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Abstract

We consider the analysis of infinite half-duplex systems made of finite state machines that communicate
over unbounded channels. The half-duplex property for two machines and two channels (one in each direc-
tion) says that each reachable configuration has at most one channel non-empty. We prove in this paper that
such half-duplex systems have a recognizable reachability set. We show how to compute, in polynomial time,
a symbolic representation of this reachability set and how to use that description to solve several verification
problems. Furthermore, though the model of communicating finite state machines is Turing-powerful, we
prove that membership of the class of half-duplex systems is decidable. Unfortunately, the natural general-
ization to systems with more than two machines is Turing-powerful. We also prove that the model-checking
of those systems against PLTL (propositional linear temporal logic) or CTL (computational tree logic) is
undecidable. Finally, we show how to apply the previous decidability results to the Regular Model Checking.
We propose a new symbolic reachability semi-algorithm with accelerations which successfully terminates on
half-duplex systems of two machines and some interesting non-half-duplex systems.
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1. Introduction

There are several models which can be used to study distributed algorithms and communicat-
ing protocols. Systems of communicating finite state machines (CFSMs) consist of several processes
represented by finite state machines that communicate over unbounded channels. This model is
widely used, both for verification and validation, in tools based on specification languages such as
ESTELLE and SDL [32].

1.1. Communicating finite state machines

CFSMs have the power of Turing machines since it is possible to simulate them by a system
of two CFSMs [14,23], thus non-trivial problems are undecidable for this model. This limitation
motivates the study of classes of systems for which verification problems are possible, such as
well-ordered systems [33], monogeneous systems [19], linear systems [19,27], and systems with rec-
ognizable channel properties [30], completely specified protocols [21], systems with non-perfect
channels [4,3,16]. part from the classes for which the membership is structural (e.g., completely
specified protocols or lossy channel systems) it is often impossible, in general, to decide whether a
given system belongs to these classes (e.g., monogeneous systems, linear systems or systems with
recognizable channel properties). Therefore, one cannot know when to use the theoretical results
about them!

1.2. Our contribution

We present a new class, half-duplex systems of two machines, which have several nice proper-
ties. First, one can decide in polynomial time whether a given system is half-duplex (for systems of
two machines). Second, we can also compute in polynomial time an exact representation of their
reachability set. Once computed, this representation provides enough information to decide, still in
polynomial time, whether a given configuration is reachable, whether a specified action is executed
at least once, whether the reachability set of a half-duplex system is included into the reachability
set of another half-duplex system and allows also to compute the exact size of a given channel.
Those positive results on half-duplex systems of twomachinesmay surprise since onemight think

that the half-duplex property does not really reduce the power of the model as each machine can
transfer data in turn. But this hypothesis is precisely too restrictive to simulate a Turing machine
since it disables the channels to store the content of the tape: when an automaton sends messages,
since it is not allowed to receive any information from the other automaton, its flow control can
only goes through the subpart of its finite state machine made of sending actions. Thus, the possible
contents of its output channel cannot be more complicated than a regular language. It is this last
point we use to provide a recognizable description of the reachability set.
We look for a generalization of these results for systems of any number ofmachines and channels.

However, the natural generalization of half-duplex systems of two machines, systems such that each
pair of machines linked by two channels has a half-duplex communication, can simulate a Turing
machine (as we show, a system of three CFSMs is enough).
On the other hand, we may generalize the half-duplex property in remarking that systems

in which each reachable configuration has at most one non-empty channel, enjoy the same
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decidability results than half-duplex systems. However, this class of systems does not seem to be
able to model, in practice, something else than half-duplex systems.
Another way to extend the previous results is to see half-duplex systems as a particular class of

systems, with two machines, for which a symbolic reachability semi-algorithm, with acceleration,
terminates.
Let us recall that the classical symbolic reachability semi-algorithm computes, at each step,

X ∪ post (X) and it stops when it reaches the fixpoint, i.e., the reachability set. Inspired by the
half-duplex results, we propose to design an accelerated version of this classical semi-algorithm
in computing at each step, X ∪ post (X) ∪ post 1!(X) ∪ · · · ∪ postp !(X), with post c!(X) a new kind of
meta-transitions and p the number of channels used in the system.Weprove that this semi-algorithm
with acceleration, terminates on all half-duplex and quasi-stable systems (systems defined in [15]).
Moreover, it also stops on the Alternating Bit Protocol, even if it is not a half-duplex system. Our
semi-algorithmwith acceleration (one may accelerate a large class of regular languages, comprising
combination of loops which only sendmessages) also terminates when applied on simple systems in
which onemay find two loops of emissions while all the semi-algorithms using the existing symbolic
technologies based on QDD [11], CQDD [13] or SLRE [24] will not terminate.
This technique to speed up the construction of the reachability set has been also applied for coun-

ters systems [8,22] and it has been implemented in the tools Lash [12] and Fast [6]. This technique
has been also used for lossy channels systems [2] with the tool Trex [5]. Let us remark that counters
systems and lossy channels systems have, in general, non-recursive reachability sets.
Wewould like to emphasize that half-duplex systems is the uniquemodel of CFSMs (with perfect

or lossy fifo channels) for which the reachability set is regular, and it is effectively computable in
polynomial time (the reachability set of a lossy channel system is regular but it is not computable
[16]) even if the initial set is a regular language.
Although half-duplex systems of two machines have a recognizable reachability set and thus en-

joy decidable verification problems, there exist some limits to decidability. There exist undecidable
verification properties on half-duplex systems (hence on quasi-stable systems too). Even on rather
simple half-duplex systems, we show that PLTL, the Propositional Linear Temporal Logic, and
CTL, the Computational Tree Logic, are not decidable. To do this, we simulate a Turing machine
by an associated half-duplex system “controlled” by a temporal formulae in PLTL or in CTL.

1.3. Outlines of the paper

In Section 2, we define the model of communicating finite state machines and some properties
we want to verify on them. Then we show how to check those properties on systems for which a rec-
ognizable reachability set is available. Section 3 is dedicated to systems with two machines and two
channels, one in each direction. For such half-duplex systems, we give a recognizable representation
of their reachability set. This symbolic representation leads us to define the symbolic reachability set
and the symbolic reachability graph of a half-duplex system. Then we provide a theorem to decide
easily whether a system of two machines is half-duplex. We illustrate all these results on a class of
systems previously defined in the literature [25]. In Section 4, we analyse two extensions of these
results for systems of more than two machines: unfortunately, the natural extensions of half-du-
plex communication become Turing-powerfull. Then, we show how to use the previous decidability
results in the Regular Model Checking. We propose a new symbolic reachability semi-algorithm,
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with accelerations, which terminates on half-duplex systems; it also stops on some interesting non-
half-duplex systems (Alternating Bit Protocol, systems with two loops).
Finally, in Section 5, we consider the analysis of half-duplex systems against the propositional

linear temporal logic (PLTL). We show that this logic is undecidable on half-duplex systems of two
machines. Section 6 concludes the paper.

