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Recent advances in phenotypic and chemotaxonomic methods have improved the ability of systems to resolve
bacterial identities at the species level. Key to the effective use of these systems is the ability to draw upon data-
baseswhich can be augmentedwith new data gleaned from atypical or novel isolates. In this studywe compared
the performance of the Biolog GEN III identification system (hereafter, GEN III)withmatrix-assisted laser desorp-
tion ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing in the identi-
fication of isolates of veterinary interest. The use of strains that had proven more difficult to identify by routine
methods was designed to test the systems' abilities at the extremes of their performance range. Over an
18 month period, 100 strains were analysed by all three methods. To highlight the importance of identification
to species level, a weighted scoring systemwas devised to differentiate the capacity to identify at genus and spe-
cies levels. The overall relative weighted scores were 0.869:0.781:0.769, achieved by 16S rRNA gene sequencing,
GEN III and MALDI-TOF MS respectively, when compared to the ‘gold standard’. Performance to the genus level
was significantly better using 16S rRNA gene sequencing; however, performance to the species level was similar
for all three systems.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Following a period of technological refinement in recent decades,
automated or semi-automated metabolic methods have predominated
in high-throughput microbiology laboratories processing routine clini-
cal specimens. However, intra-species variation, together with the fre-
quent recognition of new species, began to undermine the accuracy of
less-sophisticated phenotypic systems (O'Hara, 2005). Such systems
were found to be limited either by virtue of a fundamental incompatibil-
ity with particular groups or by a lack of flexibility within the reference
database to recognise novel profiles and offer ‘intuitive’ solutions. 16S
rRNA gene sequencing offered improved resolution at the genus and,
in many cases, species level. Nonetheless, genomic approaches are not
without limitations and the freedom to deposit sequences within
publically-accessible databases, without peer-review, threatened the
integrity of the database and confidence in the result (Mignard and
Flandrois, 2006; Woo et al., 2008). Matrix-assisted laser desorption/
44 1845 525224.
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. This is an open access article under
ionization-time of flight mass spectrometry (MALDI-TOF MS) has be-
come widely recognised as one of the most adaptable of the chemotax-
onomic methods, finding application in both clinical diagnostic and
research settings (Bessède et al., 2011; Hijazin et al., 2012; Bizzini and
Greub, 2010). MALDI-TOF MS systems are available which provide ex-
tensive databases and are equipped with software capable of drawing
on both local and manufacturer-derived data. Whilst not as well
recognised as in other technologies, development in classical phenotyp-
ic approaches continued. Biolog (Biolog Inc., Hayward, USA) adapted
the familiar principle of substrate utilisation by coupling metabolic ac-
tivity to the simultaneous reduction of a redox dye, measured
colourimetrically within a 96 well ELISA plate format (Bochner, 1989,
2008). Earlier manifestations utilised specific plates according to Gram
reaction but, although successful, remained less effective than 16S
rRNA gene sequencing in the identification of ‘atypical bacteria’ to the
species level (Morgan et al., 2009). Accuracy varied according to taxa;
specificity was highest with Gram-positive fermenters and lowest
with unreactive non-fermenters (Holmes et al., 1994). However, with
more biochemically reactive taxa, the system displayed a valuable ca-
pacity to identify species which were otherwise ‘difficult to identify’
and, in some cases, a capability to detect relationships between
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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epidemiologically-related strains (Jánosi et al., 2009; Lanka et al., 2010).
In its most recent manifestation, GEN III, a single plate was designed to
cover both Gram-negative and Gram-positive aerobic taxa, reducing
costs and improving flexibility. This study was designed to indicate
the relative potential of the above methods as ‘front-line’ identification
tools within the Animal Health and Veterinary Laboratories Agency
(AHVLA), by assessing their performance against a range of isolates re-
ferred to a specialist determinative bacteriology laboratory.

