration in PCNs (Supplemental Fig. S1A). Oleate precondi-
tioning, as well as coincubation, protected PCNs from palmitate, mea-
sured by trypan blue exclusion assay (Supplemental Fig. S1B).

3.2. Palmitate increases phosphorylation of ERK1/2, JNK andNF-κB p65 and
decreases IκBα and PGC-1α

To examine the changes in previously reported intracellular signal-
ing pathways in our N2a cells, 300 μM of palmitate was applied to the
culture medium. N2a cells were collected at 0, 2, 4, 8, 16 and 24 h
after treatment and total proteins were extracted. The levels of phos-
phorylated ERK1/2, JNK and NF-κB p65 and total IκBα and peroxisome
proliferator-activated receptor-γ coactivator (PGC)-1α were measured
by western blot. Palmitate increased the levels of phosphorylated
ERK1/2, JNK andNF-κB p65 in a time-dependentmanner (Fig. 2A).Max-
imal increases were observed at 16 and 24 h after palmitate treatment.
Palmitate decreased the levels of total IκBα and PGC-1α in a similar
time-dependent manner (Fig. 2A). Band quantifications are given in
Supplemental Fig. S2A. BSA treatment (control) produced no changes
in any of these signaling proteins over time (not shown).
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3.3. Oleate preconditioning prevents palmitate-induced signaling changes
and caspase activation

To examine if oleate preconditioning prevents palmitate-induced in-
tracellular signaling abnormalities, N2a cells were incubatedwith oleate
(300 μM) or control BSA for 24 h. Media containing oleate or BSA were
washed once with PBS and then replaced by new media containing
palmitate (300 μM) or BSA and incubated for another 24 h (in the
absence of oleate). Total proteins were extracted for western blot.
Oleate preconditioning was sufficient to completely inhibit palmitate-
induced phosphorylation of ERK1/2, JNK and NF-κB p65 (Ole/Pal
vs. BSA/Pal; Fig. 2B and C). Oleate preconditioning also inhibited
palmitate-induced decreases in total IκBα and PGC-1α (Fig. 2B and C).
Interestingly, the oleate alone preconditioned group (Ole/BSA)modest-
ly decreased the phosphorylation of ERK1/2 and NF-κB p65 and
increased the total IκBα and PGC-1α compared with the BSA/BSA con-
trol without any palmitate (Fig. 2B and C). We observed similar effects
of oleate against palmitate-induced signaling pathway changes in
PCNs (not shown). Itwas reported that palmitate increased cleaved cas-
pase-3 and -9 in cultured human mesangial cells, implicating apoptosis
mechanisms and that caspase activation was blocked by oleate
coincubation [44]. Therefore, we also tested if oleate preconditioning
has a protective effect on palmitate-induced caspase cleavages in N2a
cells. Palmitate treatment (BSA/Pal) greatly increased the levels of
cleaved (activated) caspase-3 and -9 (Fig. 2B and C). Palmitate-
induced cleavages of caspase-3 and -9 were also blocked by oleate pre-
conditioning (Ole/Pal) (Fig. 2B and C). Here again, the oleate
preconditioned group (Ole/BSA, no added palmitate) decreased the
basal levels of cleaved caspase-3 and -9 compared with the BSA/BSA
control group (Fig. 2B and C).