2. Systems of communicating finite state machines

2.1. Preliminaries and properties

The content of a queue is seen as a word over a given finite alphabet �. As usual, we note ε the
empty word and �∗ the set of all finite words over �. We also note |x| the length of a word x, and
x.y or xy the concatenation of two words x and y .
To introduce our model, let us consider the communicating protocol of Fig. 1. It involves two

machines: a sender and a receiver. Whenever the sender has a message to transmit, it first warns the
receiver by sending a starting symbol start. Then, it sends the main message over the alphabet of
two letters {a, b}. Once this is done, it advises the receiver by sending an end symbol and waits for
an acknowledgement. The receiver has a symmetrical behaviour. Formally we have:

Definition 1. A communicating finite state machine (CFSM) is a finite transition system given by a
4-tuple M = (Q, qo,�, �) where:

• Q is a finite set of states,
• qo ∈ Q is a initial state,

Fig. 1. The protocol S1.
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• � is a finite alphabet of messages, and
• � ⊆ Q × (N × {!, ?} × �) × Q is a finite set of transitions. We also consider � as an applica-
tion from Q × (N × {!, ?} × �) to 2Q which we extend, in the classical way, as an application
from Q × (N × {!, ?} × �)∗ to 2Q with (N × {!, ?} × �)∗ the set of all words on the alphabet
(N × {!, ?} × �).

Note that the alphabet ofM , in the usual transition system sense, is (N × {!, ?} × �) rather than
�, i.e., M sees j!a and j?a as single symbols, which we henceforth write as !a and ?a, respectively,
when there is no ambiguity about the identity of the channel. Intuitively, j!a denotes the emission of
a in channel j, and j?a denotes the reception of a from channel j. A state q ∈ Q whose all outgoing
edges are labelled with sending (resp. receiving) actions is called a sending (resp. receiving) state.
If q is neither a sending state nor a receiving state then q is called a mixed state. We will need to
consider transitions of � which consist only of sending actions (resp. receiving actions). So we note
�! = {(q, j!a, q′) ∈ �} and �? = {(q, j?a, q′) ∈ �}.
Example 2.According to theSenderofFig. 1,wehave:Q = {1, 2, 3}, qo = 1, � = {start, a, b, end, ack},
� = {

(1, 1!start , 2), (2, 1!a, 2), (2, 1!b, 2), (2, 1!end, 3), (3, 2?ack, 1)}.
Now, we group communicating machines together to deal with communicating systems. Formally,
we have:

Definition 3.A(communicating) system S is a tuple S = (M1, . . . ,Mn)of CFSMsMi = (Qi, qoi ,�, �i).

In the remainder of the paper, S refers to a system S = (M1, . . . ,Mn) of CFSMs such that Mi =
(Qi, qoi ,�, �i), and � = ∪i=1,...,n�i refers to the set of all transitions of the system. Let p be the num-
ber of channels used in S , we may rename the channels such that they belong to {1, . . . , p}. Then,
a configuration of S is a (n + p)−tuple s = (�q; �x) with �q = (q1, . . . , qn), qi ∈ Qi and �x = (x1, . . . , xp ),
xi ∈ �∗. An element �q ∈ Q1 × · · · × Qn is a control state and an element q ∈ Qi for i ∈ {1, . . . , n} is a
local (control) state (of machine i). The state space of S is the set of all configurations, that is to say:
Q1 × · · · × Qn × (�∗)p .

Remark 4. Only the communicating actions of the system are taken into account.

The operational semantic associated with a communicating system is defined by the firing of a
transition which changes the current configuration in one step.

Definition 5. Let S be a communicating system. A configuration s′ = (q′
1, . . . , q

′
n; x′

1, . . . , x
′
p ) is reach-

able from another configuration s = (q1, . . . , qn; x1, . . . , xp ) by the firing of the transition t, written
s → s′, or redundantly s t→ s′, if one of the following two cases holds:

1. there exist i ∈ {1, . . . , n}, j ∈ {1, . . . , p} and a ∈ � such that t = (qi, j!a, q′
i) ∈ �i and

(a) q′
k = qk for all k /= i

(b) x′
j = xj . a and x′

l = xl for all l /= j

2. there exist i ∈ {1, . . . , n}, j ∈ {1, . . . , p} and a ∈ � such that t = (qi, j?a, q′
i) ∈ �i and
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(a) q′
k = qk for all k /= i

(b) a.x′
j = xj and x′

l = xl for all l /= j

Condition (1) above describes the output of message a by machine Mi in channel j. Condition
(1). (a) says that local states of other machines are not affected by the transition. Condition (1).
(b) updates the content of channel j whereas the others channels stay unchanged. Condition (2)
describes the reception of message a by machine Mi from channel j, which is mainly shown by the
removal of message a from this channel.
As usual, we extend relation → to its reflexive and transitive closure

∗→. Furthermore, we note
s1

t1t2···tm−−−−→ sm+1 whenever there exist s2, . . . , sm such that s1
t1→ s2

t2→ · · · tm→ sm+1. The initial configura-
tion of the system is so = ( �qo; �ε) with �qo = (qo1 , . . . , qon) and �ε = (ε, . . . , ε).

Example 6. For system S1 of Fig. 1, we have: so
(1,1!start,2)−−−−−−→(2, 1; start, ε) (2,1!a,2)−−−−→(2, 1; (start)a, ε). As

there is no ambiguity, we could have written: so
!start−−→(2, 1; start, ε) !a→(2, 1; (start)a, ε).

A configuration s is said reachable if so
∗→ s. The reachability set of S is the set RS(S) of all reachable

configurations:

RS(S) = {
s
∣∣ so ∗→ s

}
.

Example 7.

RS(S1) =
{
(1, 1; ε, ε), (2, 1; (start){a, b}∗, ε), (3, 1; (start){a, b}∗(end ), ε),(
2, 2; {a, b}∗, ε), (3, 2; {a, b}∗(end ), ε), (3, 3; ε, ε), (3, 1; ε, (ack))

}
.

Since S can be viewed as a transition system, we also define its reachability tree and its reachability
graph:

• the reachability tree of S is the labelled tree RT(S) which root is labelled so and such that a node
labelled s has a child labelled s′ and the arc (s, s′) is labelled with transition t if and only if s

t→ s′.
• the reachability graph of S is the labelled graph RG(S) whose set of nodes is RS(S) and whose
nodes are labelled with their corresponding configurations in RS(S). A node labelled s has a
successor labelled s′ and the arc (s, s′) is labelled with transition t if and only if s

t→ s′.

The term half-duplex is commonly used to characterize a channel, between two machines, which
can transmit messages in both directions but not simultaneously. The direction of the transmission
can be set for a fixed amount of time (often 200ms) and then be switched [26]. As a consequence, the
reachability graph of such a system is finite since channels are bounded in function of the duration
of each sending period and of the transmission’s rate. In this paper, we use the term half-duplex
with a less restrictive sense, without any notion of elapsed time.

Definition 8. A system S = (M1,M2) of two machines with two channels (one in each direction) is
said half-duplex if each reachable configuration has at most one channel non-empty.