2. Materials and methods

2.1. Selection and initial characterisation of isolates

The isolates used in this study (n=100) consisted predominantly of
field strains derived from clinical specimens submitted to the AHVLA's
Determinative Bacteriology laboratory (AHVLA, Bury St Edmunds, UK),
although a number of strains from the National Collection of Type Cul-
tures (NCTC, Colindale, London) were also incorporated. Isolates were
cultured onto Columbia agar (Oxoid, Basingstoke, UK) supplemented
with 5% sheep blood and incubated according to growth requirements,
either aerobically or in a carbon dioxide-enriched environment (7.5%
CO2), at 37 °C for 18–24 h.

2.2. Biolog MicroStation with GEN III microplate system

In the majority of cases, a single colony was selected and emulsified
into ‘inoculating fluid A’ (Biolog) for subsequent inoculation on to the
MicroPlate test plate (Biolog). More fastidious organisms, including
capnophilic strains, were cultured on alternative media, according to
the manufacturer's instructions, and inocula prepared to a specified
transmittance using a turbidimeter, as specified in the user guide. For
each isolate, 100 μl of the cell suspension was inoculated into each
well of the MicroPlate, using a multichannel pipette and incubated at
37 °C for 20 h, either aerobically or in 7.5% CO2, according to growth
characteristics. MicroPlates were read in the MicroStation semi-
automated reader after 20 h and results interpreted by the identification
system's software (GEN III database, version 5.2.1). The system indicat-
ed which isolates could not be identified after 20 h and required further
incubation. Such isolates were re-incubated and re-read between 3 and
6 h later. Those which remained unidentified after 26 h were recorded
as having no identification.

2.3. Identification by 16S rRNA gene sequencing

Crude bacterial lysates were prepared directly from culture plates by
suspending bacteria from a clonal culture in 100 μl of RT-PCR grade
water (approximately McFarland Standard 2.0) and placing in a hot
block at 100 °C for 10 min. A ~1400 bp fragment of the 16S rRNA gene
of the bacterial strains was amplified using the universal primer pair
27 F 5′ AGAGTTTGATCCTGGCTCAG 3′ and 1389R 5′ ACGGGCGGTGTG
TACAAG3′. Resulting PCR ampliconswere sequenced in-housewith for-
ward and reverse primers 5′ GTTGCGCTCGTTGCGGGACT 3′ and 5′ CTCC
TACGGGAGGCAGCAG 3′ using an ABI 3730XL DNA Analyser (Applied
Biosystems, Warrington, UK) and standard sequencing methods. Data
from both strands was aligned in SeqMan (DNASTAR Lasergene 9
Suite) to generate a contig of up to 700 bp. Sequencing was repeated/
excluded from study when available from only one primer or when
the contig lengthwas less than 500 bp following editing. The consensus
sequences were then used to compare with online databases (NCBI
BLAST— http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the Ribosomal Da-
tabase Project (http://rdp.cme.msu.edu/). Identification criteria of N99%
sequence identity for identification to species level were applied
(Drancourt et al, 2000) where matches had to be to the species type
strain. The identities of type strains, as well as accession numbers in
NCBI for equivalent 16S rRNA gene sequences, are available at http://
www.bacterio.cict.fr/ for all validly published bacterial species although
the reader should be aware that there are often multiple sequence de-
positions for type strains some of which are of better quality than
those linked above.

