
On the LU Decomposition of V-Matrices 

Volker Mehrmann 

Fakultiit fiir Mathemutik 
Universitiit Bielefeld 
Postfach 8640 
4800 Bielefeld 1, Federal Republic of Germany 

Submitted by Hans Schneider 

ABSTRACT 

We show that the class of V-matrices, introduced by Mehrmann [6], which 
contains the M-matrices and the Hermitian positive semidefinite matrices, is invariant 

under Gaussian elimination. 

1. INTRODUCTION 

Recently there has been revived interest in the question, under which 
conditions an M-matrix A has an LU decomposition, where L is a nonsingular, 
lower triangular M-matrix and U is an upper triangular M-matrix (e.g. 
Funderlic and Plemmons [4], Kuo [5], Rothblum [8], Varga and Cai [lo, 111). 
It is natural to ask whether the results obtained for M-matrices still hold in 
more general classes. In this paper we will be primarily concerned with the 
V-matrices (e.g. Mehrmann [6]), which are defined as follows: An n X n 

complex matrix A is called a V-matrix if all principal minors of A are 
nonnegative and for all subsets p, Y c { 1,2,. . . , n } and all real numbers t such 
that all principal minors of (A - tZ)[p u V] are nonnegative, det (A - tZ)[p CI 
V] det(A - tZ)[p U v] < det(A - tZ)[p] det(A - tZ)[v], where for (Y E 

{I,..., n }, A[cr] denotes the submatrix of A given by the rows and columns 
indexed in (Y. 

It was shown in [6] that the set of V-matrices includes M-matrices and 
Hermitian positive semidefinite matrices and that the class of V-matrices is 
invariant under multiplication (addition) by positive (nonnegative) diagonal 
matrices. We will show that for a nonsingular V-matrix A, Gaussian elimina- 
tion without pivoting is possible and the matrices created by the elimination 
process are again V-matrices, i.e., the class of nonsingular V-matrices is 
invariant under Gaussian elimination. For a singular V-matrix A we will show 
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that there always exists a permutation matrix P such that PAP* is decompos- 
able by Gaussian elimination into a product LU, where L is lower triangular, 
unit diagonal, and nonsingular and U is upper triangular and singular. Again, 
any of the matrices produced by the elimination is a V-matrix. 

2. PRELIMINARIES 

By R (C) we denote the real (complex) field, and by Iw”,” (Cn,“) the real 
gcrrniz& n X n matrices. For a positive integer n, we set (n) : = { 1,. . . , n }. 

n*n and ZJ c (n), we denote by A[p] the matrix [aij] E CIPI,lpl with 
i, j E ZJ. (Here 1~1 denotes the cardinality of the set p.) For t E Iw we set 

A&l:=(A - W[pl, h w ere Z is the identity matrix. By a(A) we denote the 
spectrum of A, by p(A) the spectral radius of A; and furthermore we set 

Z(A):= 
min(a(A)nlW) if a(A)nlR ~0, 

00 otherwise. 

DEFINITION 1. A matrix A = [a i j] E C n, n is called 

(i) a V-matrix (A E V(,,,) if all principal minors of A are nonnegative and 
if for all CL, v c (n) (Z.L, v # 0) and all t E R such that all principal minors of 
At [ p U v] are nonnegative, 

detA,[p]detA,[v] bdetA,[pUv]detA,[pnv]; 

(ii) a wnutrix (A E TV,,) if 

(1) 

(4 WP.])<~ VP c (n> (P #WY 
(b) OQl)< 4A[vl) Vv E p c (n) (v, p ~0); 

(iii) an M-matrix (A E MC,)) if A = al - B with B a nonnegative matrix 
and cu >, p(B). 

In order to see how a matrix in V,,, behaves under Gaussian elimination 
we consider the following: Let A = 
the matrix C = [cij] E Cn-‘,+’ by 

[ii;;] EC”,“, n 2 2, and a,, # 0. Define 

cij = 
aijall - ailulj 

a11 

It is clear that C is exactly the (n - 

for i,jc (2 ,..., n}. (2) 

1) x (n - 1) submatrix that occurs in the 
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lower right comer of the matrix A after one step of Gaussian elimination 
without pivoting. In the following lemma we list some properties of C. 

