On the LU Decomposition of \boldsymbol{V}-Matrices

Volker Mehrmann
Fakultät für Mathematik
Universität Bielefeld
Postfach 8640
4800 Bielefeld 1, Federal Republic of Germany

Submitted by Hans Schneider

Abstract

We show that the class of V-matrices, introduced by Mehrmann [6], which contains the M-matrices and the Hermitian positive semidefinite matrices, is invariant under Gaussian elimination.

1. INTRODUCTION

Recently there has been revived interest in the question, under which conditions an M-matrix A has an $L U$ decomposition, where L is a nonsingular, lower triangular M-matrix and U is an upper triangular M-matrix (e.g. Funderlic and Plemmons [4], Kuo [5], Rothblum [8], Varga and Cai [10, 11]). It is natural to ask whether the results obtained for M-matrices still hold in more general classes. In this paper we will be primarily concerned with the V-matrices (e.g. Mehrmann [6]), which are defined as follows: An $n \times n$ complex matrix A is called a V-matrix if all principal minors of A are nonnegative and for all subsets $\mu, \nu \subseteq\{1,2, \ldots, n\}$ and all real numbers t such that all principal minors of $(A-t I)[\mu \cup \nu]$ are nonnegative, $\operatorname{det}(A-t I)[\mu \cap$ $\nu] \operatorname{det}(A-t I)[\mu \cup \nu] \leqslant \operatorname{det}(A-t I)[\mu] \operatorname{det}(A-t I)[\nu]$, where for $\alpha \subseteq$ $\{1, \ldots, n\}, A[\alpha]$ denotes the submatrix of A given by the rows and columns indexed in α.

It was shown in [6] that the set of V-matrices includes M-matrices and Hermitian positive semidefinite matrices and that the class of V-matrices is invariant under multiplication (addition) by positive (nonnegative) diagonal matrices. We will show that for a nonsingular V-matrix A, Gaussian elimination without pivoting is possible and the matrices created by the elimination process are again V-matrices, i.e., the class of nonsingular V-matrices is invariant under Gaussian elimination. For a singular V-matrix A we will show
that there always exists a permutation matrix P such that $P A P^{T}$ is decomposable by Gaussian elimination into a product $L U$, where L is lower triangular, unit diagonal, and nonsingular and U is upper triangular and singular. Again, any of the matrices produced by the elimination is a V-matrix.

2. PRELIMINARIES

By $\mathbb{R}(\mathbb{C})$ we denote the real (complex) field, and by $\mathbb{R}^{n, n}\left(\mathbb{C}^{n, n}\right)$ the real (complex) $n \times n$ matrices. For a positive integer n, we set $\langle n\rangle:=\{1, \ldots, n\}$. For $A \in \mathbb{C}^{n, n}$ and $\mu \subseteq\langle n\rangle$, we denote by $A[\mu]$ the matrix $\left[a_{i j}\right] \in \mathbb{C}^{|\mu|,|\mu|}$ with $i, j \in \mu$. (Here $|\mu|$ denotes the cardinality of the set μ.) For $t \in \mathbb{R}$ we set $A_{t}[\mu]:=(A-t I)[\mu]$, where I is the identity matrix. By $\sigma(A)$ we denote the spectrum of A, by $\rho(A)$ the spectral radius of A; and furthermore we set

$$
l(A):= \begin{cases}\min (\sigma(A) \cap \mathbb{R}) & \text { if } \quad \sigma(A) \cap \mathbb{R} \neq \varnothing \\ \infty & \text { otherwise }\end{cases}
$$

Definition 1. A matrix $A=\left[a_{i j}\right] \in \mathbb{C}^{n, n}$ is called
(i) a V-matrix $\left(A \in V_{\langle n\rangle}\right)$ if all principal minors of A are nonnegative and if for all $\mu, \nu \subseteq\langle n\rangle(\mu, \nu \neq \varnothing)$ and all $t \in \mathbb{R}$ such that all principal minors of $A_{t}[\mu \cup \nu]$ are nonnegative,

$$
\begin{equation*}
\operatorname{det} A_{t}[\mu] \operatorname{det} A_{t}[\nu] \geqslant \operatorname{det} A_{t}[\mu \cup \nu] \operatorname{det} A_{t}[\mu \cap \nu] \tag{1}
\end{equation*}
$$