2.4. Matrix-assisted laser desorption ionization-time of flight mass
spectrometry (MALDI-TOF MS)

A Bruker Autoflex II machine (Bruker Daltonik GmbH, Bremen,
Germany) was used for MALDI-TOF MS analysis, using standard Bruker
protocols available online and as described previously (Eigner et al.,
2009). Resulting unknown spectra were compared to the Bruker MSP
(Main Spectral Projection) reference spectra (MALDI Biotyper reference
library version 3, Bruker Daltonik) using MALDI Biotyper software ver-
sion 2.0.10.0 to obtain identification based on a score relating to degree
of match to reference spectra. To improve the likelihood of obtaining a
good score, isolates were spotted on the MALDI TOF MS target plate in
quadruplicate and then fired in quadruplicate, resulting in up to sixteen
spectra; the best score being accepted as the result (replicate spectra
from replicate spots and firings generally yielded the same identifica-
tion, although scores varied according to the quality of the individual
spectrum). The confidence levels for MALDI-TOF MS identifications
were those assigned by the Biotyper software; isolates with a score
above 2.000 were considered to be identified to the species level with
varying levels of confidence, isolates with scores of 1.7 to 1.9999 were
identified to the genus level only and isolates with scores of b1.7 were
not identified. However, if scores of ≥2.000 gave rise to more than
one species, the confidence level was taken to be “to genus” only.

3. Results

3.1. Scoring of result according to resolution to genus or species

A summary of the results is shown in Table 1. In order to reflect the
value of species-level identification to the diagnostic laboratory, a
weighted scoring system was devised based on comparison to the
‘gold standard’ represented by 16S rRNA gene sequencing and referred
to as ‘Presumptive identification’ in Table 1. Where the presumptive
identification was indeterminate by 16S rRNA gene sequencing alone,
reference to any unequivocal phenotypic characteristics, or the use of
type strains, was made to further establish the species of the majority
of strains (n = 76). Where the presumptive identification could not
be substantiated to species level, strains could only be compared at
the genus level (n = 24). Identifications to the genus and species level
were allocated scores of 1 and 3, respectively, with the exception of
the two Salmonella isolates, where the maximum achievable score was
1. Failure of any technique to provide identification resulted in a score
of 0. The theoretical maximum achievable score for any technique,
based on comparison with 76 strains confirmed to species level and
24 to genus level, was 252. Overall, the relative weighted scores for
the three methods were 0.869:0.781:0.769, achieved by 16S rRNA
gene sequencing, Biolog and MALDI-TOF MS respectively, when com-
pared to the ‘gold standard’.

3.2. Biolog GEN III identification system

The GEN III software provided clear indications of the degree of un-
certainty for genus and species level identifications. Although all the
gold standard strainswere represented on themanufacturer's database,
some could not be identified at either genus or species level (n = 15).
This was particularly notable in the less metabolically-active isolates,
for example Riemerella spp., where discrimination relies on activity in
very low numbers of wells. 56 isolates were correctly identified at the
species level; a further 29 were identified as far as genus, with no mis-
identifications, giving an overall capability of 85 strains identifiable to
at least genus level. The overall weighted score was 197/252.
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Table 1
Identification of isolates.

Identification Weighted score

Strain reference Presumptive Biolog Gen III MALDI-TOF MS 16S rRNA gene
sequencing

Gen III MALDI 16S

KL176 Acinetobacter sp. No identification Acinetobacter sp. Acinetobacter sp. 0 1 1
17-B147-07-07 Actinobacillus Bisgaard

taxon 26
No identification Actinobacillus sp. Actinobacillus

Bisgaard taxon 26
0 1 3

15/S245/1/12 Actinobacillus lignieresii A. lignieresii A. lignieresii A. lignieresii 3 3 3
KL135 A. lignieresii Actinobacillus sp. A. lignieresii A. lignieresii 1 3 3
NCTC 12370 Actinobacillus

pleuropneumoniae
A. pleuropneumoniae A. pleuropneumoniae A. pleuropneumoniae 3 3 3