Example 9. The communicating system S1 of Fig. 1 is half-duplex.
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2.2. Properties and decidability results for systems of CFSMs

We present in this subsection some configurations and problems classically involved in verifi-
cation of communicating systems, how difficult verification is and what provides a recognizable
description of the reachability set. Remember that the notion of recognizable set is the natural
extension (see [10]), for sets of tuple of words, of the classical notion of recognizable (or regular)
language.

Definition 10 ([10]).LetM be amonoid. A subset X ofM is recognizable if there exist a finite monoid
N , a morphism ϕ from M into N and a subset P of N such that X = ϕ−1(P).

The monoid which is considered for systems of CFSM using p channels is ((�∗)p , .), with .

the concatenation such that (x1, . . . , xp ).(y1, . . . , yp) = (x1y1, . . . , xpyp ) and with neutral element:
�ε = (ε, . . . , ε).
Instead of using morphisms and monoids to manipulate recognizable sets, we use products of

classical regular languages as stated in the following theorem.

Theorem 11 (Mezei, see [10]). A subset of (�∗)p is recognizable if and only if it is a finite union of sets
of the form X1 × · · · × Xp with Xi recognizable sets of �∗.

Obviously, a subset X ⊆ Q1 × · · · × Qn × (�∗)p of the state space of a system S = (M1, . . . ,Mn)

using p channels can be partitioned as follows:

X =
⋃

�q∈Q1×···×Qn

{�q} × X�q.

Therefore, we say that X is channel-recognizable if all the X�q are recognizable sets of (�∗)p .

Definition 12. Let S be a communicating system, t be one of its transitions and s = (�q; �x), with
�q = (q1, . . . , qn) and �x = (x1, . . . , xp ), be one of its configurations.

• s is a stable configuration if all its channels are empty, i.e., �x = �ε.
• s is a deadlock configuration if �x = �ε and each qi is a receiving state. This implies that no transition
is fireable from s.

• s is an unspecified reception configuration if there exists i ∈ {1, . . . , n} such that: qi is a receiving
state and �(qi, j?a) /= ∅ implies that |xj| > 1 and xj �∈ a�∗.
(an unspecified reception configuration corresponds to a configuration in which a machine is
definitively blocked by its inability to receive the head messages present in its input channels)

• t is executable if it is fireable from a reachable configuration.

Definition 13 (Problems of interest). Let S be a communicating system,

1. the Reachability Problem is to determine whether a given configuration of S is reachable.
2. the Deadlock Problem is to determine whether there exists a reachable deadlock configuration.
3. theUnspecified Reception Problem is to determine whether there exists an unspecified reception

configuration.
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4. the Executable Transition Problem is to determine whether a transition of S is executable.
5. theWeak Boundedness Problem is to determine whether the reachability set RS(N) is finite.
6. the Strong Boundedness Problem is to determine whether the set of all reachable contents of a
given channel is finite.

7. theRecognizable Computation Problem is to determine whether an effective description of RS(S)
is computable when it is known to be channel-recognizable.

Example 14. Let us consider S1 in Fig. 1. All the seven problems stated in the previous definition are
decidable on this system; in particular, channel 1 is unbounded but channel 2 is bounded by one.

The following theorem states how difficult verification of communicating systems is.

Theorem 15 ([14], [23]). Systems of CFSMs have the power of Turing’s machines. Hence, verification
is, in general, undecidable on them.

In [29,30], Pachl showed that problems (1)–(4) of Definition 13 are decidable under the sole as-
sumption that the reachability set is channel-recognizable (even if no description of this reachability
set is available!). But this result is not useful in practice since the decision procedure goes through
an enumeration of all possible channel-recognizable sets! Furthermore, knowing that a reachability
set is channel-recognizable is not sufficient to give a description of that set or even to decide the
boundedness problem. One example of this point is given by lossy channel systems [16]. On the
other hand, having an effective channel-recognizable description of the reachability set makes all
the problems of Definition 13 easy to solve.

Theorem 16. For a communicating system S whose reachability set is channel-recognizable and for
which we have an effective description, the first six problems of interest are decidable.

Proof.

• Points 1, 2, 5 and 6 are self-evident. The reachability problem is reduced to the membership
problem for a recognizable set. The deadlock problem is just a restriction of the reachability
problem. The weak boundedness problem is reduced to finiteness of a recognizable set. The
strong boundedness problem is reduced to finiteness of a projection from a recognizable set.

• Let us prove decidability of the unspecified reception problem (point 3). Consider the set R′(S) ={
(�q; x1, . . . , xp )| (�q; x′

1, . . . , x
′
p ) ∈ RS(S)with xi = a if x′

i ∈ a�∗ for a given a ∈ �, else xi = ε
}
. Since

we have a channel-recognizable description of RS(S) then the finite set R′(S) is computable. It
is straightforward that RS(S) has an unspecified reception configuration if and only if R′(S) has
one, which can be checked. So the unspecified reception problem is solved.

• Let us now consider the executable transition problem (point 4) for a given transition t. There
are two sub-cases:

t = (qi, j!a, q′
i) ∈ �i is a sending transition. Then, t is executable whenever there exists a configuration

like (q1, . . . , qi, . . . , qn; �x) in RS(S).
t = (qi, j?a, q′

i) ∈ �i is a receiving transition. Then, t is executable whenever there exists a configura-
tion like (q1, . . . , qi, . . . , qn; x1, . . . , ax′

j , . . . , xp ) in RS(S).
Both of these sub-cases are solvable since we have a channel-recognizable description of RS(S). �
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3. Half-duplex systems of two machines

In this section, we restrict ourselves to systems S = (M1,M2) of two machines and two channels,
the first one from M1 to M2 and the second one from M2 to M1.

3.1. A symbolic reachability graph

First of all, we show that each reachable configuration of half-duplex systems of two machines
is reached by a particular execution that we use to compute a channel-recognizable description of
the reachability set.

Example 17. Let us consider the communicating system S1 in Fig. 1 which is half-duplex (refer to
its reachability set in Example 2.3). The sequence of actions u = 1!start.1!a.1?start.1!b.1!b.1!a.1?a.1?b
leads to the configuration s = (2, 2; ba, ε). A representation of u is given in Fig. 2A. Now, as shown
in Fig. 2B, u can be reordered in an execution split in two parts, u1 = 1!start.1?start.1!a.1?a
1!b.1?b and u2 = 1!b.1!a, such that u1 is “bounded” (refer to next definition) by 1 and leads to a stable
configuration s1, and such that u2 is exclusively made of sending actions. We shall show that this
transformation is always available for half-duplex systems of twomachines. Hence, we can compute
the reachability set in two steps. The first one computes the finite set of all stable configurations
(like s1) reached by a “1-bounded” execution. Then, from each of those configurations, the second
step computes all configurations reached by exclusively executing sending actions on one of the two
channels. Because this last step uses only one machine, we obtain a channel-recognizable set. What
follows formalizes and proves this informal description.

First, we need a more precise description of executions and configurations reached by “bounded
executions”.

Definition 18. Let S be a communicating system.

• An execution from a state s is a sequence of transitions t1 . . . tm such that there exists a state s′
which satisfies s t1...tm−−→ s′. From an execution uwe note u|i its projection on transitions of machine
i. Thus, u|i is the local execution induced by u on machine i.