(ii) a τ-matrix $\left(A \in \tau_{\langle n\rangle}\right)$ if
(a) $l(A[\mu])<\infty \forall \mu \subseteq\langle n\rangle(\mu \neq \varnothing)$,
(b) $l(A[\mu]) \leqslant l(A[\nu]) \forall \nu \subseteq \mu \subseteq\langle n\rangle(\nu, \mu \neq \varnothing)$;
(iii) an M-matrix $\left(A \in M_{\langle n\rangle}\right)$ if $A=\alpha I-B$ with B a nonnegative matrix and $\alpha \geqslant \rho(B)$.

In order to see how a matrix in $V_{\langle n\rangle}$ behaves under Gaussian elimination we consider the following: Let $A=\left[a_{i j}\right] \in \mathbb{C}^{n, n}, n \geqslant 2$, and $a_{11} \neq 0$. Define the matrix $C=\left[c_{i j}\right] \in \mathbb{C}^{n-1, n-1}$ by

$$
\begin{equation*}
c_{i j}=\frac{a_{i j} a_{11}-a_{i 1} a_{1 j}}{a_{11}} \quad \text { for } \quad i, j \in\{2, \ldots, n\} \tag{2}
\end{equation*}
$$

It is clear that C is exactly the $(n-1) \times(n-1)$ submatrix that occurs in the
lower right corner of the matrix A after one step of Gaussian elimination without pivoting. In the following lemma we list some properties of C.

Lemma 1. For $A \in \mathbb{C}^{n, n}$, with $n \geqslant 2$ and $a_{11} \neq 0$, let the matrix C be defined via (2). Then:
(i) $\operatorname{det} C[\mu]=\operatorname{det} A[\mu \cup\{\mathrm{I}\}] / a_{11} \forall \mu \subseteq\{2, \ldots, n\}$.
(ii) $\operatorname{det} C_{t}[\mu]=\left(1 / a_{11}\right)\left(\operatorname{det} A_{t}[\mu \cup\{1\}]+t \operatorname{det} A_{t}[\mu]\right) \forall \mu \subseteq\{2, \ldots, n\}, \forall t$ $\in \mathbb{R}$.
(iii)

$$
\operatorname{det} C_{t}[\mu]=\frac{1}{a_{11}} \lim _{d_{1} \rightarrow \infty}\left(\frac{1}{d_{1}} \operatorname{det}\left(D_{1} A\right)_{t}[\mu \cup\{1\}]\right)
$$

$\forall \mu \subseteq\{2, \ldots, n\}, \forall t \in \mathbb{R}$, where

$$
D_{1}=\left[\begin{array}{llll}
d_{1} & & & 0 \\
& 1 & & \\
& & \ddots & \\
0 & & & 1
\end{array}\right]
$$

Proof. (i) follows directly by the Sylvester determinant identity.
(ii): For all $\mu \subseteq\{2, \ldots, n\}$ and all $t \in \mathbb{R}$ we have

$$
\begin{aligned}
\operatorname{det} A_{t}[\mu \cup\{1\}]= & \sum_{\alpha \subseteq \mu \cup\{1\}}(-t)^{|\alpha|} \operatorname{det} A[(\mu \cup\{1\}) \backslash \alpha] \\
= & \sum_{\alpha \subseteq \mu}(-t)^{|\alpha|} \operatorname{det} A[(\mu \cup\{1\}) \backslash \alpha] \\
& +\sum_{\alpha \subseteq \mu \cup\{1\}}(-t)^{|\alpha|} \operatorname{det} A_{t}[(\mu \cup\{1\}) \backslash \alpha] \\
= & \sum_{\alpha \subseteq \mu}(-t)^{|\alpha|}\left(a_{11} \operatorname{det} C[\mu \backslash \alpha]\right) \\
& +(-t) \sum_{\alpha \subseteq \mu}(-t)^{|\alpha|} \operatorname{det} A[\mu \backslash \alpha] \quad[\text { by (i)] } \\
= & a_{11} \operatorname{det} C_{t}[\mu]-t \operatorname{det} A_{t}[\mu] .
\end{aligned}
$$

