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1. Introduction

If X is a set whose eiements are called points and A is a collectior of
subsets of X (called lines) such that:

(i) any two distinct poinis of X" are contained in exactly one line,

(ii) every line contains at least two points,
we say that the pair (X, A) is a linear space.

A Steiner triple system is defined as a finite non-empty linear space
(X, A) all of whose lines are of size 3, i.e., contain exactly 3 points. A
Steiner triple system with | X| = v is said to be of order v and is denoted
by S(v). Kirkman [4] has proved that there exists an S{v) if and only if
v=1 or 3 (mod 6); any positive integer satisfying this congruence will
be called admiszible.

If (X, A) and (Y, B) are two Steiner triple systems such that Y€ X
and B C A, we shall say that (Y, B) is embedded in (or is a subsystem of)
(X, A) and that (X, A) contains (Y, B). If (X, A) is of order v and (Y, B)
is of order u < v, then v=> 2u + 1. Indeed, let p € X — Y. Any line con-
taining p has at most one point in Y. Therefore there are exactly u lines
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joining p to the u points of ¥ and each of these lines has two points dis-
tinct from p, so that v=: 2u + 1. Our purpose is to prove that conversely,

Theorem 1.1. Any S(u) can be embedded in some S(v) for every ad-
missible v=2u + 1.

The proof of this result is greatly simplified by noticing that if there
exists a single S(v) containing a subsystem of order u, then any S(«) can
be embedded in a ‘slightly modified” S(v). Indeed, if (X, A), (Y, B,),

(Y, B,} are three Steiner triple systems and if (Y, B;) is a subsystem of
(X A), then (X, (A — B;) U B,) is a Steiner triple system containing

(Y. B,) as a subsystem. Roughly speaking, subsystems can be unplugged
and repiaced.

We have still to introduce a few definitions and notations which will
be used throughout this paper.

A parallel class of lines of a linear space (X, A) is a subset A’ of A such
that every point of X is contained in exactly one line of A', i.e., such
that A" is a partition of X. Let (X, A) be a finite linear space of cardinali-
ty mn, with a distinguished parallel class of lines A'= {4, 4,, ..., 4,,}
such that

(i) every line of A’ has size n,

(ii) every line of A — A’ has size m.

Such a linear space will be called a transversal system T(m, n); the lines
of A" will be called groups, the other lines transversals. Clearly, every
transversal intessects each group in precisely e point. It is well-known
(see for instance [2, Chapters 13 and 15]) that the existence of a

T'(m, n) is equivalent to the existence of m — 2 mutuaily orthogonal latin
squares of order n. Therefcre, by a resvlt of Bose, Parker and Shrikhande
{1], there is a T(4, n) for every r # 2, 6. Any transversal system 7'(m, n)
containing s pairwise disjoint parallel classes of transversals will be de-
noted by 7, (m, »).

A Steiner triple system (X, A) is called a Kirkman system if the set A
admits a purtition A= A; U A, U ... U A, into parallel classes. Ray-
Chaudhuri and Wilson [6] have proved that there exists a Kirkman sys-
tem of order v if and only if v= 3 (mod 6). A Steiner triple system
(X, A) of order v is called cyclic if its automorphism group contains a
cyclic permutation « (i.e. a permutation consisting of a single cycle of
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length v). Peltesohn [S] has constructed a cyclic S'(v) for every admis-
sible v, exceptv = 9.

In this paper, we shall soraetimes consider cartesian products of the
form X X {1, 2, ..., t}; any element (x, i) of such a product (where
x € X and 1 < i< ¢) will be derioted simply by x; and any subset
X X {i} simply by X;.

2. Main results

Lemma 2.1. Let u 2 u’ be two admissible integers such that the congru-
ences u= 1 (mod 6) and u' =3 (mod 6) do not hold simultaneously. Then
there exists a Steiner triple system (Y, B) of order u satisf ing the fol-
lowing conditions:

(i) there is a subset B* of B such that every point of Y is contained
in exactly 3 (' — 1) lines of B*,

(ii) there is a cyclic permutation a of Y taking B* onto itself, i.e.,
mapping any pair of points joined by a line of B* cnto a pair of points
of the same type.

