
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 123, 281-291 (1987) 

Limit Theorems for Logarithmic Means 

A. 0. PITTENGER* 

Department of Murhemurics, Clnitlersity of Maryland Baltimore County, 
Catotwille, Muryland 21228 

Submitted by R. P. Boas 

Received October 9, 1985 

1. INTRODUCTION 

Given two positive quantities x and y, there are a variety of ways of 
computing their “average,” and the problem of comparing different 
averages has attracted mathematicians for years. The best known example 
is the inequality between the geometric mean (XJJ)” and the arithmetic 
mean (x + y)/2, while a slightly less familiar example is 

where ,C(x, X) =x and L(s, y) = (X -y)/log(x/y) for x #y. An example of a 
more arcane relationship is 

(See [S, lo].) 
For a presentation of new results as well as a summary of work in this 

area, the reader can consult the recent papers on extended mean values by 
Leach and Sholander [S, 61. One of the themes of those papers is the 
investigation of two-parameter families of means which give known one- 
parameter families as special cases. Examples of the latter are the usual 
power means 

4(x, Y) = 
{ 

C(xP + YV21 I’P, P#O 
(xy)1/2, 

p=o, 
(1.2) 
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and the rth logarithmic means 

where 

d,(t) = 
i 

;og([) 
r#O 

r = 0. 

(1.3) 

(1.4) 

In analogy with ( 1.1) it is possible to determine conditions when L,(x, JJ) 
dominates or is dominated by A,(x, y), and the reader may find a dis- 
cussion of these matters in [9]. Leach and Sholander [6] analyze this 
problem in their two-parameter context and also give references to related 
work. 

Both indexed families A, and L, are non-decreasing in their index and 
both interpolate from (xJ?)“* to (x + y)/2. This naturally suggests an effort 
to extend these investigations to multivariable means. In [Ill] the author 
described a family defined as “the” r-logarithmic mean for n positive 
variables, a family which is a special case of some general results of Carlson 
on hypergeometric means [ 1,2]. At about the same time, Leach and 
Sholander published an interesting paper [ 71 discussing two-parameter, 
multivariate mean values. Using techniques of divided differences, they 
arrive at a formula introduced by Stolarsky [ 121 and obtain some general 
structural properties of this extended mean. The logarithmic means 
described in [ 111 constitute an important one-parameter subclass, as we 
shall see in Section 5. 

In this paper we investigate the problem of limit values of extended mul- 
tivariate means. Section 2 gives definitions and records relevant properties 
of multivariate logarithmic means. Our interest in that topic was stimulated 
by the question of a (probabilistic) strong law for logarithmic means, and 
the reader will find that perspective evident in Sections 3 and 4 in which we 
prove that the rth logarithmic mean of a sequence of positive, independent, 
identically distributed random variables converges almost surely to the 
mean of the distribution. 

The only role played by the independence assumption in that work is 
that C X,(cl,)/n converges for almost all w. If we assume instead that we 
have sequences whose averages converge, all of the results and techniques 
of Sections 3 and 4 carry over. With that in mind, we relate our work to 
that of Leach and Sholander in Section 5 and apply the asymptotic results 
to their two-parameter means. The main result of that section is that on 
suitable sequences, their means converge to the harmonic mean of the 
given sequence, assuming that exists. 



LOGARITHMIC MEANS 283 

2. DEFINITIONS 

We assume throughout that xi denotes a strictly positive real number 
and that x denotes the n + l-vector (x,,..., x,). We let A, stand for the 
simplex 

and routinely use u,, = 1 - C;1-- ’ vi and the inner product 

(2.1) 

(2.2) 
i=O 

The volume of A, is (n!))‘, and its calculation is a special case of a 
Dirichlet integral. (See, for example, [ 13, p. 2581.) Letting dv stand for the 
volume measure in A,, we use dp,, to denote the probability (n)! dv. With 
4, as given in (1.4) we can now define the logarithmic means. 

(2.3) DEFINITION. L,(x) = 4;.‘(J,,d,(x. a) dp,). As an example, if 
r= -1, 4; ‘=t- I=#?, and 

L(x, ,..., xn)=L..,(x)= .i,“(x.u)-Id+‘. (2.4) 

(2.5) PROPOSITION [ 111. Let x he fixed. Then L,(x) is increasing in r, 
strictly so if’ the x, are not ~111 equal, and 

( ) fi,y, ‘l’l+l=Lp 
0 

,,-.I(X)GL ,(x)aL,(x)=~x,:(n+l). 