Therefore

$$
\operatorname{det} C_{t}[\mu]=\frac{1}{a_{11}}\left(\operatorname{det} A_{t}[\mu \cup\{1\}]+t \operatorname{det} A_{t}[\mu]\right)
$$

(iii): $\operatorname{det}\left(D_{1} A\right)_{t}[\mu \cup\{1\}]=d_{1} \operatorname{det} A_{t}[\mu \cup\{1\}]+\left(d_{1}-1\right) t \operatorname{det} A_{t}[\mu]$. This follows by expanding the determinant with respect to the first row. Thus

$$
\frac{1}{d_{1}} \operatorname{det}\left(D_{1} A\right)_{t}[\mu \cup\{1\}]=\operatorname{det} A_{t}[\mu \cup\{1\}]+\left(\frac{d_{1}-1}{d_{1}}\right) t \operatorname{det} A_{t}[\mu]
$$

and since $\lim _{d_{1} \rightarrow \infty}\left(d_{1}-1\right) / d_{1}=1$, (iii) follows by (ii).
If we now consider the matrix C for a matrix $A \in V_{\langle n\rangle}$ we get the following:

Lemma 2. Let $A \in V_{\langle n\rangle}, n \geqslant 2$, and let C be the matrix defined by A via (2). Then:
(i) $l(C[\mu])<\infty$ and $l(C[\mu]) \in[l(A[\mu \cup\{1\}]), l(A[\mu])] \forall \mu \subseteq\{2, \ldots, n\}$.
(ii) Let $t \in \mathbb{R}$ and $\mu \subseteq\{2, \ldots, n\}$. Then all principal minors of $C_{t}[\mu]$ are nonnegative iff $t \leqslant l(C[\mu])$.

Proof. Let $\mu \subseteq\{2, \ldots, n\}$. For any $d_{1}>0$ we have that the matrix $D_{1} A$ defined as in Lemma 1 is in $V_{\langle n\rangle}$ (this follows by Theorem 2 of Mehrmann [6]). Thus for all $d_{1}>1, l\left(D_{1} A\right)$ exists and $l\left(D_{1} A[\mu \cup\{1\}]\right) \in[l(A[\mu \cup$ $\{1\}]), l(A[\mu])]$. The latter follows because $\operatorname{det}\left(D_{1} A\right)_{t}[\mu \cup\{1\}]=d_{1} \operatorname{det} A_{t}[\mu$ $\cup\{1\}]+\left(d_{1}-1\right) t \operatorname{det} A_{t}[\mu]$. For $t<0$ this is positive, since $D_{1} A \in V_{(n)}$. If $l(A[\mu \cup\{1\}])=l(A[\mu])$, then $l\left(D_{1} A[\mu \cup\{1\}]\right)=l(A[\mu \cup\{1\}])$, which is in the given interval. If $l(A[\mu])>l(A[\mu \cup\{1\}])$, then for all $0 \leqslant t \leqslant l(A[\mu \cup$ $\{1\}]$) we have $\operatorname{det}\left(D_{1} A\right)_{t}[\mu \cup\{1\}]>0$. But for $\bar{t}=l(A[\mu])$, applying Theorem 5 of Mehrmann [6], we obtain that $\operatorname{det} A_{\hat{i}}[\mu \cup\{1\}] \leqslant 0$. Thus

