On the LU Decomposition of V-Matrices

Volker Mehrmann Fakultät für Mathematik Universität Bielefeld Postfach 8640 4800 Bielefeld 1, Federal Republic of Germany

Submitted by Hans Schneider

ABSTRACT

We show that the class of V-matrices, introduced by Mehrmann [6], which contains the M-matrices and the Hermitian positive semidefinite matrices, is invariant under Gaussian elimination.

1. INTRODUCTION

Recently there has been revived interest in the question, under which conditions an *M*-matrix *A* has an *LU* decomposition, where *L* is a nonsingular, lower triangular *M*-matrix and *U* is an upper triangular *M*-matrix (e.g. Funderlic and Plemmons [4], Kuo [5], Rothblum [8], Varga and Cai [10,11]). It is natural to ask whether the results obtained for *M*-matrices still hold in more general classes. In this paper we will be primarily concerned with the *V*-matrices (e.g. Mehrmann [6]), which are defined as follows: An $n \times n$ complex matrix *A* is called a *V*-matrix if all principal minors of *A* are nonnegative and for all subsets $\mu, \nu \subseteq \{1, 2, ..., n\}$ and all real numbers *t* such that all principal minors of $(A - tI)[\mu \cup \nu]$ are nonnegative, $\det(A - tI)[\mu \cap \nu] \det(A - tI)[\mu \cup \nu] \leq \det(A - tI)[\mu] \det(A - tI)[\nu]$, where for $\alpha \subseteq \{1,...,n\}$, $A[\alpha]$ denotes the submatrix of *A* given by the rows and columns indexed in α .

It was shown in [6] that the set of V-matrices includes M-matrices and Hermitian positive semidefinite matrices and that the class of V-matrices is invariant under multiplication (addition) by positive (nonnegative) diagonal matrices. We will show that for a nonsingular V-matrix A, Gaussian elimination without pivoting is possible and the matrices created by the elimination process are again V-matrices, i.e., the class of nonsingular V-matrices is invariant under Gaussian elimination. For a singular V-matrix A we will show

LINEAR ALGEBRA AND ITS APPLICATIONS 61:175–186 (1984)

0024-3795/84/\$3.00

175

[©] Elsevier Science Publishing Co., Inc., 1984

⁵² Vanderbilt Ave., New York, NY 10017

that there always exists a permutation matrix P such that PAP^T is decomposable by Gaussian elimination into a product LU, where L is lower triangular, unit diagonal, and nonsingular and U is upper triangular and singular. Again, any of the matrices produced by the elimination is a V-matrix.

2. PRELIMINARIES

By \mathbb{R} (\mathbb{C}) we denote the real (complex) field, and by $\mathbb{R}^{n,n}$ ($\mathbb{C}^{n,n}$) the real (complex) $n \times n$ matrices. For a positive integer n, we set $\langle n \rangle := \{1, \ldots, n\}$. For $A \in \mathbb{C}^{n,n}$ and $\mu \subseteq \langle n \rangle$, we denote by $A[\mu]$ the matrix $[a_{ij}] \in \mathbb{C}^{|\mu|, |\mu|}$ with $i, j \in \mu$. (Here $|\mu|$ denotes the cardinality of the set μ .) For $t \in \mathbb{R}$ we set $A_t[\mu] := (A - tI)[\mu]$, where I is the identity matrix. By $\sigma(A)$ we denote the spectrum of A, by $\rho(A)$ the spectral radius of A; and furthermore we set

$$l(A) := \begin{cases} \min(\sigma(A) \cap \mathbb{R}) & \text{if } \sigma(A) \cap \mathbb{R} \neq \emptyset, \\ \infty & \text{otherwise.} \end{cases}$$

DEFINITION 1. A matrix $A = [a_{ij}] \in \mathbb{C}^{n, n}$ is called

(i) a V-matrix $(A \in V_{\langle n \rangle})$ if all principal minors of A are nonnegative and if for all $\mu, \nu \subseteq \langle n \rangle$ $(\mu, \nu \neq \emptyset)$ and all $t \in \mathbb{R}$ such that all principal minors of $A, [\mu \cup \nu]$ are nonnegative,

$$\det A_t[\mu] \det A_t[\nu] \ge \det A_t[\mu \cup \nu] \det A_t[\mu \cap \nu]; \tag{1}$$