3.4. Oleate preconditioning prevents palmitate-induced increases in
nuclear translocation of NF-κB p65

To examine if palmitate induces nuclear translocation of NF-κB p65,
N2a cells were incubated with palmitate (Pal, 300 μM) or BSA for 24 h.
Nuclear and cytosolic fractions were analyzed by western blot. Palmi-
tate greatly increased the levels of pNF-κB p65 and total NF-κB p65 in
the nucleus (Fig. 3A and B). In the cytosol, the level of total NF-κB p65
was correspondingly decreased (Fig. 3A and B). This result suggests
that newly phosphorylated NF-κB p65 is translocated and presumably
activated for transcription following palmitate treatment. We next ex-
amined if oleate preconditioning prevents palmitate-induced nuclear
translocation of NF-κB p65. N2a cells were incubated with oleate
(300 μM) or BSA for 24 h.Media containing oleate or BSAwere replaced
by newmedia containing palmitate (300 μM) or BSA and then incubat-
ed for another 24 h (in the absence of oleate). Palmitate treatment
(BSA/Pal) increased the levels of pNF-κB p65 and total NF-κB p65 in
the nucleus as before (Fig. 3C and D). Oleate preconditioning (Ole/Pal)
completely blocked these palmitate-induced pNF-κB p65 responses
(Fig. 3C andD). The quality of nuclear and cytosolic subcellular fractions
was confirmed bywestern blot using anti-HSP90, lamin and tubulin an-
tibodies. Western blots showed no contamination between nuclear and
cytosolic fractions (Supplemental Fig. S2B).

3.5. ERK1/2 is not directly upstream of TNF-α- or palmitate-induced
increases in NF-κB p65 signaling

As shown above, oleate preconditioning has cellular protective ef-
fects against palmitate in N2a cells and prevents NF-κB p65 activation
by palmitate. It is accepted that inflammatory cytokines (e.g. TNF-α)
can reciprocally induce activation of intracellular signaling pathways in-
cluding NF-κB signaling [8,16,21]. Therefore, we examined if oleate pre-
conditioning can also prevent TNF-α-induced intracellular signaling
pathways in N2a cells. Cells were incubated with oleate (300 μM) or
BSA for 24 h. Media containing oleate or BSA were replaced by new
media containing TNF-α (10 ng/ml). N2a cells were collected at 0, 0.5,
1, 3, 8 and 24 h after TNF-α treatment and total proteinswere extracted
for western blot. TNF-α increased the levels of pERK1/2, pJNK and pNF-
κB p65 in the BSA (control) preconditioned group as expected (Fig. 4A).
Oleate preconditioning completely blocked TNF-α-induced phosphory-
lation of ERK1/2, but not JNK or NF-κB p65 at the 0.5 and 1 h time points
(Fig. 4A). Unlike pERK1/2 and pJNK, TNF-α-induced pNF-κB p65
was maintained at high levels until 24 h in both BSA and oleate
preconditioned groups. Of note, the level of IκBα decreased at 0.5 h
after TNF-α treatment in both BSA (control) and oleate preconditioned
groups concurrent with the increase in pNF-κB p65 as expected, but
then quickly achieved basal or slightly increased levels thereafter
(Fig. 4A). Thus, oleate blockade of TNF-α-induced ERK1/2 activation
did not extend to any effects on pJNK, pNF-κB p65 or IκBα. We further
examined if ERK1/2 signaling plays any role in the regulation of the
NF-κB p65 signalingpathway and total level of PGC-1α following palmi-
tate exposure. Since ERK1/2 is highly activated following 8 h of palmi-
tate exposure (Fig. 2A), N2a cells were incubated with 10 μM of
U0126, a highly selective MEK1/2 inhibitor, for the last 12 h of the 20
h palmitate (300 μM) exposure period. The control group was treated
with vehicle (DMSO). U0126 completely inhibited palmitate-induced
phosphorylation of ERK1/2 (Fig. 4B). However, U0126 had no effect on
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the phosphorylation of NF-κB p65 nor any effect on the levels of
palmitate-induced degradation of IκBα and PGC-1α (Fig. 4B). In anoth-
er experiment, N2a cells were concurrently coincubated with palmitate
(300 μM) and U0126 (10 μM) for 0, 2, 4, 8, 16 and 24 h. Again, we ob-
served that U0126 completely inhibited palmitate-induced ERK1/2 acti-
vation up to 8 h and partially inhibited at 16 and 24 h, butwithout effect
on pNF-κB p65 or the levels of palmitate-induced degradation of IκBα
and PGC-1α (Supplemental Fig. S3). In addition, U0126 blockade of
ERK1/2 activation had no effect on the TNF-α-induced phosphorylation
of NF-κB p65 and degradation of IκBα (not shown). In summary, while
the action of palmitate to induce NF-κB p65 phosphorylation is not via
its effect to also activate ERK, it is reversed by oleate. On the other
hand, the action of TNF-α to do the same is not oleate sensitive, indicat-
ing a downstream phenomenon to fatty acid signaling.