LEMMA 1. For A EQ=~*“, with n > 2 and a,, # 0, let the matrix C be 
defined via (2). Then: 

(i) detC[~]=detA[~U{l}]/a,, V~L {2,...,n}. 
(ii) detC,[~]=(l/a,,)(detA,[~U{l}]+tdetA,[~]) Vpc {2,...,n}, Vt 

ER. 
(iii) 

VpL {2,..., n}, Vt G R, where 

dl 
D, = 1 

0 

Proof (i) follows directly by the Sylvester determinant identity. 
(ii): For all p c { 2,. . . , n}andalltERwehave 

detA,[pu{l}] = c (-t)‘“ldetA[(pu{l})\a] 
acpu{l) 

= c (-t)‘*‘detA[(pu{l})\a] 

+~c~[l:(-t)‘“‘detA,[(BUil})\al 
-1 E a 

= C ( - t)‘a’(arrdetC[h \ a]) 

+(-t) c (-t)‘a’detA[p\a] ibY WI 

=a,,detC,[p] -tdetA,[p]. 
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Therefore 

(iii): det(DiA),[p U {l}] = d,det A,[p U {l}]+(d, - 1)tdet At[p]. This 
follows by expanding the determinant with respect to the first row. Thus 

tdetA,[p], 

and since lim d, -f m (d, - 1)/d, = 1, (iii) follows by (ii). n 

If we now consider the matrix C for a matrix A E Vcn, we get the 
following: 

LEMMA 2. Let A E V(,,, , n 2 2, and let C be the matrix defined by A via 
(2). Then: 

(i) RWl)<~ ad ~C[PI)E [Q~PU{~~I)~ YA[PI)I +L {2,...,nl. 
(ii) Let t E R and p G (2,. . . , n }. Then all principal minors of C, [ /.L] are 

nonnegative iff t < Z(c[~.k]). 

Proof. Let Ir. G (2,. . . , n }. For any d, > 0 we have that the matrix D,A 
defined as in Lemma 1 is in Vcn, ( this follows by Theorem 2 of Mehrmann 
[6]). Thus for alI d,>l, Z(D,A) exists and Z(D~A[~U{~}])E [Z(A[pU 
{l}]), Z(A[p])]. The latter follows because det(D,A),[p U {l}] = didet At[p 
U {l}]+(d, - 1)tdet A,[p]. For t < 0 this is positive, since D,A E Vcn,. If 
Z(A[ZJU{~}])=Z(A[~]), then Z(D,A[IJ.U{~}])=Z(A[~U{~}]), which is in 
the given interval. If Z(A[p])> Z(A[p U {l}]), then for all 0 <t < Z(A[p U 
{l}]) we have det(D,A),[p U {l}] > 0. But for Z = Z(A[p]), applying Theo 
rem 5 of Mehrmann [6], we obtain that det Ar[p U {l}] < 0. Thus 

The limit hm d,-,(l/dl)det((D,A),[~ U {l)l) efists, and 4D,Ab U {l}l) is 
a continuous function in d,. Thus, for Z(C[p]) we also have Z(C[~])E [Z(A[y 

U {n )I), Kabul. 
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(ii): By Theorem 2(i) of Mehrmann [6], for any A E V(,,, and D, positive 
diagonal, D,A E V(“,, Applying now Lemma 1 of Mehrmann [6], we have 
that for A E V(,,,, D, positive diagonal, t E !R, and p G (n) the following are 
equivalent: 

(a) all principal minors of ( DIA)t[p] are nonnegative; 

(b) t G K(D,A)bl). 

Again, since the eigenvalues and the characteristic polynomials of submatrices 
are continuous functions in d,, it follows that this result also holds for the 
limit, i.e. for C. W 

It was shown by Fan [2] that for an M-matrix A the above constructed 
matrix C again is an M-matrix. Now we get a similar result for V(“), 

LEMMA 3. Let A E V(“, , n >, 2, and let C be defined by the matrix A via 
(2). Then, C E Vc”-lj. 

Proof. We have to show that for all p, v c (2,. . . , n } and all t E R such 
that all principal minors of Ct[p U v] are nonnegative, 

detC,[y]detC,[v]>,detC,[pnv]detC,[puv]. (3) 

Applying Lemma 2, it suffices to show this for t G Z(C[p u v]). For all 

j4 v C (n), for any 

4 
D, = 1 I -4 with d, >O, 

1 

and for all t < I(( DIA)t[p u v]), 

-det(D,A),[(~~n)u{l}ldet(D,A),[~Uvuu(l}l)~O, (4) 
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since D,A E V(,,,. Since for d, > 0 the left side of (4) is a continuous function 
in d,, it follows for all t < lim,, ,,Z(D,A[p U v]) that 

dlli,mm ~(det(Dl”)~[pU{l}ldet(D,A),[~U{l}l 
1 

By Lemma 1 we see that limdl _,Z((D,A)[p U v]) = Z(C[p U v]), and this 
finishes the proof, because in the limit (4) becomes (3). n 