• An execution u = t1 . . . tm from a given state s1 of S such that si
ti−→ si+1 is said k-bounded if both

channels of all intermediate configurations si do not contain more than k messages.

Fig. 2. Transformation of executions.
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• An execution u = t1 . . . tm from a given state s1 of S such that si
ti→ si+1 is said half-duplex if at

most one channel of every intermediate configurations si is not empty.
• The k-reachability set of S is the largest subset RSk(S) of RS(S) within which, each configuration
s is reached by a k-bounded execution from so.

Remark 19. Given a communicating system S , for every integer k ∈ N, the set RSk(S) is finite and
computable.

From an execution, we need to extract particular informations so we define:

• Themorphism ' : �∗ → (
N × {!, ?} × �

)∗ such that '((q, z, q′)
) = z. Froman execution, ' extracts

the corresponding sequence of actions.
• For each j, the morphism projj : �∗ → �∗ such that projj

(
(q, j!a, q′)

) = projj
(
(q, j?a, q′)

) = a

and for k /= j, projj
(
(q, k!a, q′)

) = projj
(
(q, k?a, q′)

) = ε. From an execution, projj extracts the
sequence of messages involving channel j.

• The isomorphism) : (N × {!, ?} × �
)∗ → (

N × {!, ?} × �
)∗ such that)(j!a) = j?a and)(j?a) =

j!a. Note that )−1 = ). The isomorphism ) transforms a sending action in the corresponding
receiving one and vice versa.

Lemma 20. Let S = (M1,M2) be a system. For every configuration s = (q1, q2; x1, x2) of S reachable
by a half-duplex execution, there exist u1u2 an execution from so and a configuration s1 such that the
three following conditions hold:

1. so
u1→ s1

u2→ s,
2. the execution u1 from so is 1-bounded, s1 is a stable configuration, and
3. ∃i ∈ {1, 2} such that u2 ∈ (�!i)

∗
, xi = proji(u2) and x3−i = ε.

Proof.By induction on the length of a half-duplex execution u ending at s. The hypothesis is verified
for the base case when |u| = 0. For the induction case, let us assume that the hypothesis is true for
|u| � n and consider the case where |u| = n + 1. Let u′ ∈ �∗ and t ∈ � be such that u = u′t. Since the
execution u from so is half-duplex, the execution u′ from so is also half-duplex. Therefore, there
exists, by hypothesis, an execution u′

1u
′
2 from so which satisfies:

1. so
u′
1→ s1

u′
2→ s′ t→ s with s′ = (q′

1, q
′
2; x′

1, x
′
2),

2. the execution u′
1 from so is 1-bounded, s1 is a stable configuration, and,

3. ∃i ∈ {1, 2} such that u′
2 ∈ (�!i)

∗
, x′

i = proji(u
′
2) and x′

3−i = ε.

There are two cases depending on whether t is a receiving or a sending action.

t = (q′
l, l!a, ql) ∈ �lis a sending action on channel l ∈ {1, 2}. If u′

2 = ε then x′
1 = x′

2 = ε and we
can take u1 = u′

1 and u2 = t. Otherwise, |x′
i| � 1 and x′

3−i = ε for a i ∈ {1, 2}. If l /= i then xl /= ε

but x3−l = x′
i /= ε, which implies that both channels of s are not empty, and contradicts the half-

duplex property of the execution u from so. Therefore, l = i and we can choose u1 = u′
1 and

u2 = u′
2t.
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t = (q′
3−l, l?a, q3−l) ∈ �3−lis a receiving action on channel l ∈ {1, 2}. Since x′

3−i = ε, we have l = i

and |x′
i| > 1. Then there exist t′ ∈ �!i and u3 ∈ (�!i)∗ such that u′

2 = t′u3. The transition t′ matches
with the transition t (i.e., )('(t)) = '(t′)) because s1 is a stable configuration and t is the first
reception after the emission t′. Therefore, since t and t′ are not performed by the same machine,
it is possible from s1 to execute t′tu3 which leads to s. Thus we can choose u1 = u′

1t
′t and u2 = u3.

�
Corollary 21. Let S = (M1,M2) be a half-duplex system. For every reachable configuration
s = (q1, q2; x1, x2) of S , there exist an execution u1u2 from so and a configuration s1 such that the
three following conditions hold:

1. so
u1→ s1

u2→ s,
2. the execution u1 from so is 1-bounded, s1 is a stable configuration, and
3. ∃i ∈ {1, 2} such that u2 ∈ (�!i)

∗
, xi = proji(u2) and x3−i = ε.

Proof. Since S is half-duplex, all of its executions are half-duplex. �

Definition 22. From a given system, S = (M1,M2), we distinguish the following subset of configura-
tions:

H(S) =
⋃

(q′
1,q

′
2;ε,ε)∈RS1(S),

(q1,q2)∈Q1×Q2

{q1} × {q2} × L1(q
′
1, q1) × L2(q

′
2, q2),

whereLi(q′
i, qi) is the recognizable language accepted by the finite state automaton (Qi, q′

i,�, {qi}, �′i)
with q′

i the initial state, qi the single final state and �′i = {(q, a, q′)
∣∣ (q, i!a, q′) ∈ �i} the transition

relation.

Remark 23. H(S) is channel-recognizable since its channel part is a finite union of products of rec-
ognizable languages. Furthermore, the description of H(S) is effective since each of the different
Li(q

′
i, qi) are.

Lemma 24. The reachability set RS(S) of a half-duplex system S is equal to H(S).

Proof.

H(S) ⊆ RS(S).Let s = (q1, q2; x1, x2) ∈ H(S) then there exist s′ = (q′
1, q

′
2; ε, ε) ∈ RS1(S) and two paths

u1 and u2, respectively, in M1 and M2, composed exclusively of sending actions such that q1 ∈
�∗1 (q

′
1, u1), q2 ∈ �∗2(q

′
2, u2), x1 = proj1(u1) and x2 = proj2(u2). Thus, from s′ we can perform the fol-

lowing execution: s′ = (q′
1, q

′
2; ε, ε)

u1→(q1, q′
2; proj1(u1), ε)

u2→(q1, q2; proj1(u1), proj2(u2)) = s. Then
we have so

∗→ s′ ∗→ s. Therefore: s ∈ RS(S).
RS(S) ⊆ H(S). Straightforward from Corollary 21. �
Example 25. Let us consider the communicating system S1 in Fig. 1, the reader can verify that
RS(S1) = H(S1). Inparticular, the subset (2, 2; {a, b}∗, ε), inExample 2, is obtainedby taking (q′

1, q
′
2) =

(q1, q2) = (2, 2) in Definition 22.



G. Cécé, A. Finkel / Information and Computation 202 (2005) 166–190 177

From this lemma, we deduce the main result of this section.

Theorem 26. The reachability set of a half-duplex system is channel-recognizable and computable in
time: O

(
|�3 × Q1 × Q2|

(|Q1| + |Q2|
))
.