14-P414-12-08 Actinobacillus porcinus A. porcinus No identification A. porcinus 3 0 3
521 (SC0217)/KL:B102 Actinobacillus

porcitonsillarum
A. porcitonsillarum No identification A. porcitonsillarum 3 0 3

KL46 Actinobacillus sp. Actinobacillus lignieresii Actinobacillus
lignieresii

Actinobacillus sp. 1 1 1

6 (SC0217) NCTC10840 Actinobacillus suis A. suis A. equuli Actinobacillus sp. 3 1 1
21/P91/5/11-2 Actinomyces hyovaginalis A. hyovaginalis Actinomyces sp. Actinomyces sp. 3 1 1
23/P127/2/12 Actinomyces hyovaginalis A. hyovaginalis Actinomyces sp. Actinomyces sp. 3 1 1
29/S78/2/12 Arcanobacterium

pluranimalium
A. pluranimalium A. pluranimalium A. pluranimalium 3 3 3

29/B68/7/11 Avibacterium gallinarum A. gallinarum Avibacterium
endocarditis

Avibacterium sp. 3 1 1

84 (SC0217) 29/B48/6/08 Avibacterium gallinarum A. gallinarum A. endocarditis A. gallinarum 3 1 3
22/B144/4/11 Avibacterium sp. No identification Avibacterium sp. Avibacterium sp. 0 1 1
16/B99/8/11 Avibacterium sp. Avibacterium volantium A. gallinarum Avibacterium sp. 1 1 1
21/B187/11/11 Avibacterium sp. A. gallinarum Avibacterium sp. Avibacterium sp. 1 1 1
21-B407-07-07 Avibacterium sp. Avibacterium avium No identification Avibacterium sp. 1 0 1
10 (SC0217) NCTC7464 Bacillus cereus Bacillus sp. Bacillus cereus Bacillus sp. 1 3 1
23/P338/11 Bacillus licheniformis B. licheniformis Bacillus sp. B. licheniformis 3 1 3
21/C1/9/11 B. licheniformis B. licheniformis No identification B. licheniformis 3 0 3
23/C425/2/12 B. licheniformis B. licheniformis Bacillus sp. B. licheniformis 3 1 3
16/S195/2/12 Bacillus sp. Bacillus sp. No identification Bacillus sp. 1 0 1
16/C254/2/12 Bacillus sp. Bacillus sp. Bacillus sp. Bacillus sp. 1 1 1
12 (SC0217) G4382 Bibersteinia trehalosi B. trehalosi No identification B. trehalosi 3 0 3
17-C364-08-07 B. trehalosi B. trehalosi No identification B. trehalosi 3 0 3
21/P91/5/11-1 Bordetella bronchiseptica B. bronchiseptica No identification Bordetella sp. 3 0 1
KL172 Bordetella sp. B. bronchiseptica Bordetella sp. Bordetella sp. 1 1 1
13/M6/2/12 Corynebacterium hansenii Corynebacterium sp. C. hansenii C. hansenii 1 3 3
21/M95/2/12 C. hansenii Corynebacterium sp. C. hansenii C. hansenii 1 3 3
502 (SC0217) NCTC10006 Enterobacter aerogenes No identification E. aerogenes E. aerogenes 0 3 3
23/P518/7/11 Erysipelothrix rhusiopathiae E. rhusiopathiae E. rhusiopathiae E. rhusiopathiae 3 3 3
16 (SC0217) NCTC 10418 Escherichia coli E. coli E. coli No identification 3 3 0
16/B162/04/08 KL:B103 Gallibacterium anatis Gallibacterium sp. G. anatis G. anatis 1 3 3
52 (SC0217) 29/B82/10/07 G. anatis G. anatis G. anatis G. anatis 3 3 3
53 (SC0217) 21/B175/11/07 G. anatis G. anatis G. anatis G. anatis 3 3 3
57 (SC0217) 17/B264/7/07 G. anatis G. anatis G. anatis G. anatis 3 3 3
66 (SC0217) 14/B246/9/07 G. anatis G. anatis G. anatis G. anatis 3 3 3
22-B54-09-07 G. anatis G. anatis Gallibacterium sp. G. anatis 3 1 3
16/B214/10/11 Gallibacterium sp. Gallibacterium genomospecies 1 Gallibacterium sp. Gallibacterium sp. 1 1 1
KL144 Gordonia rubripertincta No identification G. rubripertincta G. rubripertincta 0 3 3
24/C107/8/11 Histophilus somni No identification H. somni H. somni 0 3 3
16/C241/1/12-A H. somni H. somni H. somni H. somni 3 3 3
16/C241/1/12-B H. somni H. somni H. somni H. somni 3 3 3
15-B252-7-12 Klebsiella pneumoniae K. pneumoniae K. pneumoniae Klebsiella sp. 3 3 1
KL177 Lactococcus lactis No identification L. lactis L. lactis 0 3 3
16/S159/2/12 Listeria ivanovii Listeria sp. L. ivanovii Listeria sp. 1 3 1
KL116 Listeria monocytogenes Listeria innocua L. monocytogenes Listeria sp. 1 3 1
KL149 L. monocytogenes Listeria sp. L. monocytogenes L. monocytogenes 1 3 3
14/S653/7/11 Listeria sp. Listeria sp. L. monocytogenes Listeria sp. 1 1 1
16/S27/2/12 Listeria sp. Listeria sp. L. monocytogenes Listeria sp. 1 1 1
16/S160/02/12 Listeria sp. Listeria sp. L. monocytogenes Listeria sp. 1 1 1
16/S253/2/12 Listeria sp. Listeria innocua Listeria sp. Listeria sp. 1 1 1
KL124 Listeria sp. No identification Listeria sp. Listeria sp. 0 1 1
23-S208-01-08 L. innocua L. innocua L. innocua Listeria sp. 3 3 1
KL185 Mannheimia glucosida M. glucosida Mannheimia