$$
l\left(D_{1} A[\mu \cup\{1\}]\right) \in[l(A[\mu \cup\{n\}]), l(A[\mu])]
$$

The limit $\lim _{d_{1} \rightarrow \infty}\left(1 / d_{1}\right) \operatorname{det}\left(\left(D_{1} A\right)_{t}[\mu \cup\{1\}]\right)$ exists, and $l\left(D_{1} A[\mu \cup\{1\}]\right)$ is a continuous function in d_{1}. Thus, for $l(C[\mu])$ we also have $l(C[\mu]) \in[l(A[\mu$ $\cup\{n\}]), l(A[\mu])]$.
(ii): By Theorem 2(i) of Mehrmann [6], for any $A \in V_{\langle n\rangle}$ and D_{1} positive diagonal, $D_{1} A \in V_{\langle n\rangle}$. Applying now Lemma 1 of Mehrmann [6], we have that for $A \in V_{\langle n\rangle}, D_{1}$ positive diagonal, $t \in \mathbb{R}$, and $\mu \subseteq\langle n\rangle$ the following are equivalent:
(a) all principal minors of $\left(D_{1} A\right)_{t}[\mu]$ are nonnegative;
(b) $t \leqslant l\left(\left(D_{1} A\right)[\mu]\right)$.

Again, since the eigenvalues and the characteristic polynomials of submatrices are continuous functions in d_{1}, it follows that this result also holds for the limit, i.e. for C.

It was shown by Fan [2] that for an M-matrix A the above constructed matrix C again is an M-matrix. Now we get a similar result for $V_{\langle n\rangle}$.

Lemma 3. Let $A \in V_{\langle n\rangle}, n \geqslant 2$, and let C be defined by the matrix A via (2). Then, $C \in V_{\langle n-1\rangle}$.

Proof. We have to show that for all $\mu, \nu \subseteq\{2, \ldots, n\}$ and all $t \in \mathbb{R}$ such that all principal minors of $C_{t}[\mu \cup \nu]$ are nonnegative,

$$
\begin{equation*}
\operatorname{det} C_{t}[\mu] \operatorname{det} C_{t}[\nu] \geqslant \operatorname{det} C_{t}[\mu \cap \nu] \operatorname{det} C_{t}[\mu \cup \nu] . \tag{3}
\end{equation*}
$$

Applying Lemma 2, it suffices to show this for $t \leqslant l(C[\mu \cup \nu])$. For all $\mu, \nu \subseteq\langle n\rangle$, for any

$$
D_{1}=\left[\begin{array}{llll}
d_{1} & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right] \quad \text { with } \quad d_{1}>0
$$

and for all $t \leqslant l\left(\left(D_{1} A\right)_{t}[\mu \cup \nu]\right)$,

$$
\begin{align*}
& \frac{1}{d_{1}^{2}}\left(\operatorname{det}\left(D_{1} A\right)_{t}[\mu \cup\{1\}] \operatorname{det}\left(D_{1} A\right)_{t}[\nu \cup\{1\}]\right. \\
& \left.\quad-\operatorname{det}\left(D_{1} A\right)_{t}[(\mu \cap \nu) \cup\{1\}] \operatorname{det}\left(D_{1} A\right)_{t}[\mu \cup \nu \cup\{1\}]\right) \geqslant 0, \tag{4}
\end{align*}
$$

since $D_{1} A \in V_{\langle n\rangle}$. Since for $d_{1}>0$ the left side of (4) is a continuous function in d_{1}, it follows for all $t \leqslant \lim _{d_{1} \rightarrow \infty} l\left(D_{1} A[\mu \cup \nu]\right)$ that

$$
\begin{aligned}
\lim _{d_{1} \rightarrow \infty} & \frac{1}{d_{1}^{2}}\left(\operatorname{det}\left(D_{1} A\right)_{t}[\mu \cup\{1\}] \operatorname{det}\left(D_{1} A\right)_{t}[\nu \cup\{1\}]\right. \\
& \left.-\operatorname{det}\left(D_{1} A\right)_{t}[(\mu \cap \nu) \cup\{1\}] \operatorname{det}\left(D_{1} A\right)_{t}[\mu \cup \nu \cup\{1\}]\right) \geqslant 0 .
\end{aligned}
$$

By Lemma 1 we see that $\lim _{d_{1} \rightarrow \infty} l\left(\left(D_{1} A\right)[\mu \cup \nu]\right)=l(C[\mu \cup \nu])$, and this finishes the proof, because in the limit (4) becomes (3).

