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ABSTRACT

We show that the class of V-matrices, introduced by Mehrmann [6], which
contains the M-matrices and the Hermitian positive semidefinite matrices, is invariant
under Gaussian elimination.

1. INTRODUCTION

Recently there has been revived interest in the question, under which
conditions an M-matrix A has an LU decomposition, where L is a nonsingular,
lower triangular M-matrix and U is an upper triangular M-matrix (e.g.
Funderlic and Plemmons {4], Kuo [5], Rothblum [8], Varga and Cai [10,11]).
It is natural to ask whether the results obtained for M-matrices still hold in
more general classes. In this paper we will be primarily concerned with the
V-matrices (e.g. Mehrmann [6]), which are defined as follows: An n X n
complex matrix A is called a V-matrix if all principal minors of A are
nonnegative and for all subsets u, » € {1,2,...,n} and all real numbers ¢ such
that all principal minors of (A — ¢I)[p U »] are nonnegative, det(A — ¢I)[p N
vldet(A — tI)[p U r] < det(A — tD)[p]det (A — tI)[»], where for aC
{1,...,n}, Ala] denotes the submatrix of A given by the rows and columns
indexed in a.

It was shown in [6] that the set of V-matrices includes M-matrices and
Hermitian positive semidefinite matrices and that the class of V-matrices is
invariant under multiplication (addition) by positive (nonnegative) diagonal
matrices. We will show that for a nonsingular V-matrix A, Gaussian elimina-
tion without pivoting is possible and the matrices created by the elimination
process are again V-matrices, i.e., the class of nonsingular V-matrices is
invariant under Gaussian elimination. For a singular V-matrix A we will show
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that there always exists a permutation matrix P such that PAP? is decompos-
able by Gaussian elimination into a product LU, where L is lower triangular,
unit diagonal, and nonsingular and U is upper triangular and singular. Again,
any of the matrices produced by the elimination is a V-matrix.

2. PRELIMINARIES

By R (C) we denote the real (complex) field, and by R™" (C™") the real
(complex) n X n matrices. For a positive integer n, we set (n):={1,...,n}.
For A€ C™"and p C (n), we denote by A[] the matrix [a;;] € C*" " with
i, j €p. (Here |u| denotes the cardinality of the set p.) For t €R we set
A,[p]:=(A —tI)[p], where I is the identity matrix. By ¢(A) we denote the
spectrum of A, by p(A) the spectral radius of A; and furthermore we set

DEeFmNITION 1. A matrix A ={a;;]€C™" is called

(i) a V-matrix (A € V,,,,) if all principal minors of A are nonnegative and
if for all p, » C (n) (p,»# @) and all ¢ €R such that all principal minors of
A,[p U »] are nonnegative,

det A, [p]det A,[v] > det A,[pUr]det A, [pn7]; (1)

(i) a T-matrix (A € 1.,,,) if
(@) I(A[p]) <o VpC(n) (p#9),
(b) KAL) <K(ADY) Vp S pC (n) (rup#0);

(iii) an M-matrix (A€ M,,,) if A=al — B with B a nonnegative matrix
and a > p(B).

In order to see how a matrix in V,,, behaves under Gaussian elimination
we consider the following: Let A=[a;;]€C™", n>2, and a,, # 0. Define
the matrix C =[¢;;]€C" """ ! by

a;;a,, —a;a;
¢, =—4 2 B for q,je(2,...,n}. (2)
an

It is clear that C is exactly the (n — 1)X(n — 1) submatrix that occurs in the
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lower right corner of the matrix A after one step of Gaussian elimination
without pivoting. In the following lemma we list some properties of C.

Lemma 1. For A€ C™", with n>2 and au%O, let the matrix C be
defined via (2). Then:

(i) detC[p)=det A[pU{1}]/a;, VnC {2,....n}.
(i) detC,[p]=(1/a, Ndet A,[pU{1}]+tdet A [u]) VRC {2,...,n}, Vi
€R.