haemolytica
Mannheimia sp. 3 1 1

9 (SC0217) NCTC10208 M. glucosida M. glucosida M. haemolytica Mannheimia sp. 3 1 1
16/M59/5/11 M. haemolytica M. haemolytica M. haemolytica M. haemolytica 3 3 3
29/S46/5/11 M. haemolytica M. haemolytica M. haemolytica M. haemolytica 3 3 3
14/C286/5/11 M. haemolytica M. haemolytica M. haemolytica M. haemolytica 3 3 3
29/S81/5/11 M. haemolytica M. haemolytica M. haemolytica M. haemolytica 3 3 3
16/S94/5/11 M. haemolytica M. haemolytica M. haemolytica M. haemolytica 3 3 3
23/S311/5/11 M. haemolytica M. haemolytica M. haemolytica M. haemolytica 3 3 3
16/S123/5/11 M. haemolytica M. haemolytica M. haemolytica M. haemolytica 3 3 3
14/S524/5/11 M. haemolytica M. haemolytica M. haemolytica M. haemolytica 3 3 3
16/C85/6/11 M. haemolytica M. haemolytica M. haemolytica M. haemolytica 3 3 3

18 P. Wragg et al. / Journal of Microbiological Methods 105 (2014) 16–21



Table 1 (continued)

Identification Weighted score

Strain reference Presumptive Biolog Gen III MALDI-TOF MS 16S rRNA gene
sequencing