We now consider Gaussian elimination applied to matrices in $V_{\langle n\rangle}$. We describe the elimination process (if it is possible) as follows: Let $A^{(1)}:=$ $\left[a_{i j}^{(1)}\right]:=A$. In the first elimination step we multiply $A^{(1)}$ from the left by the matrix

$$
L_{1}=\left[\begin{array}{cccc}
1 & & & \\
-l_{21} & 1 & & 0 \\
\vdots & 0 & \ddots & \\
-l_{n 1} & & & 1
\end{array}\right]
$$

where $l_{j 1}=a_{j 1} / a_{11}$ for $j=2, \ldots, n$. Then

$$
L_{1} A:=\left[\begin{array}{c|ccc}
a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1 n}^{(1)} \\
\hline 0 & & & \\
\vdots & & A^{(2)} & \\
0 & & &
\end{array}\right]
$$

where $A^{(2)}=\left[a_{i j}^{(2)}\right]$. In the k th step $(k \geqslant 2)$ of the elimination process, we multiply

$$
L_{k-1} \cdots L_{1} A=\left[\begin{array}{cccccc}
a_{11}^{(1)} & \cdot & \cdot & \cdot & \cdot & a_{1, k}^{(1)} \\
& \cdot & & & & \cdot \\
& & \cdot & \cdot & & \cdot \\
0 & & & & a_{k-1, k-1}^{(k-1)} & a_{k-1, n}^{(k-1)} \\
\hline & & 0 & & & A^{(k)}
\end{array}\right]
$$

from the left by

$$
L_{k}=\left[\begin{array}{cccccccc}
1 & & & & & & \\
& & \ddots & & & & & \\
& & & 1 & & & & \\
0 & & & -l_{k+1, k} & & & & \\
& & & \cdot & 1 & & & \\
& & & \cdot & & & \cdot & \\
& & & \cdot & & & & \\
& & & -l_{n, k} & & & & \\
& & & &
\end{array}\right]
$$

where $l_{j, k}=a_{j k}^{(k)} / a_{k, k}^{(k)}$, and obtain

We now have the following first main result:
Theorem 1. Let $A \in V_{\langle n\rangle}, A[\langle n-1\rangle]$ nonsingular. Then Gaussian elimination without pivoting applied to A is possible, and all matrices $L_{k} L_{k-1} \cdots L_{1} A$ are in $V_{\langle n\rangle}$ too for $k=1, \ldots, n$.

Proof. Since $A \in V_{\langle n\rangle} \subset \tau_{\langle n\rangle}$ and $A[\langle n-1\rangle]$ is nonsingular, it follows that $l(A[\langle n-1\rangle])>0$. Hence, all principal minors $A[\langle i\rangle], i=1, \ldots, n-1$, are positive. (See, e.g., Remark 3.7 in Engel and Schneider [1, p. 161].) Thus by a well-known result (e.g., Theorem 2.5 in Stewart [8, p. 120]), Gaussian elimination without pivoting is possible. Thus it remains to show that $L_{k} \cdots$ $L_{1} A \in V_{\langle n\rangle}$ for all $k=1, \ldots, n-1$. We do this by induction on k.
$k=1$: Looking at the above-described algorithm, we see that by construction, the matrix A_{2} is equal to the matrix constructed from A via (2). Thus by Lemma 3, we have that $A^{(2)} \in V_{\langle n-1\rangle}$, and then it follows immediately that $L_{1} A \in V_{\langle n\rangle}$, since for any $\mu \subseteq\langle n\rangle$ with $1 \in \mu$, $\operatorname{det}\left(L_{1} A\right)_{t}[\mu]=\left(a_{11}^{(1)}-\right.$ $t) \operatorname{det} A_{t}^{(2)}[\mu \backslash\{1\}]$ and $l\left(L_{1} A[\mu]\right)=\min \left\{a_{11}^{(1)}, l(A[\mu \backslash\{1\}])\right\}$.