3.6. Oleate preconditioning prevents palmitate-induced
mitochondrial dysfunction

Previous non-neuronal cell culture studies have demonstrated that
palmitate decreases intracellular ATP generation and increases intracel-
lular ROS production [27,29]. We examined if oleate preconditioning
prevents palmitate-induced mitochondrial dysfunction by measuring
ATP loss and superoxide production. N2a cells were incubated with ole-
ate (300 μM) or BSA for 24 h and then media were replaced by new
media containing palmitate (300 μM) or BSA. Cells were incubated for
another 24 h (intracellular ATP) or 8 h (mitochondrial superoxide) in
the absence of oleate. Palmitate significantly decreased the intracellular
ATP production and increased the levels of mitochondrial superoxide
(Fig. 5A and B). Oleate preconditioning prevented both changes
(Fig. 5A and B). Interestingly, oleate preconditioning itself also de-
creased the level of mitochondrial superoxide compared to the control
group (Fig. 5B). We also examined if oleate has a protective effect
against mitochondrial complex inhibitors. N2a cells were incubated
with oleate (300 μM) or BSA for 24 h and the media were replaced by
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From this, palmitate does not apparently act like an electron transport
poison.

3.7. Oleate preconditioning prevents palmitate- or ceramide-induced
insulin resistance

To examine if oleate preconditioning prevents another mechanism
of palmitate toxicity, mainly the induction of insulin resistance, N2a
cells were incubated with oleate (300 μM) or BSA for 24 h and the
media were replaced by new media containing palmitate (300 μM) or
BSA. N2a cells were incubated for another 24 h and then stimulated
with insulin (20 nM) for 15min before lysis. Total proteinswere extract-
ed and analyzed by western blot for changes to Akt. Palmitate exposure
(BSA/Pal) decreased the levels of insulin-stimulated and basal
(unstimulated) pAkt (Fig. 6A). Oleate preconditioning (Ole/Pal) rescued
palmitate-induced decreases in the levels of both insulin-stimulated and
basal pAkt (Fig. 6A). Next, we examined if oleate preconditioning also
prevents ceramide-induced insulin resistance. Preliminary data had
showed that treatment of 50 μMceramide for 6 h significantly decreased
the level of insulin-stimulated pAkt in N2a cells (not shown). N2a cells
were incubated with oleate (300 μM) or BSA for 24 h and the media
were replaced with new media containing ceramide (50 μM) or
dihydroceramide (50 μM), a metabolically inactive control, for 6 h.
Cells were stimulated with insulin (20 nM) for 15 min before lysis.
Ceramide treatment (BSA/Cer) decreased the levels of insulin-
stimulated and unstimulated pAkt similar to palmitate (Fig. 6B). Oleate
preconditioning (Ole/Cer) also restored basal and insulin-stimulated
signaling under ceramide conditions (Fig. 6B). We also observed similar
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protective action of oleate against palmitate-induced insulin resistance
in PCNs (Fig. 6C). PCNs were incubated with oleate (300 μM) or BSA
for 24 h and then with palmitate (300 μM) for another 24 h in the ab-
sence of oleate. PCNs were also coincubated with oleate and palmitate
for 24 h without preconditioning. PCNs were incubated in fresh
neurobasal mediumwithout B27 for 3 h before stimulation with insulin
(20 nM, 15 min). Similar to N2a cells, oleate preconditioning, as well as
coincubation, prevented palmitate-induced insulin resistance in PCNs
(Fig. 6C). Moreover, oleate coincubation, but not preconditioning,
completely blocked ceramide-induced insulin resistance in PCNs
(Supplemental Fig. S4). In addition, we checked if inhibition of de novo
synthesis of ceramide blocks palmitate-induced insulin resistance. N2a
cells were incubated with palmitate (Pal, 300 μM) in the presence of
myriocin (0.1, 1 or 10 μM), an inhibitor of ceramide synthesis, for 24 h
and then stimulated with insulin (20 nM) for 15min before lysis. Levels
of pAkt were measured by western blot. Myriocin did not reverse
palmitate-induced insulin resistance by this measure in N2a cells (Sup-
plemental Fig. S5).