Proof. Suppose u # 9 and let (Y, B) be a cyclic Steiner triple system of
order u, a one of its cyclic automorphisms. If u = 6¢ + 1, a partitions B
into ¢ orbits By, By, ..., B, of length u; write «' = 6¢' + 1 and take B* =
BV B,V ..U B,. Ifu= 6t + 3, a partitions B into ¢ orbits By, B, ...,
B, of length u and one orbit B, of length ju; take B* = B; U B, U ... U B,
whenu' =64 +1and B*=ByU B, U BV ...U B, whenu' =6t' +3.
Now let # =9 and let B be the following collection of subsets of
Y={1,223,4,5,6,7,8,9}:

{1,2,3}, {1,509}, {1,6,8}, {1,4,7},

{4,5,6}, {2,6,7}, {2,4,9}, {2,5,8}

{7,8,9}, {3,4,8}, {3,5,7}, {3,6,9}.
Ifu’'=1, B* =0 and « may be any cyclic permutation of .

If u' = 3, let B¥ consist of the three lines in the last coiumn and take
«a=(1,2,3,4,5,6,7,8,9).
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If 4’ = 7, let B* consist of the 9 lines in the first three columns and
take =(1,2,3,4,5,6,7,8,9).
If ' =9, B* = B and a« may be any cyclic permutation of Y.

Proposition 2.2. Let u > u' be two given admissible integers such that
the congruences u = 1 (mod 6) and u' = 3 (mod 6) do not hold simulta-
neously. If v=2u + u', there exists an S(v) containing an S(u) and a
disjoint S(u').!

Proof. L2t (Y, B) be an S(u) satisfying the conditions of Lemma 2.1;
select some point py € Y and let py, p,, ..., p,+ denote the points of Y
lying on the lines of B* containing p,. Let (Y’, B') be an S(u) with
Y'={p. Py op}.

Consider the sec X =(Y X {1,2}) U Y’ of cardinality v = 2u + ' and
let A, denote ihe collection of all subsets of X of the form {p}, (ai(py)y,
(a"(p,-))z },where 1<i<uand 1<j<u'.ForezchlineB={x 2z} €B,
let

Ag = {{xl,yl,zl}, {xzyJ’2, 22}}
if B € B*, and

A = {{xl’ Y1211 {x,¥0. 25}, {yy, Zz,xz}, {le Tz,)’z}}
if B ¢ B*.
Then, with A = A, U(Ugpg Ag) U B, the pair (X, A) is an S(v) con-
taining a subsystem of order « on the subset Y, and a subsystem of or-
der ¥’ on the subset Y'.

Proposition 2.3. Let u =3 (mod 6). If v=4u + 1, there exists a1 S(v)
containing an S(u).

Proof. Let (Y, B) be a Kirkman system of order u and let B, be a parallel
class of lines of B. Consider the set X = (Y ( {1,2,3,4}) U {} of car-
dinalityv=4u+1. Let 3={x,y,2} be any line of B. IfB € By, let Ag
denote the collection of lines of an S(13) constructed on the subset

(BX {1,2,3,41) U {eo} of X in such a way that {xy,y1,2:}€Ap. If

" This has been noticed independently by Rosa [8] and laizr also by Robinson [7].
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B¢t By, let Ap denote the collection of transversals of a T(3, 4) whose
groups are {xy, X5, X3, X4}, {¥1, V2, ¥3. Y4}, {21, 25, 23, 24} and such
that {x,,y,, zl} € AB

Then (A, UBEB HB] isan S (
the subset Y, .

,.....4..-........- a cirlacerataces ~
CUlILAlIRIR da dU yStClll U

&/

Lemma 2.4. Let (Y, B) be a finite linear spice on v points. If |BI =0or
1 (mod 3) for every line B € B, there exists a Steiner triple system (X, A)
of order 2v + 1 containing a subsystem of order 2|B| + 1 for every B € B.

Proof. Consider the set X =(Y X {1,2}) U {eo} of cardinality 2v + 1.

For each line B € B, the subset Xz =(B X {1,2}) U {«} has cardinality
21B| +1=1 or 3 (mod 6);let Ag denote tke collection of lines of a

Steiner triple system constructed on X in'such a way that {x, x,, =} € Ap
for every x € B. Then (X, Ugeg Ap)isan s ¢ (20 + 1) with the required
properties.

Lemma 2.5. There exists a T, (3, n) for evéry positive integer n + 2, 6.

There exists a T4(3,6) and no T;(3,2).

Proof. If n # 2 and 6, there is a T(4, n) with 4 groups A, A,, A3, A4 of
size n. The set X = A, U A, U A5, provided with the zroups A, 4,, 43
and the restriction to X of all transversals of the T'(4,n), is a T,,(3, n);
the n parallel classes are obtained by takin;s the restriciion to X of all
transversals containing one of the » points.of 4.

Hanani has proved [3, Theorem 2.12] t| that the existence of a T, (m, n)
and of a T(m, s) implies the existence of a’ 2(m, ns) By applying this
result in the particular case where m = n =3 and s = 2, we get a T, (3, 6).