Assume now that for all k with $1 \leqslant k \leqslant i<n$ we have $L_{k} \cdots L_{1} A \in V_{\langle n\rangle}$. This implies that $A^{(k+1)} \in V_{\langle n-k\rangle}$. Applying the same arguments as in the first
step of the elimination on $A^{(k+1)}$, we see that

$$
\left[\begin{array}{ccccc}
1 & & & & \\
-l_{k+2, k+1} & & & & \\
\cdot & 1 & & & \\
\vdots & & & . & \\
\cdot & & & & \\
-l_{n, k+1} & 0 & & & 1
\end{array}\right] A^{(k+1)} \in V_{\langle n-k\rangle}
$$

But

$$
L_{k+1}=I \oplus\left[\begin{array}{ccccc}
1 & & & & \\
-l_{k+2, k+1} & \cdot & & 0 & \\
\cdot & & \cdot & \cdot & \\
\cdot & 0 & & & \cdot \\
-l_{n, k+1} & & & & \\
\hline
\end{array}\right]
$$

and thus $B:=L_{k+1} L_{k} \cdots L_{1} A \in V_{\langle n\rangle}$. This follows now immediately since

$$
\operatorname{det} B_{t}[\alpha]=\prod_{j \in\langle k+1\rangle \cap \alpha}\left(a_{j j}^{(j)}-t\right) \operatorname{det} A^{(k+2)}[(\langle n\rangle \backslash\langle k+1\rangle) \cap \alpha]
$$

Thus in the inequality

$$
\operatorname{det} B_{t}[\mu \cup \nu] \operatorname{det} B_{t}[\mu \cap \nu] \leqslant \operatorname{det} B_{t}[\mu] \operatorname{det} B_{t}[\nu]
$$

the diagonal elements cancel. Hence, it remains only an inequality for subsets of $(\langle n\rangle \backslash\langle k+1\rangle)$, and this inequality holds, since $A^{(k \mid 2)} \in V_{\langle n-k-1\rangle}$ for all $t \leqslant l(A[(\mu \cup \nu) \cap\langle n\rangle \backslash\langle k+1\rangle])$. But

$$
\begin{aligned}
l(B[\mu \cup \nu])=\min \left(\min _{j \in(\mu \cup \nu) \cap\langle k+1\rangle}\right. & \left\{a_{j j}^{(j)}\right\}, \\
& l(A[(\mu \cup \nu) \cap(\langle n\rangle \backslash\langle k+1\rangle)])) .
\end{aligned}
$$

This shows that $V_{\langle n\rangle}$ is invariant under Gaussian elimination without pivoting, but this doesn't hold for $\tau_{\langle n\rangle}$, as the following example shows: Let

$$
A=\left[\begin{array}{lll}
9 & 2 & 2 \\
2 & 9 & \frac{1}{2} \\
2 & \frac{1}{3} & 9
\end{array}\right] \in \tau_{\langle n\rangle} .
$$

After one step of elimination,

$$
L_{1} A=\left[\begin{array}{ccc}
9 & 2 & 2 \\
0 & \frac{77}{9} & \frac{1}{18} \\
0 & -\frac{1}{9} & \frac{77}{9}
\end{array}\right]
$$

which is obviously not in $\tau_{\langle n\rangle}$, since $\left(L_{1} A\right)_{23}\left(L_{1} A\right)_{32}<0$.

Remark 1. Obviously, by looking at the determinantal inequality (1), any lower or upper triangular matrix with nonnegative diagonal elements is in $V_{\langle n\rangle}$. At this point one sees the great usefulness of a determinantal characterization for classes of matrices, like those for τ-matrices introduced in [1] or for V-matrices introduced in [6], although in many places it looks a lot more complicated than other characterizations.

Corollary 1. Let $A \in V_{\langle n\rangle}$ and $\exists j \in\langle n\rangle$ such that $A[\langle n\rangle \backslash\{j\}]$ is nonsingular. Then there exists a permutation matrix P such that any matrix $L_{k} \cdots L_{1} A P A P^{T}$ in the Gaussian elimination process applied to $P A P^{T}$ is again in $V_{\langle n\rangle}$.