(ii) a τ -matrix $(A \in \tau_{(n)})$ if

(a) $l(A[\mu]) < \infty \forall \mu \subseteq \langle n \rangle \ (\mu \neq \emptyset),$

(b) $l(A[\mu]) \leq l(A[\nu]) \forall \nu \subseteq \mu \subseteq \langle n \rangle \ (\nu, \mu \neq \emptyset);$

(iii) an *M*-matrix $(A \in M_{\langle n \rangle})$ if $A = \alpha I - B$ with B a nonnegative matrix and $\alpha \ge \rho(B)$.

In order to see how a matrix in $V_{\langle n \rangle}$ behaves under Gaussian elimination we consider the following: Let $A = [a_{ij}] \in \mathbb{C}^{n,n}$, $n \ge 2$, and $a_{11} \ne 0$. Define the matrix $C = [c_{ij}] \in \mathbb{C}^{n-1, n-1}$ by

$$c_{ij} = \frac{a_{ij}a_{11} - a_{i1}a_{1j}}{a_{11}} \quad \text{for} \quad i, j \in \{2, \dots, n\}.$$
 (2)

It is clear that C is exactly the $(n-1)\times(n-1)$ submatrix that occurs in the

LU DECOMPOSITION OF V-MATRICES

lower right corner of the matrix A after one step of Gaussian elimination without pivoting. In the following lemma we list some properties of C.

LEMMA 1. For $A \in \mathbb{C}^{n,n}$, with $n \ge 2$ and $a_{11} \ne 0$, let the matrix C be defined via (2). Then:

(i) det $C[\mu] = \det A[\mu \cup \{1\}]/a_{11} \forall \mu \subseteq \{2,...,n\}.$ (ii) det $C_t[\mu] = (1/a_{11})(\det A_t[\mu \cup \{1\}] + t \det A_t[\mu]) \forall \mu \subseteq \{2,...,n\}, \forall t \in \mathbb{R}.$ (iii)

$$\det C_t[\mu] = \frac{1}{a_{11}} \lim_{d_1 \to \infty} \left(\frac{1}{d_1} \det (D_1 A)_t [\mu \cup \{1\}] \right)$$

 $\forall \mu \subseteq \{2, \ldots, n\}, \forall t \in \mathbb{R}, where$

$$D_1 = \begin{bmatrix} d_1 & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1 \end{bmatrix}.$$

Proof. (i) follows directly by the Sylvester determinant identity. (ii): For all $\mu \subseteq \{2, ..., n\}$ and all $t \in \mathbb{R}$ we have

$$\det A_t [\mu \cup \{1\}] = \sum_{\alpha \subseteq \mu \cup \{1\}} (-t)^{|\alpha|} \det A[(\mu \cup \{1\}) \setminus \alpha]$$
$$= \sum_{\alpha \subseteq \mu} (-t)^{|\alpha|} \det A[(\mu \cup \{1\}) \setminus \alpha]$$
$$+ \sum_{\substack{\alpha \subseteq \mu \cup \{1\}\\1 \in \alpha}} (-t)^{|\alpha|} \det A_t[(\mu \cup \{1\}) \setminus \alpha]$$
$$= \sum_{\alpha \subseteq \mu} (-t)^{|\alpha|} (a_{11} \det C[\mu \setminus \alpha])$$
$$+ (-t) \sum_{\alpha \subseteq \mu} (-t)^{|\alpha|} \det A[\mu \setminus \alpha] \quad [by (i)]$$
$$= a_{11} \det C_t[\mu] - t \det A_t[\mu].$$

Therefore

$$\det C_t[\mu] = \frac{1}{a_{11}} (\det A_t[\mu \cup \{1\}] + t \det A_t[\mu]).$$

(iii): det $(D_1A)_t[\mu \cup \{1\}] = d_1$ det $A_t[\mu \cup \{1\}] + (d_1 - 1)t$ det $A_t[\mu]$. This follows by expanding the determinant with respect to the first row. Thus

$$\frac{1}{d_1} \det(D_1 A)_t [\mu \cup \{1\}] = \det A_t [\mu \cup \{1\}] + \left(\frac{d_1 - 1}{d_1}\right) t \det A_t [\mu],$$

and since $\lim_{d_1 \to \infty} (d_1 - 1)/d_1 = 1$, (iii) follows by (ii).