Gen III MALDI 16S

29/S75/5/11 Mannheimia ruminalis M. ruminalis Mannheimia sp. M. ruminalis 3 1 3
12/C245/11/11 Mannheimia sp. M. haemolytica Mannheimia sp. Mannheimia sp. 1 1 1
17/C348/6/11 Mannheimia varigena M. varigena M. varigena M. varigena 3 3 3
17/C579/6/11 M. varigena M. varigena Mannheimia sp. M. varigena 3 1 3
12-C177-05-12 M. varigena M. varigena Mannheimia sp. M. varigena 3 1 3
12-C203-05-12 M. varigena No identification M. varigena M. varigena 0 3 3
17/C348/4/11 Nocardia sp. Nocardia seriolae No identification Nocardia sp. 1 0 1
B1547 Ornithobacterium rhinotracheale O. rhinotracheale O. rhinotracheale O. rhinotracheale 3 3 3
13/C5/2/12 Pasteurella multocida P. multocida P. multocida P. multocida 3 3 3
21/B66/2/12 P. multocida P. multocida P. multocida P. multocida 3 3 3
15/S71/2/12 P. multocida No identification P. multocida P. multocida 0 3 3
11 (SC0217) NCTC 12178 P. multocida P. multocida P. multocida P. multocida 3 3 3
14-B6-8-12 P. multocida No identification P. multocida P. multocida 0 3 3
22/C20/8/11 Psychrobacter sanguinis No identification No identification P. sanguinis 0 0 3
KL186 Riemerella anatipestifer No identification Riemerella sp. R. anatipestifer 0 1 3
8 (SCV0217) B1705 R. anatipestifer No identification R. anatipestifer R. anatipestifer 0 3 3
518 (SC0217) NCTC7832 Salmonella Nottingham Salmonella sp. Salmonella sp. Salmonella sp. 1 1 1
5 (SC0217) NCTC 4840 Salmonella Poona Salmonella sp. Salmonella sp. Salmonella sp. 1 1 1
KL57 Serratia marcescens S. marcescens S. marcescens Serratia sp. 3 3 1
1 (SC0217) stock 177 Staphylococcus chromogenes S. chromogenes S. chromogenes S. chromogenes 3 3 3
2 (SC0217) NCTC 11048 Staphylococcus intermedius S. intermedius S. intermedius Staphylococcus sp. 3 3 1
21/C189/8/11 Staphylococcus sp. Staphylococcus sp. Staphylococcus sp. Staphylococcus sp. 1 1 1
KL92 Staphylococcus sp. Staphylococcus capitis subsp. capitis S. capitis subsp. capitis Staphylococcus sp. 1 1 1
KL111 Staphylococcus sp. No identification Staphylococcus sp. Staphylococcus sp. 0 1 1
12/S209/1/12 Streptococcus dysgalactiae Streptococcus equi subsp. zooepidemicus S. dysgalactiae S. dysgalactiae 1 3 3
15-C289-7-12 S. dysgalactiae S. dysgalactiae S. dysgalactiae S. dysgalactiae 3 3 3
15/S233/6/11 Streptococcus sp. Streptococcus sp. No identification Streptococcus sp. 1 0 1
16/C130/7/11 Streptococcus sp. Streptococcus sp. No identification Streptococcus sp. 1 0 1
3 (SC0217) Y2737 Streptococcus suis S. suis S. suis S. suis 3 3 3
Y123 S. suis S. suis S. suis S. suis 3 3 3
21-C447-04-08 S. suis S. suis S. suis S. suis 3 3 3
23/P434/5/11 Trueperella pyogenes T. pyogenes Arcanobacterium sp. T. pyogenes 3 1 3
FD2294 T. pyogenes T. pyogenes T. pyogenes T. pyogenes 3 3 3
15-C243-7-12 Yersinia pseudotuberculosis Y. pseudotuberculosis Y. pseudotuberculosis Yersinia sp. 3 3 1
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3.3. MALDI-TOF MS

The number of strainswhich could not be identified, at least to genus
level, was lower thanwith GEN III (n=12)whilst the number of strains
identified to the species level wasmarginally lower than with GEN III
(n = 53). A further 35 strains were correctly identified as far as
genus, with no misidentifications at the genus level since, at the
time of the study, the change from Arcanobacterium pyogenes to
Trueperella pyogenes had not taken place (Yassin et al., 2011). The
total number of strains identifiable at least to genus was therefore
88, with an overall weighted score of 194/252.

3.4. 16S rRNA gene sequencing

Only one strain was not identifiable by 16S rRNA gene sequencing
(NCTC strain 10418, Escherichia coli). Bearing in mind the strict criteria
used for calling, 60 strains were identified to species level and 39 to
genus. The overall weighted score was 219/252.

3.5. Statistical analysis

The overall performance for the three systems was compared in
terms of two binary measures.