Proof. Choose P such that $\operatorname{det}\left(P A P^{T}\right)[\langle n-1\rangle] \neq 0$. Since P is a permutation matrix, $P A P^{T}$ is again in $V_{\langle n\rangle}$. Thus we can apply Theorem 1 .

Corollary 2. Let $A \in V_{\langle n\rangle}$ be nonsingular. Then, for any permutation matrix P, any matrix $L_{k} \cdots L_{1} A P A P^{T}$ in the Gaussian elimination process applied to $P A P^{T}$ is again in $V_{\langle n\rangle}$.

Proof. Since $A \in V_{\langle n\rangle}$ is nonsingular, then $A[\langle n\rangle \backslash\{j\}]$ is nonsingular for all $j \in\langle n\rangle$. Hence we can apply Theorem I to $P A P^{T}$ for any P.

Remark 2. For the M-matrices it was shown by Kuo [5], based on a result in Fiedler and Pták [3], that the irreducible M-matrices are closed with respect to Gaussian elimination. This doesn't hold for $V_{\langle n\rangle}$. For M-matrices one can use the Perron-Frobenius theorem to get that if $A \in M_{\langle n\rangle}$ is irreducible and singular, then still all principal minors of order $n-1$ are nonzero.

But this does not work for $V_{\langle n\rangle}$, as the following example shows. Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \in V_{\langle n\rangle}
$$

A is singular and irreducible, but $\operatorname{det} A=0$ and $\operatorname{det} A[\{1,2\}]=0$.
Now we consider the case of a singular $A \in V_{\langle n\rangle}$ more deeply.
Theorem 2. Let $A \in V_{\langle n\rangle}$, A singular. Then there exist a permutation P and $k \in\langle n\rangle \cup\{0\}$ such that PAP ${ }^{T}$ has an LU decomposition with

$$
\left.L=\left[\begin{array}{c|c}
L_{11} & 0 \\
\hline L_{21} & 1
\end{array}\right]\right\}_{n-k}
$$

nonsingular, unit diagonal, lower triangular, and with

$$
\left.U=\left[\begin{array}{c|c}
U_{11} & U_{12} \\
\hline 0 & U_{22}
\end{array}\right]\right\}_{n-k}
$$

upper triangular and such that U_{11} is nonsingular and U_{22} has only zeros on the diagonal. Furthermore, the first k elimination steps suffice to produce this decomposition, and $L_{j} L_{j-1} \cdots L_{1} A \in V_{\langle n\rangle}$ for all $j=1, \ldots, k$.

Proof. Let $\mu \subseteq\langle n\rangle$ be a subset of maximal cardinality such that $\operatorname{det} A[\mu] \neq 0$. Let $|\mu|=k$. If such a set does not exist, then set $k=0$.
(1) $k \neq 0$. Then there exists a permutation matrix P_{1} such that $\operatorname{det} P_{1} A P_{1}^{T}[\langle k\rangle] \neq 0$ and $\operatorname{det} P_{1} A P_{1}^{T}[\langle k\rangle \cup\{j\}]=0$ for all $j \in\langle n\rangle \backslash\langle k\rangle$. Applying Gaussian elimination to $P_{1} P A_{1}^{T}$, we can do this up to step k, and in any step the matrix is again in $V_{\langle n\rangle}$ by Theorem 1 . After the k th step, the matrix $A^{(k+1)}$ has the form

$$
\left[\begin{array}{cccccccccc}
a_{11}^{(1)} & \cdot & a_{1 n}^{(k)} \\
& \cdot & \cdot & & & & & & \cdot \\
0 & & & \cdot & & & & & \cdot \\
0 & & & a_{k k}^{(k)} & \cdot & \cdot & \cdot & a_{k n}^{(k)} \\
\hline & & & 0 & & & \mid A^{(k+1)} &
\end{array}\right]
$$