Explicit representations of L, are given in [ 111 for integer values of r in 
[ --n - 1, - 11, but these will not be necessary here. 

3. A LIMIT THEOREM IN A RESTRICTED CASE 

Suppose that the given sequence xi is restricted by 0 < a < xi < b and that 
the limit 

,a = lip 2 x,/(n +- 1) 
,=o 

exists. Letting x(n) denote the vector defined by the first n + 1 values in the 
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sequence, we show that for every fixed r, L,(x(n)) also converges to p. A 
different problem, and one which is related to the two-parameter means of 
Leach and Sholander, would be to allow r to vary with n. Thus, for exam- 
ple, instead of getting p we could obtain the smaller value 

lim L ,!- ,(x(n)) = exp II li: C log(x + 1) , 
> 

(3.2) 

assuming x log(x,)/n converged to a limit. 
The original proof of (3.3) below used a weak convergence argument 

which was straightforward but rather technical. After reading that proof, 
Bill Pruitt suggested a different technique which eliminated many of the 
complications, and we follow his suggestion below. 

(3.3) THEOREM. Suppose 0 < a < x, < h and p = lim 1 x;/(n + 1) exists. 
Then ,for fixed r, lim 15,(x(n)) = p. 

Proc$ In defining L, we used the dot product which can be interpreted 
as a convex combination of the x,. However, another way to view X. u is as 
an integral. Using 1, to denote the characteristic function of a set, define 

Fn(t; 0, .x) = i vi1 [O, ,,(X,), (3.4) 

so that F,, is a u-parametrized distribution function which is piecewise 
constant with a jump of size t’, when t = x,. It is easy to check that 

x. u = tF,,(dt; U, x), 

so that 

LAX(~)) = 4,- ’ ($,., 4r ( j tFn(dt; v, -4) 4,). 

Now let 0 <p < 4 and define a subset of A, by 

.S,,={u:sup(~F,(t,v,x)-F,(t;x)l)>C’}, 

where 

Fn(t; X) = i (n + I)-’ 1 co. rl(Xi). 
i=o 

Suppose we could show that lim,, p,(S,) = 0. By the bounds on the xi, the 
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contribution of the set S, to the integral could be ignored in the limit, while 
for v in S;; it is easy to check (using integration by parts) that 

il 
t F,(dt; v, x) - j t FJdt; x) < npP(b -a). 

Hence L,(x(n)) will have the same limit as 

9, ’ ( jAn dr ( j t F,,(dt; 4) dp,,) = c x,/(n + 11, 

and that is the assertion of the theorem. 
It thus remains to show that S,, is asymptotically negligible, and for that 

purpose the symmetry of A,, and p,, allows us to assume for the calculation 
below that the xi are non-decreasing. If xk < xk + , , then 

F,,(x,; v, x) - F,(x,; x) = V, - (k + l)/(n + l), 

where Vx = Ci u,. Hence by Chebyshev’s inequality [3, p. 461 

Pn(S,)G 2 p?A(v: IVk-(k+ I)/(n+ II >n -p>, 
k=O 

(3.5) 

One can interpret V, as the (k + 1)th order statistic of n independent, 
uniformly distributed random variables on [0, 1], and that enables us to 
compute the distribution and required means of Vk for 0 <k <n - 1. From 
Feller [4, p. 231, we have 

p,I({u: V&t})= i: n t’(1 -t)“-‘. (3.6) 
/=k+l 0 j 

One verities that the right-hand side of (3.6) equals 

xk(l -x)-~ dx, 

and from that it is easy to identify the rth mean of V, as a beta integral, 
leading to 

s 
vr dp =(k+ lW+2)...(k+r) 

k n 
A” (n+ l)(n+2)...(n+r)’ (3.7) 
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The remainder of the calculation consists of evaluating the right-hand side 
of (3.5) using (3.7). After combining terms we obtain the expression 

” 3k4(n-5)-6k3(n+ l)(n-5)+3k’(n+ l)*(n-7)+6k(n+ 1)’ c 
h=I (n + 1 )4(n + 2)(n + 3)(n + 4) 

and it is then immediate that 

p,,(S,,) d n4p. A/n. 