If we now consider the matrix C for a matrix $A \in V_{\langle n \rangle}$ we get the following:

LEMMA 2. Let $A \in V_{\langle n \rangle}$, $n \ge 2$, and let C be the matrix defined by A via (2). Then:

(i)
$$l(C[\mu]) < \infty$$
 and $l(C[\mu]) \in [l(A[\mu \cup \{1\}]), l(A[\mu])] \forall \mu \subseteq \{2, ..., n\}.$

(ii) Let $t \in \mathbb{R}$ and $\mu \subseteq \{2, ..., n\}$. Then all principal minors of $C_t[\mu]$ are nonnegative iff $t \leq l(C[\mu])$.

Proof. Let $\mu \subseteq \{2, ..., n\}$. For any $d_1 > 0$ we have that the matrix D_1A defined as in Lemma 1 is in $V_{\langle n \rangle}$ (this follows by Theorem 2 of Mehrmann [6]). Thus for all $d_1 > 1$, $l(D_1A)$ exists and $l(D_1A[\mu \cup \{1\}]) \in [l(A[\mu \cup \{1\}]), l(A[\mu])]$. The latter follows because det $(D_1A)_t[\mu \cup \{1\}] = d_1 \det A_t[\mu \cup \{1\}] + (d_1 - 1)t \det A_t[\mu]$. For t < 0 this is positive, since $D_1A \in V_{\langle n \rangle}$. If $l(A[\mu \cup \{1\}]) = l(A[\mu])$, then $l(D_1A[\mu \cup \{1\}]) = l(A[\mu \cup \{1\}])$, which is in the given interval. If $l(A[\mu]) > l(A[\mu \cup \{1\}])$, then for all $0 \le t \le l(A[\mu \cup \{1\}])$ we have det $(D_1A)_t[\mu \cup \{1\}] > 0$. But for $\overline{t} = l(A[\mu])$, applying Theorem 5 of Mehrmann [6], we obtain that det $A_t[\mu \cup \{1\}] \le 0$. Thus

$$l(D_1A[\mu \cup \{1\}]) \in [l(A[\mu \cup \{n\}]), l(A[\mu])].$$

The limit $\lim_{d_1\to\infty}(1/d_1)\det((D_1A)_t[\mu\cup\{1\}])$ exists, and $l(D_1A[\mu\cup\{1\}])$ is a continuous function in d_1 . Thus, for $l(C[\mu])$ we also have $l(C[\mu]) \in [l(A[\mu\cup\{n\}]), l(A[\mu])]$.

178

(ii): By Theorem 2(i) of Mehrmann [6], for any $A \in V_{\langle n \rangle}$ and D_1 positive diagonal, $D_1 A \in V_{\langle n \rangle}$. Applying now Lemma 1 of Mehrmann [6], we have that for $A \in V_{\langle n \rangle}$, D_1 positive diagonal, $t \in \mathbb{R}$, and $\mu \subseteq \langle n \rangle$ the following are equivalent:

(a) all principal minors of $(D_1A)_t[\mu]$ are nonnegative;

(b) $t \leq l((D_1A)[\mu]).$

Again, since the eigenvalues and the characteristic polynomials of submatrices are continuous functions in d_1 , it follows that this result also holds for the limit, i.e. for C.

It was shown by Fan [2] that for an *M*-matrix *A* the above constructed matrix *C* again is an *M*-matrix. Now we get a similar result for $V_{\langle n \rangle}$.

LEMMA 3. Let $A \in V_{\langle n \rangle}$, $n \geq 2$, and let C be defined by the matrix A via (2). Then, $C \in V_{\langle n-1 \rangle}$.