By the fact that $P_{1} A P_{1}^{T}[\langle k\rangle \cup\{j\}]=0 \forall j \in\langle n\rangle \backslash\langle k\rangle$ it follows that all diagonal elements of $A^{(k+1)}$ are zero. If this were not the case, one could say there exists a $j \in\langle n\rangle \backslash\langle k\rangle$ such that the (j, j) diagonal element of $A^{(k+1)}$ is nonzero, and then take a permutation matrix P_{2} interchanging the j th row with the $(k+1)$ st row; this would mean that in applying Gaussian elimination to $P_{2} P_{1} A P_{1}^{T} P_{2}^{T}$ the elimination would be possible up to the $(k+1)$ st step. But the abovementioned result (e.g. Stewart [8, p. 120]) would imply that $\operatorname{det}\left(P_{2} P_{1} A P_{1}^{T} P_{2}^{T}\right)[\langle k+1\rangle] \neq 0$, which contradicts the maximal cardinality of the above-chosen set μ.

Thus for $A^{(k+1)}=\left[b_{i j}\right] \in V_{\langle n-k\rangle}$, we have that all diagonal elements are zero. But since $A^{(k+1)} \in V_{\langle n-k\rangle}$, it then follows that det $A^{(k+1)}[\nu]=0 \forall \nu \subseteq\langle n$ $-k\rangle$. This implies that all cyclic products $b_{i_{1}, i_{2}} \cdots b_{i_{p}, i_{1}}$ of all orders p in $A^{(k+1)}$ are zero. But this implies that the index set $\{k+1, \ldots, n\}$ can be ordered by a total order $\breve{\leq}$ in such a way that $\forall i, j \in\langle n\rangle \backslash\langle k\rangle, a_{i j} \neq 0$ implies $i \geqq j$. Thus there exists a permutation P_{2} that permutes $A^{(k+1)}$ to upper triangular form with zeros in the diagonal.

The permutation matrix

$$
\left.\tilde{P}_{2}=\left[\begin{array}{c|c}
I & 0 \\
\hline 0 & P_{2}
\end{array}\right]\right\}_{n-k}^{k}
$$

does not affect $\left(P_{1} A P_{1}^{T}\right)[\langle k\rangle]$. Therefore we can apply Gaussian elimination up to step k to $\tilde{P}_{2} P_{1} A P_{1}^{T} \tilde{P}_{2}$ and obtain the required form.
(2) $k=0$. In this case we cannot do any elimination step, and applying the second part of the argument in (1), we just have to take the permutation that brings A into upper triangular form with zeros in the diagonal. The proof is completed by taking $L=I$.

We wish to thank Professor H. Schneider for proposing the work on the above subject.

REFERENCES

1 G. M. Engel and H. Schneider, The Hadamard-Fischer inequality for a class of matrices defined by eigenvalue monotonicity, Linear and Mulilinear Algebra 4:155-176 (1976).
2 K. Fan, Note on M-matrices, Quart. J. Math. Oxford Ser. (12)11:43-49 (1960).
3 M. Fiedler and V. Pták, On matrices with nonpositive off diagonal elements and positive principal minors, Czechoslovak Math. J. 12(87):382-400 (1962).
4 R. E. Funderlic and R. J. Plemmons, $L U$ decomposition of M-matrices by elimination with pivoting, Linear Algebra Appl., to appear.

5 I.-W. Kuo, A note on factorization of singular M-matrices, Linear Algebra Appl. 16:217-220 (1977).
6 V. Mehrmann, On classes of matrices containing M-matrices and Hermitian positive semidefinite matrices, Linear Algebra Appl., to appear.
7 U. G. Rothblum, A rank characterization of the number of final classes of a nonnegative matrix, Linear Algebra Appl. 23:65-68 (1979).
8 G. W. Stewart, Introduction to Matrix Computation, Academic, New York, 1973.
9 R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.

10 R. S. Varga and D.-Y. Cai, On the $L U$ factorization of M-matrices, Linear Algebra Appl., to appear.
11 R. S. Varga and D.-Y. Cai, On the $L U$ factorization of M-matrices: Cardinality of the set $\mathscr{P}_{n}^{g}(A)$, Linear Algebra Appl., to appear.

Received 28 March 1983; revised 13 June 1983