Proof.Recognizability and computability ofRS(S)areprovedby theprecedingRemarkandLemma.
Let us now consider the complexity issue. FromDefinition 22, we only need to compute stable con-
figurations of RS1(S) since from these configurations a simple run through sending actions of one
of the machines gives the other reachable configurations. Computation of RS1(S) is done by a sim-
ple reachability search from the starting configuration so. Knowing that |RS1(S)| = |Q1 × Q2 × �2|
and that a reachable configuration has at most |� × Q1| + |� × Q2| successors, we deduce the
complexity. �
Corollary 27. For half-duplex systems of two machines, the seven problems of interest are decidable.

Proof. Straightforward from Theorems 26 and 16. �
The effective channel-recognizable description of the reachability set of a half-duplex system of

two machines brings us to the following definition.

Definition 28. Let S be a system.

• the symbolic reachability set of S , SRS(S), is a set whose elements have two parts. The first one
is a control state and the second one the restriction on the channels of the description of the
reachability set for this control state.

• the symbolic reachability graph of S , SRG(S), is a graph whose nodes are labelled with elements
of SRS(S) and such that there is an edge labelled with t ∈ � from (�q; �X ) to (�q ′; �X ′) if and only if
every successor, by the execution of transition t, of elements of (�q, �X ) are in (�q ′, �X ′).

The symbolic reachability graph of a system is closely related to MCG the minimal coverability
graph of a Petri net [20], in the sense that each execution of a system S is a path in SRG(S) and each
reachable configuration is covered by (i.e., is an element of) a node of this graph. However, the SRG
contains more information since its nodes describe exactly the reachability set, which is not the case
for the MCG of a Petri net.

Example 29. The symbolic reachability graph of system S1 is given in Fig. 3.

Fig. 3. The symbolic reachability graph of S1.
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3.2. Decidability of the half-duplex property

In the previous subsection, we gave a technique to describe the reachability set of half-duplex
systems. But to be useful, we need to know on which systems these results can be applied. In other
words, we have to decide whether a system S of two machines is half-duplex.
Verifying whether a communicating system is half-duplex requires to look at all reachable con-

figurations (cf. Definition 8). But, a communicating system may have an infinite, and potentially
non-recursive, reachability set. So we have to reduce the domain of interest to a finite one. Then,
we will be able to verify the half-duplex property.

Lemma 30.Asystem S = (M1,M2) is not half-duplex if and only if there exist two transitions (q1, 1!a, q′
1)∈ �1 and (q2, 2!b, q′

2) ∈ �2 such that the state s = (q1, q2; ε, ε) belongs to RS1(S).
Proof. Assume S is not half-duplex, there exists a reachable configuration whose both channels are
not empty. Let u be one of the smallest executions from so leading to such a reachable configura-
tion s3 = (q1,3, q2,3; x1,3, x2,3) with x1,3 /= ε and x2,3 /= ε. Obviously we have |u| � 1, then there exist

s2 ∈ RS(S), u′ ∈ �∗ and t ∈ � such that so
u′→ s2

t→ s3 with u = u′t. Since the execution u from so is
one of the smallest executions leading to a configuration both of whose channels are not empty
then each intermediate configuration of u has at least one channel empty. In other words, u′ is a
half-duplex execution from so. Therefore, there exists, Lemma 20, an execution so

u1→ s1
u2→ s2

t→ s3,
with sk = (q1,k , q2,k; x1,k , x2,k), such that:

• the execution so
u1→ s1 is 1-bounded and s1 is a stable configuration.

• ∃i ∈ {1, 2} such that u2 ∈ (�!i)
∗
, xi,2 = proji(u2) and xj,2 = ε with j = 3− i.

Since both channels of s3 are not empty while channel j of s2 is empty then |u2| � 1, t ∈ �!j and
qj,1 = qj,2. Therefore, there exists a sending transition t′ from qi,1, and the sending transition t starts
from qj,1. Thus, we can take s = s1.
To summarize, if a system is not half-duplex, then one of its 1-bounded executions leads to a stable

configuration from which each machine can execute a sending action. Furthermore, this condition
is obviously sufficient for the system not to be half-duplex, since those transitions can be fired in
sequence from this reachable configuration. �
Theorem 31. The half-duplex property is decidable in time :

O(|�3 × Q1 × Q2|(|Q1| + |Q2|)).
Proof. Since RS1(S) is finite and computable, the property of Lemma 30 is checkable. The com-
plexity calculation follows from the complexity of computing RS1(S) as discussed in Proof of
Theorem 26. �

3.3. Connection of these results with Gouda et al.

In Gouda et al. [25] searched for a simple class of communicating systems free of deadlock con-
figurations and of unspecified reception configurations. They proposed the definition of systems



G. Cécé, A. Finkel / Information and Computation 202 (2005) 166–190 179

made of two deterministic machines, with no mixed state and such that their communication is
compatible (cf. next definition). They solved the boundedness problem for this class. A similar work
has been done byMountassir but for two symmetrical machines [28] instead of twomachines with a
compatible communication. The class defined in [28] appears to be a subclass of this defined in [25].
We claim that these two classes are included in the half-duplex one of two machines; thus, all the
problems of interest (Definition 13) are decidable. In particular, we can compute a channel-recog-
nizable description of the reachability set and thus solve more problems than just the boundedness
one.
First of all, let us recall the definition.

Definition 32 ([25]). A system S = (M1,M2) is compatible if L(M1) = )(L(M2)) with L(Mi) the lan-
guage of all sequences of actions that Mi can execute (i.e., the recognizable language accepted by
Mi considered as a classical finite state automaton whose all states are final).

As an example, S1 in Fig. 1 belongs to the classes of [25] and [28]. However, as shown in Fig. 4,
there exist half-duplex systems which are not-compatible.
To prove the next theorem we need the two following lemma inspired from a part of the proof

of [25, Lemma 2].

Lemma 33. Let S = (M1,M2) be a system, w1 be a local execution of M1 ending at states q1 ∈ Q1, w2
be a local execution ofM2 ending at states q2 ∈ Q2 such that '(w1) = )('(w2)). Then, there exists an
execution u from so such that u|1 = w1, u|2 = w2 and so

u→ s = (q1, q2; ε, ε).
Proof. For a sequence of transitions v = t1 . . . tn, we note v(i), with 1 � i � n, the transition ti . Since
'(w1) = )('(w2)) then if w1(i) is a sending transition, then w2(i) is a receiving transition such that
'(w1(i)) = )('(w2(i))); and vice versa.
Therefore, we take:

u(2 ∗ i) =
{
w1(i) if w1(i) is a sending transition,
w2(i) otherwise (w2(i) is a sending transition),

u(2 ∗ i + 1) =
{
w1(i) if w1(i) is a receiving transition ,
w2(i) otherwise (w2(i) is a receiving transition ).