Proof. We have to show that for all $\mu, \nu \subseteq \{2, ..., n\}$ and all $t \in \mathbb{R}$ such that all principal minors of $C_t[\mu \cup \nu]$ are nonnegative,

$$\det C_t[\mu] \det C_t[\nu] \ge \det C_t[\mu \cap \nu] \det C_t[\mu \cup \nu]. \tag{3}$$

Applying Lemma 2, it suffices to show this for $t \leq l(C[\mu \cup \nu])$. For all $\mu, \nu \subseteq \langle n \rangle$, for any

$$D_1 = \begin{bmatrix} d_1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix} \text{ with } d_1 > 0,$$

and for all $t \leq l((D_1A)_t[\mu \cup \nu])$,

$$\frac{1}{d_1^2} \left(\det(D_1 A)_t \big[\mu \cup \{1\} \big] \det(D_1 A)_t \big[\nu \cup \{1\} \big] - \det(D_1 A)_t \big[(\mu \cap \nu) \cup \{1\} \big] \det(D_1 A)_t \big[(\mu \cup \nu \cup \{1\} \big] \big) \ge 0, \quad (4)$$

since $D_1 A \in V_{\langle n \rangle}$. Since for $d_1 > 0$ the left side of (4) is a continuous function in d_1 , it follows for all $t \leq \lim_{d_1 \to \infty} l(D_1 A[\mu \cup \nu])$ that

$$\lim_{d_1 \to \infty} \frac{1}{d_1^2} \left(\det(D_1 A)_t [\mu \cup \{1\}] \det(D_1 A)_t [\nu \cup \{1\}] - \det(D_1 A)_t [(\mu \cap \nu) \cup \{1\}] \det(D_1 A)_t [\mu \cup \nu \cup \{1\}] \right) \ge 0.$$

By Lemma 1 we see that $\lim_{d_1\to\infty} l((D_1A)[\mu\cup\nu]) = l(C[\mu\cup\nu])$, and this finishes the proof, because in the limit (4) becomes (3).

We now consider Gaussian elimination applied to matrices in $V_{\langle n \rangle}$. We describe the elimination process (if it is possible) as follows: Let $A^{(1)} := [a_{ij}^{(1)}] := A$. In the first elimination step we multiply $A^{(1)}$ from the left by the matrix

$$L_{1} = \begin{bmatrix} 1 & & & \\ -l_{21} & 1 & & 0 \\ \vdots & 0 & \ddots & \\ -l_{n1} & & & 1 \end{bmatrix},$$

where $l_{i1} = a_{j1} / a_{11}$ for j = 2, ..., n. Then

$$L_1 A := \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ \hline 0 & & & \\ \vdots & & & \\ 0 & & & & \\ 0 & & & & \end{bmatrix}$$

where $A^{(2)} = [a_{ij}^{(2)}]$. In the kth step $(k \ge 2)$ of the elimination process, we multiply

$$L_{k-1}\cdots L_{1}A = \begin{bmatrix} a_{11}^{(1)} & \cdots & \cdots & a_{1,k}^{(1)} \\ & \ddots & & & \ddots \\ & & \ddots & & \ddots \\ 0 & & & a_{k-1,k-1}^{(k-1)} & a_{k-1,n}^{(k-1)} \\ \hline & 0 & & | A^{(k)} \end{bmatrix}$$

from the left by

 $L_{k} = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & & & 0 \\ 0 & & -l_{k+1,k} & & & \\ & & \ddots & 1 & & \\ & & \ddots & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -l_{n,k} & & & 1 \end{bmatrix}$

where $l_{j,k} = a_{jk}^{(k)} / a_{k,k}^{(k)}$, and obtain

We now have the following first main result:

THEOREM 1. Let $A \in V_{\langle n \rangle}$, $A[\langle n-1 \rangle]$ nonsingular. Then Gaussian elimination without pivoting applied to A is possible, and all matrices $L_k L_{k-1} \cdots L_1 A$ are in $V_{\langle n \rangle}$ too for k = 1, ..., n.