3.8. Effect of oleate preconditioning on other cytotoxic conditions

We examined if oleate preconditioning protects N2a cells from a
comparative range of several cytotoxic conditions. N2a cells were incu-
bated with oleate (300 μM) or BSA for 24 h. Media containing oleate or
BSA were replaced by new media containing ceramide (50 μM), H2O2

(500 μM), and TNF-α/IFN-γ (300 ng/ml each) or by serum free media
for another 24 h in the absence of oleate. Among these, oleate precondi-
tioning only attenuated ceramide-induced cytotoxicity to any signifi-
cant extent (Fig. 7A). Oleate preconditioning showed no effect in
either H2O2 or TNF-α/IFN-γ conditions or in the absence of tropic sup-
port although all of these were shown to be cytotoxic (Fig. 7B). Next,
to test if oleate protects N2a cell from palmitate in the absence of tropic
support, N2a cells were cultured in serum-free culture medium for
2 days and then preconditioned with oleate (300 μM) or BSA for 24 h.
Serum-free media containing oleate or BSA were replaced by fresh
serum-free media containing palmitate (300 μM) or BSA and then incu-
bated for another 24 h (in the absence of oleate). Palmitate treatment
induced severe cell death (N95%) in serum-deprived N2a cells, as ex-
pected (Fig. 7C, middle panel). Oleate preconditioning, as well as
coincubation, prevented palmitate-induced cell death even in serum-
deprived N2a cells (Fig. 7C).

3.9. PKA in the protective effect of oleate against palmitate

A previous study suggested that the protective effect of oleate
against palmitate is dependent on PKA activation in skeletal muscle
cells [28]. We tested if the PKA pathway plays such a role in the protec-
tive effect of oleate against palmitate in neuronal cells. N2a cells were
incubated with oleate (300 μM) and PKI (PKA inhibitor) for 24 h and
then with palmitate (300 μM) and PKI for another 24 h in the absence
of oleate. The control groupwas treatedwith BSA and PKI.WST-1 viabil-
itywasmeasured for the last 4 h of the 24h palmitate incubation period.
PKI (50 μM) significantly attenuated the protective effect of oleate
against palmitate (Fig. 8A). PKI did not however change the basal levels
of N2a cell viability, either in the presence of 300 μMoleate, palmitate or
BSA alone for 24 h (not shown).

3.10. Oleate increases TG while blocking palmitate-induced DAG

To examine lipid induction in the presence of oleate or palmitate,
N2a cells were incubated with oleate (300 μM) and/or palmitate
(300 μM) for 24 h. N2a cells were also pre-incubated with oleate for
24 h and then switched to palmitate for another 24 h. Oleate increased
cellular triglyceride (TG) levels while palmitate increased diacylglycerol
(DAG) levels (Fig. 8B and C). Both oleate preconditioning (Ole/Pal) and
coincubation (Ole + Pal) blocked palmitate-induced DAG synthesis
(Fig. 8B and C). Using Oil Red O staining, we confirmed that oleate, but
not palmitate, increased the cellular TG levels in PCNs (Supplemental
Fig. S6). In coincubations of oleate and palmitate, the TG levels also
rose (Supplemental Fig. S6).
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3.11. Protective effect of oleate compared to DHA and linoleate against
palmitate-induced cytotoxicity