(i)
1. .. 1
detCt[p.]=a— lim. d—det(DlA)t[‘p«U{l}]
11 d,— 00 1 ’
Ve c{2,...,n}, Vt €R, where
d, 0
1
D1=
0 1

Proof. (i) follows directly by the Sylvester determinant identity.
(ii): For all pC {2,...,n} and all t €R we have

detApU{l)]= ¥ (-0)"detA[(sU{1})\a]

acpU{l}
= ¥ (—t)"det A[(pU{1})\q]
+ Y (—t)det A, [(pU{1})\q]
aCpuU{l}
=X (_t)lal(andetc[#\a])
+(—t) X (—t)detA[pNa]  [by(i)]

=a, detC,[p] —tdet A,[p].
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Therefore

detC,[p] = —(det A, [p U {1}] +tdet A,[p]).

1
ay

(iti): det(D,A),[pU{1}]=d det A,[pU{1}]+(d, — D)tdet A,[u]. This
follows by expanding the determinant with respect to the first row. Thus

-1
27 det(Dy), [0 (1)] = det 4, w0 ()] Joder 4, ],
and since lim, _, . (d, —1)/d, =1, (iii) follows by (ii). [ ]

If we now consider the matrix C for a matrix A€V,,, we get the
following:

LEmMma 2. LetAc V<n>, n > 2, and let C be the matrix defined by A via
(2). Then:

(i) UC[p)) < oo and I(C[p]) € (AL U (1)]), ALRD] VB C (2,....n).
(ii) Let t €R and p C {2,...,n}. Then all principal minors of C,[p] are
nonnegative iff t < (C[p)).

Proof. Let pC {2,...,n}. For any d, > 0 we have that the matrix D, A
defined as in Lemma 1 is in V,,, (this follows by Theorem 2 of Mehrmann
[6]). Thus for all d,>1, I(D,A) exists and (D A[pU{1}])E[I(A[pV
{1}]), I(A[])]. The latter follows because det(D;A),[u U {1}] =d;det A,[p
U{1}]+(d, — )tdet A,[u]. For ¢t <0 this is positive, since D;A € Veny If
I(A[pU {1} =I(A[p]), then I(D;A[p U {1}])=1U(A[p U{1}]), which is in
the given interval. If I(A[p])> I[(A[p U{1}]), then for all 0 <t < I(A[p U
{1}]) we have det(D,A),[nU{1}]> 0. But for { = I(A[u]), applying Theo-
rem 5 of Mehrmann [6], we obtain that det A;[u U {1}] <0. Thus

(D Alpu{1}])e[UA[pu{n}]), l(A[p])].

The limit lim; _, . (1/d,)det((D;A),[p U {1}]) exists, and I( D, A[p U {1}]) is
a continuous function in d,. Thus, for I(C[p]) we also have [(C[p]) € [I(A[p
U{n}D, I(AlrD].
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(ii): By Theorem 2(i) of Mehrmann [6], for any A € V,,,, and D, positive
diagonal, D;A € Viny: Applying now Lemma 1 of Mehrmann [6], we have
that for A € V,,,,, D, positive diagonal, ¢ €R, and p C (n) the following are
equivalent;

(a) all principal minors of (D;A),{u] are nonnegative;
(®) t <U(D,A)p).

Again, since the eigenvalues and the characteristic polynomials of submatrices
are continuous functions in d,, it follows that this result also holds for the
limit, i.e. for C. [ |

It was shown by Fan [2] that for an M-matrix A the above constructed
matrix C again is an M-matrix. Now we get a similar result for V, ..

LemMa 3. Let A€V, n>2, and let C be defined by the matrix A via
(2). Then, C€V,, _,.

Proof. We have to show that for all u,» C {2,...,n} and all t €R such
that all principal minors of C,[u U »] are nonnegative,

detC,[p]detC,[v] > detC,[pnw]detC[puUr]. (3)
Applying Lemma 2, it suffices to show this for t <I(C[pU»]). For all
B, v C{n), for any

D,= . with d, >0,

and for all ¢t <I((D,A),[p U],

1

5 (det(D,4), [wU {1)] der(D, ), [r U (1}]

— det(D,A),[(N2)U (1}]det(D,4),[pUrU(1}]) >0, (4)
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since DA € V,,.,. Since for d, > 0O the left side of (4) is a continuous function
in d,, it follows for all ¢ < lim, _, . /(D A[p U »]) that

lim_ = (det(D,4), [0 {1)] det(D,4), [0 (1)]

dy— oo aj

~ det(D,A), [(1N¥)U (1)] det(D,A4), [ U» U (1}]) 0.