Proof. Since $A \in V_{\langle n \rangle} \subset \tau_{\langle n \rangle}$ and $A[\langle n-1 \rangle]$ is nonsingular, it follows that $l(A[\langle n-1 \rangle]) > 0$. Hence, all principal minors $A[\langle i \rangle]$, i = 1, ..., n-1, are positive. (See, e.g., Remark 3.7 in Engel and Schneider [1, p. 161].) Thus by a well-known result (e.g., Theorem 2.5 in Stewart [8, p. 120]), Gaussian elimination without pivoting is possible. Thus it remains to show that $L_k \cdots L_1 A \in V_{\langle n \rangle}$ for all k = 1, ..., n-1. We do this by induction on k.

k = 1: Looking at the above-described algorithm, we see that by construction, the matrix A_2 is equal to the matrix constructed from A via (2). Thus by Lemma 3, we have that $A^{(2)} \in V_{\langle n-1 \rangle}$, and then it follows immediately that $L_1A \in V_{\langle n \rangle}$, since for any $\mu \subseteq \langle n \rangle$ with $1 \in \mu$, $\det(L_1A)_t[\mu] = (a_{11}^{(1)} - t) \det A_t^{(2)}[\mu \setminus \{1\}]$ and $l(L_1A[\mu]) = \min\{a_{11}^{(1)}, l(A[\mu \setminus \{1\}])\}$.

Assume now that for all k with $1 \le k \le i < n$ we have $L_k \cdots L_1 A \in V_{\langle n \rangle}$. This implies that $A^{(k+1)} \in V_{\langle n-k \rangle}$. Applying the same arguments as in the first step of the elimination on $A^{(k+1)}$, we see that

$$\begin{bmatrix} 1 & & & \\ -l_{k+2,k+1} & & & 0 \\ & & 1 & & \\ & & & \ddots & & \\ & & & \ddots & & \\ -l_{n,k+1} & 0 & & & 1 \end{bmatrix} A^{(k+1)} \in V_{\langle n-k \rangle}.$$

But

$$L_{k+1} = I \oplus \begin{bmatrix} 1 & & & \\ -l_{k+2, k+1} & \cdot & 0 & \\ \vdots & & \ddots & \\ & 0 & & \cdot & \\ -l_{n, k+1} & & & 1 \end{bmatrix},$$

and thus $B:=L_{k+1}L_k\cdots L_1A \in V_{(n)}$. This follows now immediately since

$$\det B_t[\alpha] = \prod_{j \in \langle k+1 \rangle \cap \alpha} \left(a_{jj}^{(j)} - t \right) \det A^{(k+2)} \left[\left(\langle n \rangle \smallsetminus \langle k+1 \rangle \right) \cap \alpha \right].$$

Thus in the inequality

$$\det B_t[\mu \cup \nu] \det B_t[\mu \cap \nu] \leq \det B_t[\mu] \det B_t[\nu],$$

the diagonal elements cancel. Hence, it remains only an inequality for subsets of $(\langle n \rangle \smallsetminus \langle k+1 \rangle)$, and this inequality holds, since $A^{(k+2)} \in V_{\langle n-k-1 \rangle}$ for all $t \leq l(A[(\mu \cup \nu) \cap \langle n \rangle \smallsetminus \langle k+1 \rangle])$. But

$$l(B[\mu \cup \nu]) = \min\left(\min_{j \in (\mu \cup \nu) \cap \langle k+1 \rangle} \left\{a_{jj}^{(j)}\right\}, \\ l(A[(\mu \cup \nu) \cap (\langle n \rangle \setminus \langle k+1 \rangle)])\right). \quad \blacksquare$$

This shows that $V_{\langle n \rangle}$ is invariant under Gaussian elimination without pivoting, but this doesn't hold for $\tau_{\langle n \rangle}$, as the following example shows: Let

$$A = \begin{bmatrix} 9 & 2 & 2 \\ 2 & 9 & \frac{1}{2} \\ 2 & \frac{1}{3} & 9 \end{bmatrix} \in \tau_{\langle n \rangle}.$$

182

After one step of elimination,

$$L_1 A = \begin{bmatrix} 9 & 2 & 2 \\ 0 & \frac{77}{9} & \frac{1}{18} \\ 0 & -\frac{1}{9} & \frac{77}{9} \end{bmatrix},$$

which is obviously not in $\tau_{\langle n \rangle}$, since $(L_1 A)_{23} (L_1 A)_{32} < 0$.