The first assumed the diagnosiswas correct if the scorewas at least 1
(identification to genus level) and the second regarded the diagnosis as
correct only if the rating score was 3 (identification to species level).
McNemar's test was used to compare the proportions of correct out-
comes for each pair of systems. For identification to genus level, the pro-
portions of samples with a score of ≥1 for the GEN III and MALDI-TOF
MS systems were compared and no significant difference was found
between the two systems (p = 0.69), indicating similar performance
at this level of identification. Further, 16S rRNA gene sequencing
performed significantly better than both GEN III and MALDI-TOF MS
(p= 0.0005 and 0.0034 respectively) in this respect. However, for iden-
tification to species level (scores of 3) there was no evidence of a signif-
icant difference between the GEN III, MALDI-TOF MS or 16S rRNA gene
sequencing systems (p= 0.7428, 0.5847 and 0.2295 respectively) indi-
cating that all three techniques displayed broadly similar performance
at this level.
4. Discussion

Comparative studies on the performance of identification systems
should consider the importance of identification to species level and
the significance of misidentification. At a clinical or epidemiological
level, erroneous or limited data may result in inappropriate treatment
regimes or result in misleading statistical analysis of prevalence.
Although the weighted scoring system used in this study emphasised
the importance of identification to species level, no attempt was made
to quantify the negative effects of misidentification, for example by
negative scoring, although examples were relatively few in number.
Further, evaluation of the repeatability of the methods was not the
prime objective of this study.

Interestingly, rather than misidentifying at the species or, more sig-
nificantly, at the genus level, GEN III tended to yield a result of “No iden-
tification”, indicating that the user should seek alternative methods or
re-analyse. Misidentifications at the species level (n=2)were confined
to Listeria monocytogenes, strain KL116, misidentified as L. innocua, and
Streptococcus dysgalactiae, strain 12/S209/01/12,misidentified as S. equi.
There were some differences in the system's capacity to identify all the
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strains within a given species, for example in the case of Pasteurella
multocida. Thismay be attributable to intra-species (strain) variation al-
though it is likely that some between-test variation exists. Identification
of isolateswithin the family Pasteurellaceae can be particularly challeng-
ing and 48 strains were represented in this study. GEN III performed
well in this area attracting a total score of 111, with no known
misidentifications.

For MALDI-TOF MS, misidentifications at the species level (n = 5)
occurred for two database-related reasons; either a genuine failure to
obtain a correct result (as in the case of two Avibacterium gallinarum
strains misidentified as A. endocarditis and a strain of Actinobacillus
suis misidentified as A. equuli) or due to changes in nomenclature of
long-standing (as in the case of the two strains ofMannheimia glucosida,
formerly M. haemolytica serotype A11 and reported asM. haemolytica).
Identification within the Pasteurellaceae resulted in an overall score of
103, including the aforementioned misidentifications. Identification of
species within certain genera of the Pasteurellaceae has been highlight-
ed as a potential area of weakness for MALDI-TOF MS by other workers
(Kuhnert et al., 2012). Improvements in databases will undoubtedly
improve performance in the identification of so-called ‘difficult-to-
identify’ bacteria with some workers (Bizzini et al., 2011) reporting
identification rates to species level as low as 45.9%. Veloo et al.
(2011) achieved species-level identification rates among anaerobes
of between 51 and 61%, according to the instrument used. . The ne-
cessity to perform specific additional testing where multiple species
matches occurred (with log scores ≥2.0) and an adjustment to the
acceptance criteria where differences in log score of b0.200 occurred
in multiple matches led some workers to recommend a capable bac-
teriologist with knowledge of taxonomy is required to interpret
MALDI-TOF MS output (De Bel et al., 2011). Although 16S rRNA
gene sequencing achieved the highest overall score (219/250), anal-
ysis indicated that, whilst more results were achievable at the genus
level, using the strict calling criteria implemented here it was no
more capable at the species level than either of the other systems,
with recognised areas of weakness in certain genera (for example,
Listeria sp.). Within the Pasteurellaceae, 16S rRNA gene sequencing
achieved the highest score (123), with no known misidentifications.
The superiority of 16S rRNA gene sequencing over conventional auto-
mated phenotypic systems (Fontana et al., 2005; Bosshard et al.,
2006) is perhaps not surprising yet studies suggest that, with respect
to certain genera, 16S rRNA gene sequencing may be fallible at the
species level (Janda and Abbott, 2007; Mignard and Flandrois, 2006).
Clearly, the input of a skilled bacteriologist is invaluable regardless of
the identification system used.