Since p < $, S,, is asymptotically negligible, and the proof is complete. 
We should note that the fourth moment is indeed necessary, since the 

second moment yields t as the upper bound, and that is not particularly 
helpful. 

As we remarked in the Introduction, an open problem is the comparison 
of different families of parametrized means. Theorem 3.3 shows that 
asymptotically the p = 1 arithmetic mean will be the smallest power mean 
dominating the multivariate logarithmic means L,, r d 1, and the largest 
power mean dominated by L,, I d r. 

4. LOGARITHMIC MEANS AND THE STRONG LAW OF LARGE NUMBERS 

Part of the incentive for studying a logarithmic mean in n variables arises 
from possible applications in statistics. Assume that we have an underlying 
probability space and the X, are X,(w), where X,, 0 d i, is a sequence of 
positive, independent, identically distributed random variables with mean 
p. To see that L-L -,(x(n)) might be of statistical interest, we note that if 
X is the sample mean, then 

06X-L= i (X-X,)C,(o,n), (4.1) 

where 

Thus X- L is a convex combination of the differences x- Xi, and the 
weights are such that L is a biased estimator of the population mean p: 

E[L] d E(8) = p. 

(As usual, E(X) denotes the expectation of X.) 
Under these hypotheses and with a little extra work we can extend the 

results of (3.3) to this context. 
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(4.2) THEOREM. Let X,, 0 6 i < 00, be positive, independent, identically 
distributed random variables with expectation p, If 1 6 r, then almost surely 

lim L,(X, ,..., X,) = ,a. (4.3) II 

Jf E[ -log(X, A l)] < co, then (4.3) also holds for r < 1. (X0 A 1 denotes 
min(X,, 1 ).) 

ProqjI Suppose the X, take values in [a, 61 with 0 <a < b < 00. Define 
F,,(t; v, X) and F,,(t; X) as in Section 3. In this context, the latter dis- 
tribution is the empirical distribution function, and a standard result from 
probability theory is the Glivenko-Cantelli theorem [3, p, 1241 

lim sup lF,,( t, X) - F( t)l = 0, 
‘1 f 

a.s., 

where F is the distribution function of the given random variables. It thus 
follows as in Section 3 that L, converges to p. 

Now we begin to eliminate some of the restrictions on the random 
variables. First assume 0 <A’, < b. If 1 <r, the proof in Section 3 applies 
without change. To obtain (4.3) for negative r, it suffices by (2.5) to prove 
the assertion for r = -k, k a positive integer. Using the mean value 
theorem and monotonicity we obtain the following estimate: if 0 <x;<y, 

OdL ~,(y)-L-,(x) 

=L r(y)Lm,(x) 
- Ilk 

(,~v)-~dp ) 1 
<(Lm,(L’))k+‘. max(y,-x,, 1 <i<n).exp -‘“n’ “C log(xJJ 

Choosing xi = X,(o) and yi = X,(o) + E, the foregoing inequality and the 
constraint on E[ -log(X, A l)] give a lower bound for f&L-,(X0,..., A”,,) 
of the form p - EC, where C is a constant. Since i6 L-k is bounded above 
by ,LL, almost surely, we have extended (4.3) to this class of bounded, 
positive random variables. 

Now suppose the Xi are not bounded above. From the preceding results 
we have, with the obvious notation, 

E[X, A h] 52 l&L,(X) d lim LJX), (4.4) 

so that if p = co, (4.3) is immediate. If r < 1, we know lim L,(X) is bounded 
above by p almost surely, and that fact combines with (4.4) to prove (4.2). 
It thus remains to consider the case when 1 <r and ,u < co, and this 

409,123,1-19 
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situation seems to require a different approach. We assume r is a positive 
integer, expand (x u,X,)~, and collect terms according to the exponents of 
A’,. Evaluating the integrals over A,,, it is possible to show there is a 
constant A(r), independent of n, such that 

The required bound, fi L,(X) < p, then follows from the usual strong law 
and the following, elementary result. 

(4.5) LEMMA. Suppose 0 < x, und lim C x,/n = p < co. Then 
lim,, (x,,/n) = 0 and lim,, 1 $/n2 = 0. 