Since some PUFAs are known to be cytoprotective, we compared ole-
atewith DHA and linoleate in N2a cells. First, we examined if either DHA
or linoleate had intrinsic effect on cell viability. In Fig. 1, oleate showed
no such effect compared to BSAup to 600 μM. Similar to previous reports
[45,46], high concentrations (≥200 μM) of DHA or linoleate alone de-
creased cell viability somewhat (Fig. 9A). N2a cells were incubated
with various concentrations of DHA, linoleate or oleate with palmitate
(300 μM) for 24 h and WST-1 viability was measured in the last 4 h of
the 24 h period. All three unsaturated FFAs completely or partially
blocked palmitate-induced decreases in viability (Fig. 9B). Oleate how-
ever appeared to have the same advantage over DHA, especially at
high concentrations. We next compared the preconditioning effects of
middle concentrations of the three unsaturated FFAs on palmitate- or
ceramide-induced cytotoxicity in N2a cells. Cells were preconditioned
in 100 μM of DHA, linoleate, oleate or BSA for 24 h. Media containing
DHA, linoleate, oleate or BSA were replaced by new media containing
palmitate (300 μM) or ceramide (70 μM) and then further incubated
for 24–96 h in the absence of any of the three unsaturated FFAs. Oleate
preconditioning showed the strongest protection against palmitate-
induced cytotoxicity (LD50~300 μM) compared with DHA or linoleate
at 48, 72 and 96 h (Fig. 9C). In Fig. 9D, preconditioningwith either oleate
or linoleate showed partial protection against the muchmore toxic cer-
amide (LD50~70 μM) compared with DHA.
4. Discussion

Elevated plasma sFFAs are a major pathogenic factor in diabetes and
cardiovascular and liver diseases [47,48]. They induce cellular degener-
ation through inflammation and insulin resistance. Conversely, PUFAs
may prevent or even reverse these impairments [32,33]. Most research
on FFAs and biologic effects has focused on peripheral tissue (e.g. mus-
cle, liver and adipocytes). Growing evidence also suggests a possible
link between sFFA-induced metabolic impairments and neurodegener-
ation [49,50].

To address the possible link between FFAs and neuronal degenera-
tion, we examined the effects of a major sFFA on intracellular signaling,
metabolism and survival in neuronal cells. We found that palmitate in-
duced mitochondrial dysfunction and insulin resistance and it promoted
the phosphorylations of ERK1/2 and JNK and nuclear translocation of
NF-κB p65. Importantly, exposure to oleate completely blocked these
palmitate-induced intracellular signaling activation and metabolic de-
rangements. The lasting effect following oleate removal on preventing
subsequent palmitate-induced cell damage is novel and striking. Oleate
also prevented ceramide-induced insulin resistance. Evenmore dramatic,
was its ability to reverse the increases in caspase and NF-κB p65 activa-
tions attributable to palmitate. Furthermore, oleate restored the basal
production of mitochondrial superoxide and PGC-1α levels to control
values. Oleate preconditioning did not block TNF-α-induced NF-κB p65
signaling and did not affect TNF-α/IFN-γ-induced cytotoxicity, as could
be expected once these cytokines are formed. Mitochondrial complex
inhibitor-induced cytotoxicity was also unaffected, all which indicate
that oleate action is proximal to these steps. Inhibition of PKA attenuated
the protective effect of oleate against palmitate and oleate increased TG
accumulation while blocking palmitate-induced DAG synthesis. Oleate
preconditioning was superior to DHA or linoleate in the protection of
N2a cells against palmitate- or ceramide-induced cytotoxicity.

sFFAs induce intracellular inflammatory signaling pathways that trig-
ger expression of inflammatory cytokines [1,51]. Activation of NF-κB p65
is a major link in the cells' response to inflammatory stimuli. We showed
that palmitate increased phosphorylation of NF-κB p65 at serine 536 and
induced its translocation into the nucleus. One possible mechanism is via
a decrease in IκBα. Oleate preconditioning increased IκBα and restored
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basal NF-κB signaling. Our study in neuronal cells and PUFAs demon-
strates opposite cellular protective and anti-inflammatory effects [32,33].