REMARK 1. Obviously, by looking at the determinantal inequality (1), any lower or upper triangular matrix with nonnegative diagonal elements is in $V_{\langle n \rangle}$. At this point one sees the great usefulness of a determinantal characterization for classes of matrices, like those for τ -matrices introduced in [1] or for V-matrices introduced in [6], although in many places it looks a lot more complicated than other characterizations.

COROLLARY 1. Let $A \in V_{\langle n \rangle}$ and $\exists j \in \langle n \rangle$ such that $A[\langle n \rangle \setminus \{j\}]$ is nonsingular. Then there exists a permutation matrix P such that any matrix $L_k \cdots L_1 APAP^T$ in the Gaussian elimination process applied to PAP^T is again in $V_{\langle n \rangle}$.

Proof. Choose P such that det $(PAP^T)[\langle n-1 \rangle] \neq 0$. Since P is a permutation matrix, PAP^T is again in $V_{\langle n \rangle}$. Thus we can apply Theorem 1.

COROLLARY 2. Let $A \in V_{\langle n \rangle}$ be nonsingular. Then, for any permutation matrix P, any matrix $L_k \cdots L_1 A P A P^T$ in the Gaussian elimination process applied to $P A P^T$ is again in $V_{\langle n \rangle}$.

Proof. Since $A \in V_{\langle n \rangle}$ is nonsingular, then $A[\langle n \rangle \setminus \{j\}]$ is nonsingular for all $j \in \langle n \rangle$. Hence we can apply Theorem 1 to PAP^T for any P.

REMARK 2. For the *M*-matrices it was shown by Kuo [5], based on a result in Fiedler and Pták [3], that the irreducible *M*-matrices are closed with respect to Gaussian elimination. This doesn't hold for $V_{\langle n \rangle}$. For *M*-matrices one can use the Perron-Frobenius theorem to get that if $A \in M_{\langle n \rangle}$ is irreducible and singular, then still all principal minors of order n-1 are nonzero.

But this does not work for $V_{(n)}$, as the following example shows. Let

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \in V_{\langle n \rangle}.$$

A is singular and irreducible, but det A = 0 and det $A[\{1,2\}] = 0$.

Now we consider the case of a singular $A \in V_{(n)}$ more deeply.

THEOREM 2. Let $A \in V_{\langle n \rangle}$, A singular. Then there exist a permutation P and $k \in \langle n \rangle \cup \{0\}$ such that PAP^T has an LU decomposition with

$$L = \begin{bmatrix} L_{11} & 0\\ \hline L_{21} & 1 \end{bmatrix} \begin{cases} k\\ k & -k \end{cases}$$

nonsingular, unit diagonal, lower triangular, and with

$$U = \left[\begin{array}{c|c} U_{11} & U_{12} \\ \hline 0 & U_{22} \end{array} \right] k \\ k \\ n - k$$

upper triangular and such that U_{11} is nonsingular and U_{22} has only zeros on the diagonal. Furthermore, the first k elimination steps suffice to produce this decomposition, and $L_j L_{j-1} \cdots L_1 A \in V_{\langle n \rangle}$ for all j = 1, ..., k.

Proof. Let $\mu \subseteq \langle n \rangle$ be a subset of maximal cardinality such that det $A[\mu] \neq 0$. Let $|\mu| = k$. If such a set does not exist, then set k = 0.