For each sending transition of w1 corresponds a receiving transition of w2; and vice versa. Then all
sent messages are received and both channels are empty at the end of u. �

Fig. 4. A non-compatible half-duplex system.
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Lemma 34.Let S = (M1,M2) be a compatible systemwithoutmixed local state such thatM1 andM2 are
deterministic and let so

u→ s be an execution of S such that s = (q1, q2; ε, ε). Then '(u|1) = )('(u|2)).
Proof. Since S is compatible, there exists w1 a local execution of M1 such that '(w1) = )('(u|2)).
From Lemma 33, there exists an execution v from so such that v|1 = w1 and v|2 = u|2. Let us show
that u|1 = w1. If it is not the case, let tu|1 and tw1 be the first different transitions in u|1 and w1, respec-
tively. Transitions tu|1 and tw1 start from the same local state in M1. Since there is no mixed state,
they are either the ith receiving transition or the ith sending transition in their respective paths u|1
and w1. Furthermore, tu|1 and tw1 correspond to the same ith receiving transition or the ith sending
transition in u|2. So, they have identical labels; which contradicts the fact that M1 is deterministic.
Therefore, u|1 = w1 and thus '(u|1) = )('(u|2)). �
Theorem 35. A compatible system S = (M1,M2) without mixed local state, and such that M1 and M2
are deterministic, is half-duplex.

Proof. By contradiction, suppose S is not half-duplex. Then, from Lemma 30, there exists a
1-bounded execution u from so leading to a stable configuration s = (q1, q2; ε, ε) such that there
exist a1, a2 ∈ � with �1(q1, 1!a1) /= ∅ and �2(q2, 2!a2) /= ∅.
From Lemma 34, we have)('(u|2)) = '(u|1). Since S is compatible, there exists inM1 a local exe-

cution w1 starting from qo1 such that '(w1) = )('(u|2).2!a2) = '(u|1).2?a2. SinceM1 is deterministic,
q1 has an output transition labelled by the receiving action 2?a2. But by hypothesis, q1 has also an
output transition labelled by the sending action 1!a1, which contradicts the absence of mixed nodes.
Thus S is half-duplex. �

4. Generalization and regular model checking

In the preceding sections we showed how several properties can be verified on half-duplex sys-
tems of two machines. In this section, we look for a generalization of these nice results for systems
of any number of machines and channels. One way is to consider a generalization of the half-duplex
notion. Another way is to seek for semi-algorithms which can be applied on any system and will
halt successfully on, at least, half-duplex systems of two machines. This last way belongs to the field
of regular model checking [11,9,1,17].

4.1. Half-duplex systems of many machines

There are two immediate generalizations of the half-duplex notion for systems of more than two
machines: (a) the natural generalization and (b) the restricted generalization.

4.1.1. The natural generalization
The natural generalization is to define as half-duplex all systems in which each pair of machines

linked by two channels, one in each direction, has a half-duplex communication. Unfortunately,
this class allows the simulation of a Turing machine with such a system of three communicating
machines. This is done by the following construction. Let us consider the simulation of a Turing
machines in [14] or [23]. It involves two machines which do not have a half-duplex communication
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Fig. 5. Simulation of a Turing machine by a half-duplex system.

since each machine can send messages while its input channel is not empty. Let us add a third
machine which acts only as a repeater. The system in Fig. 5 illustrates this. We obtain a half-duplex
system which still simulates a Turing machine (channels 2, 4, and 6 are unused!). Thus, we have.

Theorem 36. The natural generalization of half-duplex systems with three machines is able to simulate
Turing Machines.

So this generalization is not analysable and we cannot adopt the approach used in the previous
sections.

4.1.2. The restricted generalization
The restricted generalization is to consider systems in which each reachable configuration has at

most one non-empty channel. This kind of communication is often used in radio communications
where transceivers of several machines use the same frequency (at any moment only one machine
is allowed to send messages). Recall that systems which contains a machine allowed to receive mes-
sages from a channel its has sent messages to are able to simulate Turing machines (the content
of the channel simulates the content of the tape). Assume we do not allow this last case, then the
hypothesis of the restricted generalization is sufficient to describe the reachability set of such sys-
tems by using techniques similar to those explained in the previous sections. The idea is the same:
since every configuration has at most one non-empty channel, then the content of that channel is a
regular language.

4.2. Regular model checking

Regular model checking is an approach to compute the reachability sets of infinite state systems.
One represents, symbolically, sets of states by regular languages and one develops meta-transitions
[9] which can compute, in one step, infinite sets of successors. This amounts to compute R′(X) for
a given channel-recognizable subset X and a given relation R′ representing a subpart of post ∗ the
transitive and reflexive closure of the transitive relation post of the system.
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We saw in the previous sections that the reachability set of half-duplex systems of two machines
is channel-recognizable. Now we use the key element of the construction of this reachability set to
propose the kind of meta-transitions needed to make regular model checking succeed on half-du-
plex systems of two machines. As we will see, the semi-algorithms proposed will also succeed on a
version of the alternating bit protocol which is not half-duplex with respect to Definition 8.
To simplify the notations, we consider, in the remainder of this section, communicating systems

made of a single CFSM. This is not really a restriction as for each communicating system of many
CFSMs we can associate, as follows, a system made of a single CFSM.

Definition 37. Let S = (M1, . . . ,Mn) be a system of CFSMs withMi = (Qi, qoi ,�, �i). The associated
CFSM of S is M = (Q, qo,�, �) such that: Q = Q1 × · · · × Qn, qo = (qo1 , . . . , qon) and � is the least
relation verifying

(
(q1, . . . , qc, . . . , qn),/, (q1, . . . , q′

c, . . . , qn)
) ∈ � if ∃c ∈ {1, . . . n} (qc,/, q′

c) ∈ �c

Now, we define post the transition relation between sets of states.

Definition 38. Let M = (Q, qo,�, �) be a CFSM on p channels.
post is the relation between subsets of the state space ofM , Q × (�∗)p , such that:

post (X) =
⋃

t=(q,/,q′)∈�

{(
q′, �x′

) ∣∣ ∃ (q, �x) ∈ X , (q, �x) t→
(
q′, �x′

)}

Asusual,wenotepost ∗ the transitive and reflexive closureofpost .Remark thatRS(M) = post ∗({so}).
Lemma 39. LetM be a CFSM on p channels and X be a channel-recognizable set of configurations of
M. Then post (X) is a calculable channel-recognizable set of configurations ofM.

Proof. From Theorem 11, since X is channel-recognizable, it is a finite union of sets of the form
{q} × X1 × . . . × Xp with q ∈ Q and Xi recognizable sets of �∗. Since � is a finite set, it remains to
show that t(X) is effectively recognizable withX = {q} × X1 × · · · × Xp and t(X) = {(q′, �x′)

∣∣ ∃(q, �x) ∈
X , (q, �x) t→(q′, �x′)}. There is two cases:
t = (q, c!a, q′).Then t(X) = {q′} × X1 × · · · × Xc.a × · · · × Xp .
t = (q, c?a, q′).Then t(X) = {q′} × X1 × · · · × a−1Xc × · · · × Xp with a−1Xc = {y ∣∣ ay ∈ Xc}.
In both cases, the result is a computable channel-recognizable set. �
The reachability set of a half-duplex systems S of two machines is included in the set H(S) of

Definition 22. Therefore, we propose a set of meta-transitions which allows to compute H(S) in a
few steps.