5. ASYMPTOTICS IN THE TWO-PARAMETER CASE 

In their paper on multivariate extended mean values [7], Leach and 
Sholander give an interesting derivation and analysis of a class of general 
multivariate means. If we translate their notation to that used in this paper, 
we can write their means as 

E(r,s, x)= j)x.r)’ “dp,z/j”A,;(x.i:I’ “dp,l)‘;i. ” 

= [(L, ,,(x)).’ -“/(L, ,,(x)y. “]‘!“+r’, (5.1) 

in the case when r # s. When r = s 

E(r, r, x) = exp 
SA,(U xy ‘I log(u x) dp,, 

j,&.xY dp,, ’ 
(5.2) 

so that 

E(n, n, x) = L,(x). (5.3) 

Equation (5.1) enables us to immediately compute that E(n, n + 1, x) is 
the arithmetic mean and E( - 1, IZ, x) is the geometric mean. Leach and 
Sholander obtain those results as a consequence of an analysis which also 
gives 

( i 
-1 

E(-2, -1,x)= Cx;//(n+l) , (5.4) 

the harmonic mean. Combining (5.4) with (5.1) enables us to express 
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L 2Pn(~) in terms of the harmonic and geometrix means, while the results 
of [ 111 yield evaluations for E(k,j, x) for an integer j# k in 
{ - 1) o,..., n - 1) when the (n + 1) variables x0,..., x, are distinct. 

Equation (5.1) shows that the logarithmic means form an important sub- 
class of the two-parameter means, 

L,(x) = E(n, r + n, x), 

and we should expect their asymptotic properties to be at least as impor- 
tant. 

(5.5) PROPOSITION. Let xk, 0 d k < co, be a sequence of positive real 
numbers such that p = lim C xk/(n + 1) exists and is finite and such that 

-( 
lim -Clog(x, A 1) (n+l) <co 

1 1 

Then for all r and s 
lim E( r + n, s + n, x(n)) = p. 

t1 

Proof Assume r #s and use r -t n and s + n for r and s in (51). The 
hypotheses on the xk are precisely what was required in Sections 3 and 4 to 
prove the strong law, and thus E(r + n, s + n, x(n)) converges to p. Since E 
increases with increasing r and s [7, Theorem 43, the case of r = s follows 
as well. 

We have not attempted to achieve maximum generality with our 
hypotheses, since our motivation is primarily one of discovering the general 
sort of asymptotic behavior of these means as n diverges. Indeed, the point 
of (5.5) is that along any half-line (r + n, s +n) in the (r, s) plane, the mul- 
tivariate means resemble the usual arithmetic mean, at least on sequences 
whose averages converge to a finite limit. 

It may appear that the asymptotic behavior of E(r, s, x(n)) is too delicate 
a question for our techniques, but the surprising fact is that with a key 
result from [7] we can identify the limit of E(r, s, x(n)) as the harmonic 
mean of the sequence, assuming that mean exists. 

(5.6) THEOREM. Suppose 0 < xk, 0 6 k < co, and that both 

1, = lim C log(x,)/(n + 1) 

and 

( > 
-I 

O<H(x)=lim Cx;‘/(n+ 1) 
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exist und are .finite. Then ,for all fixed r and s 

I,(>,+ I) 

lim L, ,Jx(n)) = lim 
( > 

fi xk = e;, 
t1 ,I 0 

and 

lim E(r + 12, s, x(n)) = e’ 
,1 

lim E(r, s, x(n)) = H(x). 
I, (5.9) 

Remark. Note that the theorem says that asymptotically all E(r, s) 
means look like the E( -2, - 1) mean on sequences with the requisite 
limits. 

Proof: Let G,, denote the geometric mean 

i ! 

I.(tr+ II 
G,,= fi.x,. . 

0 

Then the analysis in [7, (33) and following] translates to 

c A.,(X.u)‘~‘rd~,~=(G,,)~“‘+‘) 

or 

dp,, 

L,; 1:(x(n)) = (G,,) “I+ ” L 1 .:.(x(n 1. (5.10) 

Under the hypotheses (5.7) is immediate, and the use of (5.10) in equation 
(5.1) gives the remaining two assertions. 
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