(1) $k \neq 0$. Then there exists a permutation matrix P_1 such that det $P_1AP_1^T[\langle k \rangle] \neq 0$ and det $P_1AP_1^T[\langle k \rangle \cup \{j\}] = 0$ for all $j \in \langle n \rangle \setminus \langle k \rangle$. Applying Gaussian elimination to $P_1PA_1^T$, we can do this up to step k, and in any step the matrix is again in $V_{\langle n \rangle}$ by Theorem 1. After the kth step, the matrix $A^{(k+1)}$ has the form

By the fact that $P_1AP_1^T[\langle k \rangle \cup \{j\}] = 0 \quad \forall j \in \langle n \rangle \setminus \langle k \rangle$ it follows that all diagonal elements of $A^{(k+1)}$ are zero. If this were not the case, one could say there exists a $j \in \langle n \rangle \setminus \langle k \rangle$ such that the (j, j) diagonal element of $A^{(k+1)}$ is nonzero, and then take a permutation matrix P_2 interchanging the *j*th row with the (k + 1)st row; this would mean that in applying Gaussian elimination to $P_2P_1AP_1^TP_2^T$ the elimination would be possible up to the (k + 1)st step. But the abovementioned result (e.g. Stewart [8, p. 120]) would imply that det $(P_2P_1AP_1^TP_2^T)[\langle k+1\rangle] \neq 0$, which contradicts the maximal cardinality of the above-chosen set μ .

Thus for $A^{(k+1)} = [b_{ij}] \in V_{\langle n-k \rangle}$, we have that all diagonal elements are zero. But since $A^{(k+1)} \in V_{\langle n-k \rangle}$, it then follows that det $A^{(k+1)}[\nu] = 0 \forall \nu \subseteq \langle n - k \rangle$. This implies that all cyclic products $b_{i_1, i_2} \cdots b_{i_p, i_1}$ of all orders p in $A^{(k+1)}$ are zero. But this implies that the index set $\{k+1, \ldots, n\}$ can be ordered by a total order \cong in such a way that $\forall i, j \in \langle n \rangle \setminus \langle k \rangle, a_{ij} \neq 0$ implies $i \cong j$. Thus there exists a permutation P_2 that permutes $A^{(k+1)}$ to upper triangular form with zeros in the diagonal.

The permutation matrix

$$\tilde{P}_2 = \left[\frac{I \mid 0}{0 \mid P_2} \right]_{n-k}^{k}$$

does not affect $(P_1AP_1^T)[\langle k \rangle]$. Therefore we can apply Gaussian elimination up to step k to $\tilde{P}_2 P_1 A P_1^T \tilde{P}_2$ and obtain the required form.

(2) k = 0. In this case we cannot do any elimination step, and applying the second part of the argument in (1), we just have to take the permutation that brings A into upper triangular form with zeros in the diagonal. The proof is completed by taking L = I.

We wish to thank Professor H. Schneider for proposing the work on the above subject.

REFERENCES

- 1 G. M. Engel and H. Schneider, The Hadamard-Fischer inequality for a class of matrices defined by eigenvalue monotonicity, *Linear and Multilinear Algebra* 4:155–176 (1976).
- 2 K. Fan, Note on M-matrices, Quart. J. Math. Oxford Ser. (12)11:43-49 (1960).
- 3 M. Fiedler and V. Pták, On matrices with nonpositive off diagonal elements and positive principal minors, *Czechoslovak Math. J.* 12(87):382-400 (1962).
- 4 R. E. Funderlic and R. J. Plemmons, LU decomposition of M-matrices by elimination with pivoting, Linear Algebra Appl., to appear.

- 5 I.-W. Kuo, A note on factorization of singular *M*-matrices, *Linear Algebra Appl*. 16:217-220 (1977).
- 6 V. Mehrmann, On classes of matrices containing *M*-matrices and Hermitian positive semidefinite matrices, *Linear Algebra Appl.*, to appear.
- 7 U. G. Rothblum, A rank characterization of the number of final classes of a nonnegative matrix, *Linear Algebra Appl.* 23:65-68 (1979).
- 8 G. W. Stewart, Introduction to Matrix Computation, Academic, New York, 1973.
- 9 R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- 10 R. S. Varga and D.-Y. Cai, On the LU factorization of M-matrices, Linear Algebra Appl., to appear.
- 11 R. S. Varga and D.-Y. Cai, On the LU factorization of M-matrices: Cardinality of the set $\mathscr{P}_n^{g}(A)$, Linear Algebra Appl., to appear.

Received 28 March 1983; revised 13 June 1983