By Lemma 1 we see that lim, _,  I((D,A)[pVUr])=UC[pUr]), and this
finishes the proof, because in the limit (4) becomes (3). n

We now consider Gaussian elimination applied to matrices in V,,,. We
describe the elimination process (if it is possible) as follows: Let AV:=
[a{?]:=A. In the first elimination step we multiply A® from the left by the
matrix

1
-1 1 0
L= : 0 >
L, 1

1 1 1
ai) | aif af)
L,A:= 0 s
: A®
0

where A® =[a{?]. In the kth step (k > 2) of the elimination process, we
multiply

_ 0
a(lll) . . . . a(l,)k
Ly lnd= . k-1 k'l
Y a§<—1,)k~1 a;:—l,)n
| 0 l AR
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from the left by

- -
0
1
0 ~lv1k
L= ’ ,
k . 1
L - ln,k 1 ]
where [; , = a${/a{}, and obtain
ad . . . S e
L, LA= : .
0 a% - - - af
0 I A(k+l)

We now have the following first main result:

Tueorem 1. Let A€V,,,, A[(n—1)] nonsingular. Then Gaussian
elimination without pivoting applied to A is possible, and all matrices
LiLy_y---LjAarein Vg, too fork=1,...,n.

Proof. Since A€V, C 7, and A[(n—1}] is nonsingular, it follows
that I(A[{(n —1)])> 0. Hence, all principal minors A[{i}], i=1,...,n—1,
are positive. (See, e.g., Remark 3.7 in Engel and Schneider [1, p. 161].) Thus
by a well-known result (e.g., Theorem 2.5 in Stewart [8, p. 120]), Gaussian
elimination without pivoting is possible. Thus it remains to show that L, - - -
LA€V,, for all k=1,...,n — 1. We do this by induction on k.

k = 1: Looking at the above-described algorithm, we see that by construc-
tion, the matrix A, is equal to the matrix constructed from A via (2). Thus by
Lemma 3, we have that A® €V, _,,, and then it follows immediately that
L,A€V,,,, since for any pc(n) with 1€y, det(L,A),[p]=(al)~-
t)det AD[u \ {1}] and I(L, A[p]) = min{a{, (Al \ (1}])}.

Assume now that for all k with 1<k <i<n we have L;--- LA €V,,,.
This implies that A**D €V, _,,. Applying the same arguments as in the first
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step of the elimination on A%**D we see that

_ , -
_lk+2,k+1 0
1
(k+1)
A € Vit
“ln,k+1 0 1J
But
1
_lk+2,k+l : 0
Ly, =18 : ' >
0
_ln,k+1 1

and thus B: =L, Ly - - L;A € V,,,,. This follows now immediately since

detB[a]= T (al—t)det A**D[((n)\(k+1))Na].
jektyna

Thus in the inequality
det B,[pUv]det B,[pNv] <detB,[p]det B,[»],
the diagonal elements cancel. Hence, it remains only an inequality for subsets

of ((n)\(k+1})), and this inequality holds, since A**?€V,,,_,_,, for all
t <I(A[(1 U »)A{n) N (k +1)]). But

(Blwo) =minf | min (),

(AL(rUY) NN K +1))])]. =

This shows that V,,, is invariant under Gaussian elimination without
pivoting, but this doesn’t hold for T(ny> @S the following example shows: Let

O N

S Tny

>

Il
| oI Y]
QO o~ N

Caf
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After one step of elimination,

which is obviously not in 7.,,, since (L, A)y3(L;A)s <O0.

Remark 1. Obviously, by looking at the determinantal inequality (1),
any lower or upper triangular matrix with nonnegative diagonal elements is in
Viny- At this point one sees the great usefulness of a determinantal characteri-
zation for classes of matrices, like those for T-matrices introduced in [1] or for
V-matrices introduced in [6], although in many places it looks a lot more
complicated than other characterizations.