Consistent with previous non-neuronal studies [7,9,18], palmitate
induced the activation of the ERK1/2 and JNK signaling pathways. In ad-
dition to NF-κB p65, these kinases also mediate the inflammatory re-
sponse. In our hands, oleate preconditioning completely prevented
palmitate-induced phosphorylation of ERK1/2 and JNK. Previous studies
in myotubes [18,27] employed concurrent incubation with oleate to
prevent palmitate-induced phosphorylation of ERK1/2 and JNK. Our
finding that pre-exposure to oleate in neuronal cells is sufficiently pre-
ventative is novel and has mechanistic implications. Contrary to other
reports [7,9] implicating ERK1/2 activation by palmitate as directly up-
stream of NF-κB in muscle cells, our results showed that inhibition of
ERK1/2 had no effect on palmitate-induced NF-κB signaling in neuronal
cells. Differences in cell-type may account for the dissociation since an-
other study [10] in adipocytes similarly reported no direct regulation by
ERK1/2 on palmitate-induced NF-κB activation. We also showed that
oleate preconditioning completely blocked TNFα-induced phosphory-
lation of ERK1/2, but had no effect on TNFα-induced JNK and NF-κB
p65 phosphorylations. Thus, while it appears that oleate reverses
palmitate- and TNFα-induced ERK1/2 signaling, the latter is not respon-
sible for the observed effects on NF-κB p65.

In skeletal muscle cells, palmitate causes mitochondrial dysfunction
[26,27]. Consistent with these reports, we found that palmitate
decreased ATP generation and increasedmitochondrial superoxide pro-
duction in N2a cells. Palmitate-induced mitochondrial dysfunction was
also prevented herein by oleate preconditioning. As noted in myotubes
[27], coincubationwith oleate blocked palmitate-inducedmitochondrial
dysfunction. Our study newly points to another possiblemechanism be-
hind the oleate preconditioning phenomenon, that is to increase PGC-
1α levels that outlast the presence of oleate. PGC-1α is a transcriptional
coactivator for gene expression involved in energymetabolism and sup-
ports mitochondrial biogenesis [52]. Increased PGC-1α expression and
decreased NF-κB activation following oleate treatment were attributed
to enhanced peroxisome proliferator-activated receptor (PPAR) and
protein kinase A activation in skeletalmuscle [28]. Since theNF-κB path-
way is involved in the regulation of PGC-1α [7] and in mitochondrial
gene expression [53], our finding that oleate reduced NF-κB signaling
may be linked to a sustained rise in PGC-1α. Increased PGC-1α may
therefore play an important role in the protective effect of oleate against
palmitate-induced mitochondrial dysfunction in neurons as in muscle
[27]. PGC-1α plays an important role to induce several ROS scavenging
enzymes such as superoxide dismutase 2 [54]. Indeed we show in
Fig. 5B that oleate reverses oxidative stress (mitochondrial superoxide)
induced by palmitate. This effect may also be due to an increase in PGC-
1α, however further experimentation is needed to prove this causation.
Since a direct oleate effect on electron transport function is lacking, the
mitochondrial trophic and scavenging actions appear sufficient to ac-
count for the improvement in ATP generation (Fig. 5A).