Definition 40. Let M = (Q, qo,�, �) be a CFSM on p channels, q, q′ ∈ Q and 1 � c � p . We define:

• Mc!
q,q′ = (Q, {q}, {1, . . . , p} × {!, ?} × �, �′, {q′}) the finite state automaton with initial state q, sin-

gle final state q′ and �′ = {(q1,/, q2) ∈ �
∣∣ ∃a ∈ �,/ = c!a}. The language of Mc!

q,q′ is the set of all
sequences, from q to q′, made of sending actions on channel c.
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• post c! the relation between subsets of the state space ofM , Q × (�∗)p , such that:

post c!(X) =
{(

q′; �x′
) ∣∣ ∃ (q; �x) ∈ X ∃q′ ∈ Q ∃u ∈ L

(
Mc!

q,q′
)
, (q; �x) u−→

(
q′, �x′

)}

post c! is the meta-transition (part of post ∗) which consists of applying only sequences of sending
actions on channel c.

As stated in the following lemma, the effect of a meta-transition post ∗ on a channel-recognizable
set is computable.

Lemma 41. LetM be a CFSM on p channels and X be a channel-recognizable set of configurations of
M. Then all postc!(X), for 1 � c � p , are effective recognizable sets of configurations ofM.

Proof. From Theorem 11, since X is channel-recognizable, it is a finite union of sets of the form
{q} × X1 × · · · × Xp with q ∈ Q and Xi recognizable sets of �∗. Therefore, it remains to show that
postc!({q} × X1 × · · · × Xp) is effectively recognizable; which is a direct consequence of the fact
that:

postc!({q} × X1 × · · · × Xc × · · · × Xp)

= ⋃
q′∈Q{q′} × X1 × · · · × Xc−1 × Xc.projc(L(M

c!
q,q′))Xc+1 × · · · × Xp . �

In Definition 22, H(S) which appeared to be the channel-recognizable reachability set of a half-
duplex system S of two machines was defined. A generalization of H(S) for systems of more than
two machines is computed by Procedure 1.

Procedure 1

Require: M = (Q, qo,�, �)
X = RS1(M)

X ′ = X ∪ postp !(. . . post2!(post1!(X)) . . .)
return X ′

In [15], quasi-stable systems have been defined to generalize for systems of any number of ma-
chines the good properties of half-duplex systems of two machines. This was an ad hoc definition
of systems for which each reachable state can be reached by an execution during which the size of
each channel evolves as depicted in Fig. 2B and such that the reachability set remains channel-rec-
ognizable.

Proposition 42. The algorithm of Procedure 1 computes the reachability set of half-duplex systems of
two machines and the reachability set of quasi-stable systems.

Proof. A straightforward consequence of the fact that quasi-stable systems include half-duplex
systems of two machines [15, Remark 25] and of [15, Lemma 26]. �
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Procedure 2 Semi-algorithm with meta-transitions postc!
Require: M = (Q, qo,�, �)
X ′ = {so}
repeat
X = X ′
X ′ = X ∪ post (X) ∪ post 1!(X) ∪ . . . ∪ postp !(X)

until X ′ ⊆ X

return X ′

In the context of regular model checking, the meta-transitions postc! will be preferably used as
stated in Procedure 2. Instead of making a composition of the different postc!, we make a union
of the applications of these meta-transitions which corresponds better to the generic scheme of
semi-algorithms. This Procedure is linked with Procedure 1 as follows.

Proposition 43. If the reachability set of a system is computed by Procedure 1 then it is computed by
Procedure 2.

Proof. Let M be a communicating system made of a single machine and whose reachability set is
computed by Procedure 1. RS1(M) is the set of all configurations reachable by executions whose
each intermediate configuration has at most one messages in every channel. Consider Procedure 2.
From the presence of X ∪ post (X) in the expression of X ′, in less than |Q × �p | iterations, X will
contain RS1(M). From that point, postp !(. . . post2!(post1!(X)) . . .) is computed in less than p other
steps thanks to the presence of postc!(X) in the expression of X ′. �
The following corollary is an immediate consequence of the two preceding propositions.

Corollary 44. Let S be a half-duplex system of two machines. Then, the semi-algorithm of Procedure
2 halts on S and returns its reachability set.

Therefore we have a semi-algorithm, Procedure 2, which can be applied on any communicating
system and which gives the exact reachability set of half-duplex systems of two machines.
In the next example, the semi-algorithm of Procedure 2 is successfully applied on a system which

is not half-duplex, with respect to Definition 8, and whose reachability set is not computable by the
algorithm of Procedure 1.

Example 45. Let us consider the communicating system in Fig. 6. It simulates the well-known al-
ternating bit protocol [7]. The sender emits its first message with the alternating bit set to 0 (msg0),
then waits for an acknowledgement of that message. At this point, losses (simulated by the loop
(5, 1?msg0, 5)) may occur. Consequently, it may be necessary to send again the message several times
(accomplished by the loop (2, 1!msg0, 2)). When the first message has been received and acknowl-
edged, the next message the sender will send will get the alternating bit set to 1 (msg1) and so on.
The other loops suppress from the channels the duplicated messages, simulate losses of acknowl-
edgements or simulate the reemissions of acknowledgements.
The semi-algorithm 1 applied on the alternating bit protocol in Fig. 6 halts and returns the

following reachability set:
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Fig. 6. A modelization of the alternating bit protocol.

Fig. 7. A simple system not taken into account by meta-transitions in the literature.

{1} × {5} × msg1
∗ × ack1

∗ ∪ {2} × {5} × (msg1
∗.msg0

+∪msg0
∗) × ack1

∗

∪ {2} × {6} × msg0
∗ × ack1

∗ ∪ {2} × {7} × msg0
∗ × (ack1

∗.ack0+ ∪ ack0
∗)

∪ {3} × {7} × msg0
∗ × ack0

∗ ∪ {4} × {7} × (msg0
∗.msg1

+ ∪ msg1
∗) × ack0

∗

∪ {4} × {8} × msg1
∗ × ack0

∗ ∪ {4} × {5} × msg1
∗ × (ack0

∗.ack1+ ∪ ack1
∗)

Meta-transitions like postc! are quite natural. This is all the more surprising that they have not
been considered before. In the literature, meta-transitions which have been considered are essential-
ly loops [11,13]. Therefore, the semi-algorithms build upon them cannot compute the reachability
set of systems as simple as the one depicted in Fig. 7.

5. Model-checking of half-duplex systems against PLTL

Since we can compute a recognizable representation of their reachability sets, several interesting
properties are decidable on half-duplex systems. Unfortunately, we show in this section a negative
result which excludes the verification of a large class of properties useful to check: those expressed
in PLTL or in CTL. The PLTL and CTL [18] are classical logics for dealing with the behaviour of
systems.
The set of formulas of PLTL is the least set built from a set Prop of atomic propositions, and

closed under the application of the boolean connectives, the unary temporal operator© (next, also
noted X ), and the binary operator U (until). A PLTL formula is interpreted over the sequence of
configurations of an execution. The key elements of the semantic is as follows (a more complete
presentation can be found in [18], or in [3] for a similar use of PLTL on CFSMs).
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First of all, a set of atomic propositions, f(s) ⊆ Prop, is associated with each configuration s such
that f(s) depends only on the control state of s.