CoroLLarY 1. Let A€V, and 3j € (n) such that A[{n)\{j}] is
nonsingular. Then there exists a permutation matrix P such that any matrix
L, - - L APAP” in the Gaussian elimination process applied to PAPT is again
inV, ..

(n)

Proof. Choose P such that det(PAPT)[(n —1)]+# 0. Since P is a permu-
tation matrix, PAPT is again in Viny- Thus we can apply Theorem 1. [ ]

CoroLLARY 2. Let A €V,,, be nonsingular. Then, for any permutation
matrix P, any matrix L,--- L,APAPT in the Gaussian elimination process
applied to PAPT is again in V.

Proof. Since A €V, is nonsingular, then A[(n)\ {;j}] is nonsingular
for all j € (n). Hence we can apply Theorem 1 to PAP” for any P. | |

ReMark 2. For the M-matrices it was shown by Kuo [5], based on a
result in Fiedler and Ptak [3], that the irreducible M-matrices are closed with
respect to Gaussian elimination. This doesn’t hold for V,,,,. For M-matrices
one can use the Perron-Frobenius theorem to get that if A € M,,,, is irreduc-
ible and singular, then still all principal minors of order n — 1 are nonzero.
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But this does not work for V,,,,, as the following example shows. Let

1 1 1
A=|1 1 €V
1 1 1

A is singular and irreducible, but det A =0 and det A[{1,2}] =

Now we consider the case of a singular A € V,,, more deeply.

TueoREM 2. Let A€V,,,, A singular. Then there exist a permutation P
and k € (n) U {0} such that PAPT has an LU decomposition with

L, 0 } k
Loy | 1|}n-x
nonsingular, unit diagonal, lower triangular, and with

}k
Jr—k

Ull U12
0 | Uy

upper triangular and such that Uy, is nonsingular and Uy, has only zeros on
the diagonal. Furthermore, the first k elimination steps suffice to produce this
* decomposition, and L,L; -+~ LIA€V,,, forall j=1,....k.

Proof. Let pC (n) be a subset of maximal cardinality such that
det A[p] # 0. Let || = k. If such a set does not exist, then set k = 0.

(1) k# 0. Then there exists a permutation matrix P, such that
det P,APT[(k)]# 0 and det PIAPITKk} U{j}]=0 for all j& (n)\(k).
Applying Gaussian elimination to P; PAT, we can do this up to step k,and in
any step the matrix is again in V,,, by Theorem 1. After the kth step, the
matrix A**D has the form

(1 . . . .. . . k
afy ‘ : afl)

0 ag(’;() . . . . ai’:l)

0 | Alk+1
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By the fact that P, AP/ [(k)U{j}]=0 Vje (n)\(k) it follows that all
diagonal elements of A**D are zero. If this were not the case, one could say
there exists a j € (n)\ (k) such that the (j, j) diagonal element of A**Y is
nonzero, and then take a permutation matrix P, interchanging the jth row
with the (k + 1)st row; this would mean that in applying Gaussian elimination
to P,P, APTP] the elimination would be possible up to the (k + 1)st step. But
the abovementioned result (e.g. Stewart [8, p. 120]) would imply that
det(P,P,AP]P])[{k +1)] # 0, which contradicts the maximal cardinality of
the above-chosen set p.

Thus for A** Y =[b,;]€V,,_;,, we have that all diagonal elements are
zero. But since A**V €V, _,,, it then follows that det A** V[»]=0V» C (n
— k). This implies that all cyclic products b; ; ---b, ; of all orders p in
A®*D are zero. But this implies that the index set f k+1,...,n} can be
ordered by a total order < in such a way that Vi, j€(n)\(k), a;; #0
implies i Z j. Thus there exists a permutation P, that permutes A**? to
upper triangular form with zeros in the diagonal.

The permutation matrix

v fotly:-

does not affect (P, AP )[(k)]. Therefore we can apply Gaussian elimination
up to step k to PZPlAPlT 132 and obtain the required form.

(2) k=0. In this case we cannot do any elimination step, and applying
the second part of the argument in (1), we just have to take the permutation
that brings A into upper triangular form with zeros in the diagonal. The proof

is completed by taking L =1. . ]

We wish to thank Professor H. Schneider for proposing the work on the
above subject.
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