Database improvement initiatives are ongoing for all three technol-
ogies, both manufacturer-led and by research facilities and interest
groups around the world. Most importantly, all three methods permit
the development of user-defined databases to incorporate strain diver-
sity, an essential feature of any modern identification system. Any sys-
tem lacking this facility will be quickly hampered by poor quality
data and an inability to keep pace with rapid changes in existing
nomenclature and the discovery of ‘new’ species. For 16S rRNA
gene sequencing, commercial systems, such as MicroSEQ (Applied
Biosystems, Foster City, USA), enable automatic searching of an ex-
tensive validated database with the facility to search publicly avail-
able databases such as GenBank. When considering use of a public
database, comparison with sequence data that has not been peer-
reviewed requires skilled interpretation and clearly established
criteria for the acceptability of similarity thresholds (Boudewijns
et al., 2006; Janda and Abbott, 2007; Woo et al., 2009). Bruker
offers a similarly extensive, flexible database, although reference
to spectra outside the manufacturer's database requires user-
supplementation with validated strains. The possibility of sharing
of spectra between laboratories offers great promise, although care
will be required to maintain consistency in methods of production.
GEN III is equipped with an extensive manufacturer's database
which can be supplemented by reference to user-defined data. The
extent to which data can be shared between laboratories is not
known.

In addition to database requirements, including ease of augmenta-
tion, the choice of identification system will involve factors such as
speed of turnaround, throughput, training requirements, linkage to
existing information management systems and an overall cost analysis.
A threshold of 5–7000 identifications per annum has been proposed to
justify investment in MALDI-TOF MS (Prod'hom et al., 2012). 16S rRNA
gene sequencing remains limited in its application beyond reference
and research laboratories due to cost and the requirement for expertise
in interpretation (Claridge, 2004). In this context, more affordable
options, based on classical phenotypic analysis, may yet retain a role
in smaller laboratories not able to justify or resource the initial purchase
and routine maintenance costs of MALDI-TOF MS or 16S rRNA gene
sequencing systems. A significant advantage of MALDI-TOF MS is the
availability of results in a shorter timescale thanwith traditional pheno-
typic methods (Cherkaoui et al., 2010) or 16S rRNA gene sequencing,
although this assumes that a sufficiently high ‘score value’, indicating
the required level of confidence in the result, is obtained for a single
species without the need to resort to repeat runs or alteration of the
sample matrix.

5. Conclusion

The relative strengths and weaknesses demonstrated in all three
systems highlight the contribution made by the trained bacteriologist
in two key areas: Firstly, their ability to select the most appropriate
technique for the unknown isolate, using prior knowledge of the funda-
mental characteristics of the organism (for example, case-history, site of
isolation, and primary features such as gross and microscopic morphol-
ogy) and secondly, their ability to cross-refer the output from the sys-
tem with these fundamental characteristics. The first skill could be
considered ‘triaging’ and could save time, money and, potentially,
prevent the reporting of an erroneous result. The second skill could be
referred to as ‘sense-checking’. Does the output from themachine corre-
spond with all available data, including phenotype and case history?
Thus, although recent advances in technologymay superficially indicate
a gradual decline in the role of the bacteriologist, it could be argued that
their fundamental knowledge has never been more important in assur-
ing that results from the laboratory remain of the highest quality.
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