We now consider Gaussian elimination applied to matrices in V(,,,. We 
describe the elimination process (if it is possible) as follows: Let A(‘): = 
[a$)] : =A. In the first elimination step we multiply A(‘) from the left by the 

matrix 

where ljl=ajl/a,, for j=2,...,n. Then 

where Ac2) = [a!“!]. In the kth step (k > 2) of the elimination process, we 

multiply 
‘I 

a\? . a Y’k 

L k-l 
. . . &A = 

0 uik--lf’k _ 1 a~“_it~ 

0 1 Ack, 
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from the left by 

L, = 

1 
0 

1 
0 -1 k+l,k 

1 

- ‘n,k 1 

where lj k = a$)/ait),, and obtain 

I- 

L,’ . . L,A = 

-l 

aii’ . . . . . . . 

0 1 A(k+l) 
I_ 

We now have the following first main result: 

THEOREM 1. Let A E I’(,,,, A [ ( n - l)] nonsingular. Then 

-I 

Gaussian 
elimination without pivoting applied to A is possible, and all matrices 

L,L,_ 1 . . . L,A are in V(,,, too fork = l,...,n. 

Proof. Since A E Vcn, c T(,,, and A[(n - l)] is nonsingular, it follows 
that l(A[(n-l)])>O. Hence, all principal minors A[(i)], i=l,...,n-1, 
are positive. (See, e.g., Remark 3.7 in Engel and Schneider [l, p. 1611.) Thus 
by a well-known result (e.g., Theorem 2.5 in Stewart [8, p. 120]), Gaussian 
elimination without pivoting is possible. Thus it remains to show that Lk . . . 
L,A~V~,)forall k=l,..., n - 1. We do this by induction on k. 

k = 1: Looking at the above-described algorithm, we see that by construc- 
tion, the matrix A, is equal to the matrix constructed from A via (2). Thus by 
Lemma 3, we have that A@) E Vcn_ij, and then it follows immediately that 
L,A E V(,,,, since for any p G (n) with 1 EP, det(L,A),[p] =(aiy-- 

t)detA’,2)[p \{l}] and l(LiA[~])=min{ai’,),l(A[~ \{l}])}. 
Assume now that for all k with 1~ k < i < n we have L,. . . L,A E V(“,. 

This implies that Ack+‘)~ V&k,. Applying the same arguments as in the first 
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step of the elimination on ACk+ ‘), we see that 

But 

VOLKERMEHRMANN 

1 
-1 k+Z,k+l 0 

1 
,#k+ 1) E v 

(n-k)’ 

_ -‘n,k+l o 1 

1 

-1 k+Z,k+l * 0 
1 

L k+l=I@ : 

’ . > 

0 * -‘n,k+l 1 _ 1 

and thus B:=&+r&. . . L,A E V+,,, This follows now immediately since 

detB,[a] = n 
jE(k+l)na 

(ajj)-t)detA(k+2)[((n)\(k+l))ncY]. 

Thus in the inequality 

detB,[pUv]detB,[pnn] <detB,[p]detB,[v], 

the diagonal elements cancel. Hence, it remains only an inequality for subsets 
of C(n) \ (k + l)), and this inequality holds, since A(k+2) E VC,_kP,j for all 
t 6 Z(A[(p U v)n(n) \ (k + l)]). But 

I(A[(Buv)n((n)\(k+l))l)). n 

This shows that I’+, is invariant under Gaussian elimination without 
pivoting, but this doesn’t hold for rCn,, as the following example shows: Let 

9 2 2 

A= 2 9 ii ET+,>. 

[ 1 2 + 9 
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After one step of elimination, 

which is obviously not in r(,,, since (L,A)ss(LrA)sa < 6. 

REMARK 1. Obviously, by looking at the determinantal inequality (l), 
any lower or upper triangular matrix with nonnegative diagonal elements is in 
Vcn,. At this point one sees the great usefulness of a determinantal characteri- 
zation for classes of matrices, like those for T-matrices introduced in [l] or for 
V-matrices introduced in [6], although in many places it looks a lot more 
complicated than other characterizations. 