Palmitate induces insulin resistance in muscle cells [8,28] and other
non-neuronal cell types [19,20,29,55,56]. The few existing data on neu-
ronal cells is discordant. One study demonstrated that palmitate in-
duced insulin resistance in hypothalamic neurons [23], while another
did not [24]. Our results clearly support the former view. Palmitate-
induced insulin resistance appears to be mediated in part by DAG,
ROS, and/or ceramide. Subsequently, protein kinase C (PKC), JNK and
IKK signaling pathways are activated, leading to the phosphorylation
of inhibitory sites on Akt and insulin receptor substrate 1 (IRS-1).
Decreased insulin-stimulated glucose-transport type 4 activity and glu-
cose uptake ensue [2,51]. Similar to but also extending the myotube
coincubation studies [27,28,34,35], we found that oleate precondition-
ing completely blocked palmitate-induced insulin resistance in neuro-
nal cells. Another recent study in muscle cells [57] demonstrated that
oleate prevented palmitate-induced insulin resistance by activating
AMP-activated protein kinase. Yet another mechanism for this observa-
tion is the promotion of triglyceride synthesis and mitochondrial
β-oxidation by oleate, thereby preventing abnormal DAG synthesis
and PKC/NF-κB activations [28]. Clearly, the protective mechanism of
oleate against palmitate-induced insulin resistance will require more
definition. Preliminary results in serum-free conditions (Fig. 7C) suggest
that oleate action is independent of tropic factors such as insulin.

Ceramide is a bioactive lipid implicated in insulin resistance, type 2
diabetes and metabolic derangements associated with obesity [58]. Ex-
cess ceramide synthesized by peripheral tissue (e.g. liver, adipocytes)
circulates in the blood and may trigger neurodegeneration in AD [59].
Palmitate-induced insulin resistance in muscle cells is in part mediated
by de novo synthesis of ceramide [27] and oleate may block ceramide
formation [60]. However, de novo synthesis of ceramide was not neces-
sary for palmitate-induced insulin resistance in our neuronal cells, as
was also reported in hepatocytes [61]. We observed that oleate blocked
pre-formed ceramide-induced insulin resistance and toxicity. This re-
sult suggests that oleate can directly antagonize ceramide action as an
added mechanism, since palmitate toxicity was independent of cer-
amide synthesis (Supplemental S5). Of interest then, it remains to test
in neurons if oleate diverts palmitate from incorporation into ceramide
(or into DAG) as in muscle [27,28,60] or inhibits biosynthetic enzymes,
serine palmitoyltransferase and/or ceramide synthase.

Palmitate-induced cell death involves caspase activation. The in-
creased cleavage of caspase-3 and -9 following palmitate treatment ap-
pears to support an apoptotic mechanism in non-neuronal cells [23,26,
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44,62]. Palmitate also increased cleaved caspase-3 and -9 in N2a cells
andwe extend the result to show that oleate preconditioning complete-
ly reversed this and prevented cell death. Oleate cytoprotection is dem-
onstrated in various non-neuronal cell types [27,44,63].

We showed involvement of PKA in the protective effect of oleate
against palmitate. PKA activation induces downstream proteins such
as PGC-1α and PPARα [28]. Perhaps resulting from PGC-1α action, ole-
ate via the PKA signaling pathway contributes, at least in part, to protect
neuronal cells from palmitate-induced cytotoxicity. We also demon-
strated that oleate, either preconditioning with or in coincubations
with palmitate, increased cellular TG in neuronal cells. Moreover, oleate
reversed palmitate-induced DAG synthesis. These two changes are con-
sistent with previous reports showing that oleate may further protect
palmitate-induced toxicity by increasing the sequestering TG droplets
in non-neuronal cells [28,64].

PUFAs are promoted in therapeutic supplements against degenera-
tive or inflammatory diseases [32,65]. The consumption of mono- or
poly-unsaturated FFAs and the reduced risk of MCI and AD have been
recently reviewed [50]. In this study, we givemultiple levels of evidence
that oleate has superior protective effects against palmitate damage to
neuronal cells, even compared to other PUFAs such as DHA (n-3) and li-
noleate (n-6) that have received wider clinical study [66,67]. The oleate
effect extends to ceramide toxicity in neuronal cells. It is also specific, in
the sense of notmitigating several other damaging paradigms. Ourfind-
ings recommend in vivo studies to determine effects of systemic oleate
supplementation on neuronal protection against circulating sFFAs and
ceramide in models of neurodegeneration.
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