• A sequence of states s1, s2, s3, . . . satisfies a proposition p ∈ Prop if p ∈ f(s1).
• A sequence of states s1, s2, s3, . . . satisfies a formula ©ϕ if the sequence s2, s3, . . . satisfies ϕ.
• A sequence of states s1, s2, s3, . . . satisfies a formula ϕ1 U ϕ2 if and only if there exists i � 1 such
that the sequence si, si+1, . . . satisfies ϕ2 and for all j < i, the sequence sj , sj+1, . . . satisfies ϕ1.

• The boolean connectives are interpreted as usual.
• A communicating system satisfies a PLTL formula if all of its executions from the initial config-
uration satisfy that formula.

We also use the following abbreviations:

• �ϕ, “always ϕ”, for ϕU false.
• ♦ϕ, “eventually ϕ”, for true U ϕ.

To show the undecidability of PLTL on half-duplex systems, we use the fact that it is undecidable
to know whether a Turing machine features any infinite computation. In [23], it is shown that any
Turing machine T can be simulated by a daisy communicating machine,MT , like the one in Fig. 8,
such that T has an infinite computation if and only if MT has also an infinite execution. The com-
municatingmachineMT acts on a single channel and is composed of an initialization sequencewo of
communicating actions and of n elementary cycles wi of other sequences of communicating actions.
Now, we present a half-duplex system of two machines SH and a PLTL formula )MT such that

the executions of SH which satisfy )MT are similar to the infinite executions of MT .
The system SH is composed by a sender which can send everything in the first channel and a

receiver which can receive everything from that channel. The second channel is not used, thus SH is
trivially half-duplex. Each local state of the two machines is labelled by a proposition that will be
used to observe the behaviour of SH by the formula )MT . The convention is that a configuration
of SH is labelled by the union of labels of its local control states. As an example, the global state
s = (p !a, q2, abb, ε) is labelled by f(s) = {p!a, q2}.
More precisely, letMT = (Q, qo,�, �) be the daisy communicating machine, as given in [23], sim-

ulating a Turing machine T . Then, SH = (M1,M2) with Mi = (Qi, pi,�, �i) be such that:

Fig. 8. MT , a daisy CFSM simulating a Turing machine T .
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Fig. 9. The half-duplex system SH when � = {a, b}.

• Q1 = {p1, q1} ∪ {p !a
∣∣ a ∈ �}, Q2 = {p2, q2} ∪ {p ?a

∣∣ a ∈ �},
• �1 = {(p1, ε, q1), (q1, ε, p1)} ∪ {(q1, 1!a, p !a), (p !a, ε, q1)

∣∣ a ∈ �},
�2 = {(p2, ε, q2), (q2, ε, 21)} ∪ {(q2, 1?a, p ?a), (p ?a, ε, q2)

∣∣ a ∈ �}

Fig. 9 depicts the case where � = {a, b}.
To construct)MT fromMT depicted in Fig. 9, first, we associate a formula ϕi with each commu-

nicating sequences wi as follows:
Let wi = xi,1xi,2 . . . xi,mi with xi,j ∈ {1!a, 1?a ∣∣ a ∈ �} then

ϕi = (p1 ∧ p2) ∧ ©q1 ∧ © © q2∧∧mi
j=1 ©2j+1Pi,j ∧ ©2j+2P ′

i,j∧
©2(mi+1)+2p1 ∧ ©2(mi+1)+2p2

with Pi,j and P ′
i,j such that:

• if xi,j = 1!a then Pi,j = p!a and P ′
i,j = q1.

• if xi,j = 1?a then Pi,j = p?a and P ′
i,j = q2.

Then we take )MT such that :

)MT = ϕ0 ∧ �♦(p1 ∧ p2) ∧ �

(
p1 ∧ p2 →

n∨
i=1

ϕi

)
.

The next propositions express immediate consequences of the definitions of ϕi and )MT .

Proposition 46. A sequence of configurations s1, s2, . . . of SH satisfies ϕi if and only if the control state
of s1 is (p1, p2), the control state of s2(mi)+2 is also (p1, p2), and a prefix of this sequence corresponds to
the execution of wi = xi,1xi,2 . . . xi,mi .

Proposition 47. Let MT be a daisy communicating machine, SH and )MT be its corresponding system
and formula. Then MT presents an infinite execution if and only if an execution of SH satisfies )MT .

Proof. Straightforward from the two equivalent following facts:
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• An infinite execution of MT begins with the communicating sequence wo and continues with an
infinite succession of communicating sequences wi .

• An execution satisfying)MT begins with the communicating sequence wo, passes infinitely often
by the control state (p1, p2) and each time it reaches this control state (p1, p2) it executes one of
the communicating sequences wi immediately followed by a configuration whose control state is
(p1, p2). �

Note that, in the preceding sections, we have not consider systems with ε transitions, however
the different results still hold (in the proof of Lemma 20 it suffices to add the case where t is an ε

transition). So we have.

Theorem 48. PLTL is undecidable on half-duplex systems.

Proof. From the preceding propositions, we have the equivalence: the communicating system SH
satisfies ¬)MT (which mean by definition that none of its executions satisfy )MT ) if and only if
there is no infinite execution in MT . And from [23] it is undecidable to know whether there exists
an infinite execution in MT . �
A similar, though slightly more complicated, work can be done for CTL.

6. Conclusion

In this paper, we have studied half-duplex communication for systems of communicating finite
state machines. We have shown that half-duplex systems with twomachines have effective channel-
recognizable reachability sets. This allows us to solve several verification problems (the reachability
problem, the boundedness problem, etc.) on this kind of systems. Unfortunately, half-duplex sys-
tems with more than two machines happen to be Turing powerful. Furthermore, everything is not
decidable on half-duplex systems with two machines. We have shown that the classical temporal
logics PLTL and CTL (and thus CTL∗) are undecidable on these systems.
Compared to general systemswith recognizable channels [29] and lossy channel systems [4,3], our

decision procedures are effective and efficient (polynomial time). Moreover, though lossy channel
systems have a channel-recognizable reachability set, this set is not computable [16], in contrast
here with the case of half-duplex systems of two machines. Moreover, the reachability problem is
decidable for lossy channel systems but it is not primitive recursive [31] while it may be solved in
polynomial time for half-duplex systems.
By the way, it may be interesting to combine these two hypotheses: loss of messages and

half-duplex communication. Indeed, with a slight modification of the algorithms given here (to
simulate the losses), we are still able to compute the reachability set of such systems. The reason
is that losses do not disrupt the half-duplex hypothesis. Our work can also be extend to do
parametric verification of the half-duplex part of systems: instead of computing the reachabil-
ity set of systems from a single initial state with channels empty, we can compute the set of
states reachable by half-duplex executions from a given channel-recognizable set of states.
We have also situated this work in the field of regular model checking. From the technical part of

our results, we have extracted the kind of meta-transitions which allows the generic semi-algorithm
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to successfully compute the reachability set of, at least, half-duplex systems of two machines. This
kind of meta-transitions, post c!, enrich the other kind of meta-transitions used in semi-algorithms
dedicated to communicating systems. An interesting perspective is to confront this approach on
systems with counters and lossy channels such as the BRP protocol [2].
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