COROLLARY 1. Let A E V(,,, and 3j E (n) such that A[(n) \ {j}] is 
rwrwingulur. Then there exists a permutation matrix P such that any matrix 
L,. . . L,APAPT in the Gaussian elimination process applied to PAPT is again 
in Vcni. 

Proof. Choose P such that det ( PAPT)[ (n - l)] # 0. Since P is a permu- 
tation matrix, PAPT is again in V#.+,. Thus we can apply Theorem 1. n 

COROLLARY 2. Let A E Vcn, be nonsingular. Then, for any permutation 
matrix P, any matrix L,. . * L,APAPT in the Gaussian elimination process 
applied to PAPT is again in V(,,,. 

Proof Since A E Vcn, is nonsingular, then A[ (n) \ { j }] is nonsingular 
for all j E (n). Hence we can apply Theorem 1 to PAPT for any P. H 

REMARK 2. For the M-matrices it was shown by Kuo [5], based on a 
result in Fiedler and Ptak [3], that the irreducible M-matrices are closed with 
respect to Gaussian elimination. This doesn’t hold for V(,,,. For M-matrices 
one can use the Perron-Frobenius theorem to get that if A E MC,) is irreduc- 
ible and singular, then still all principal minors of order n - 1 are nonzero. 
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But this does not work for V(,,,, as the following example shows. Let 

A is singular and irreducible, but det A = 0 and det A[{ 1,2}] = 0. 

Now we consider the case of a singular A E V&, more deeply. 

THEOREM 2. Let A E V(“,, A singular. Then there exist a permutation P 
andkE(n)U{O} such that PAP* has an LU decomposition with 

L= 
Lll O b H-1 L 21 1 b-k 

nonsingular, unit diagonal, lower triangular, and with 

U= 
&I % } k H---l 0 u, }n-k 

upper triangular and such that U,, is rwnsingulur and U, has only zeros on 
the diagonal. Furthermore, the first k elimination steps sufj3ce to produce this 
decomposition, and LiLi_l. *- L,A E I’,+) for all j = l,...,k. 

Proof. Let p c (n) be a subset of maximal cardinality such that 
det A[p] # 0. Let ]p]= k. If such a set does not exist, then set k = d. 

(1) k # 0; Then there exists a permutation matrix ?i such that 
detP,APT[(k)]#O and detP,AP,T[(k)U{j}]=O for all Jo\‘. 
Applying Gaussian elimination to P, PAT, we can do this up to step k, ,and in 
any step the matrix is again in VCn) b’ Theorem 1. After the kth step, the y 
matrix Ack+‘) has the form 

ag . . . . . . . a!“,’ 

0 

0 1 A(k+l) 
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By the fact that PIAPT[(k)u{j}] =0 Vj E (n)\(k) it follows that all 
diagonal elements of ACk+ ‘) are zero. If this were not the case, one could say 
there exists a j E (n) \ (k) such that the (j, j) diagonal element of ACk+‘) is 
nonzero, and then take a permutation matrix Ps interchanging the j th row 
with the (k + 1)st row; this would mean that in applying Gaussian elimination 
to P,P,APTPsr the elimination would be possible up to the (k + l)st step. But 
the abovementioned result (e.g. Stewart [8, p. 1201) would imply that 
det(P,P,APirPz)[(k + l)] # 0, which contradicts the maximal cardinality of 
the above-chosen set p. 

Thus for ACk+‘)= [bij] E VCn_k), we have that all diagonal elements are 
zero. But sinceA(k+l)EVC,_k), it then followsthat detACktl)[y] =OV’vc (rr 
- k). This implies that all cyclic products bi,, i, . . . bi , i, of all orders p in 
Akc ‘1 are zero. But this implies that the index set {k + 1,. . . , n } can be 
ordered by a total order 3 in such a way that Vi, j E (n) \ (k), aij # 0 

implies i 3 j. Thus there exists a permutation Pz that permutes ACk+‘) to 
upper triangular form with zeros in the diagonal. 

The permutation matrix 

PC’ O]k 
2 [+I 0 p2 }n-k 

does not affect (_P,APT)[(k)]. Th ere ore we can apply Gaussian elimination f 
up to step k to P2P,AP~~2 and obtain the required form. 

(2) k = 0. In this case we cannot do any elimination step, and applying 
the second part of the argument in (l), we just have to take the permutation 
that brings A into upper triangular form with zeros in the diagonal. The proof 
is completed by taking L = I. n 

We wish to thank Professor H. Schneider for proposing the work on the 
above subject. 
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