Finally, it is easy to check that the T(3,§ 2) is unique (up to isomor-
phism) and contains no parallel class of transversals.

Lemma 2.6. For every positive integer t, there exists a linear space
(X, A) on 24t + 1 points with one line of size 61 + 1, three lines of size
6t, 6t lines of size 4 and all remaining lines of size 3.

Proof. Let (Y, B) be the linear space whos:: set of points is
={a,a',b,b’, ¢ c' d d} and whose set of linesis B =B, U B3 U Bj,
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where
By, ={{a ad'},{b,b'}, {c '}, {dd'}},

By ={{a,b,d'}, (b c.d'},{cd, d'},{d,bd}, {b,cd} {c ad}},
B ={{a b, c}, {d, b, c'}}).

Let I3, = {1,2,..., 3¢} aud consider the set X = (Y X I3,) U {=} of
cardinality 24¢ + 1. By Lemma 2.5, there is a T} (3, 3¢) for every ¢. For
each line B € B3 U BYy, let Ap denote the collection of transversals of a
T, (3, 31) constructed on B X I5, and having as groups the 3 subsets
{x} X I3,, where x € B. Let A} be a paralle] class of transversals of Ap
and, for each line B € B}, put Ap = Ap — A}. Finally, let

Ag={{a.d}X I, (bb'y X I3, {c,c'} X I3}
and let A denote the collectior cf the following 6¢ + 1 subsets of X:
({d,d"} X I;) U {=}

and Ap U {=} for every Ag € Ay, where B € B;.
Then, with

A = AOU A o U (UBEBg AB) U (UBEB'a A'B);
the pair (X, A) is a linear space with the required properties.

Proposition 2.7. Let u = 1 (mod 6). If v=4u — 1, there exists an S{(v)
conitaining an S(u).

Proof. (a) If u = 12t + 1 for some initeger ¢, the existence of an S{48¢ +3)
containing an S(12¢ + 1) follows from Leimmas 2.4 and 2.6.

(b) Suppose now u = 12¢ + 7. By Proposition 2.3, there exists a Stei-
ner triple system (X, A) of order 24¢ + 13 containing a subsystem
(¥, B) of order 6¢ + 3. The pair (X, A'), where A'=(A—-B)U {Y},isa
linear space on 24¢ + 13 points with one line of size 6¢ + 3 and a’l other
lines of size 3. Therefore, by Lemraa 2.4, there is an S(48¢ +27) con-
taining an S(12¢ + 7).
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Lemima 2.8. Let s << n be two given positive integers = 0 or 1 (mod 3).
There exists a linear space (X', A') on 3n + s points such that every line
has size = 0 or 1 (mod 3) and at least one line has size n if n > 3.

Proof. For every such # and s, except for n = s = 6, Lerama 2.5 implies
the existence of a T’ (3, n). Let (Y, B) be such a transversal system and
let B=B,UB,U ... UB,UB', where By, B, ..., B, are s pairwise dis-
joint parallel classes of transversals. Take X' = Y U Y', where the sct
Y'= {0, 0,,.., .} is disjoint from Y. Finally, foreachi=1,...,s, let

B', = {B, U {°°l]‘| Bie B,}
Then the pair (X', A'), where
A'=BjUBU..UB;UB U{Y'},

is a linear space with the required properties.

If n=5=6, let (X, A) be the linear space: on 25 points constructed in
Lemma 2.6 (corresponding to the value ¢ = 1); remember that A  was
the set of all lines of A containing the point «. Take X' = X — {>} and
Al ={A—{=}| A€ A_}. The linear space (X', A") with A" =
(A—A_)U Al satisfies the required properties.

Proposition 2.9. Let u,v= i or 3 (mod 6). If 3u < v< 4u — 3, there ex-
ists an S (v) containing an S (u).

Proof. Write w =v — 3(u —1). Clearly, w = 1 or 3 (mod 6) and the in-
equality 3u<v<4u-—-3impliess3<w< u.

Lets =3(w—1)and n = }(u —1), so thats, n= 0 or 1 (mod 3) and
I1<s<n As3n+ts ==%(v ~—1), the existence of an S(v) containing an
S(u) follows immediately from Lemmas 2.4 and 2.8.

Lemma 2.10. Let k be an odd integer, 1 < k< 12¢ +5. There exists a
linear space (X, A) on 12t + 6 points and a partition A = A* U A; U A, U
... U A such that A* consists of lines of size 3 and each A;, 1 <i<Kk, is
a parallel class of lines of size 2.
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Proof. Let (Y, B) be a Kirkman system of order 67 +3 and let B =
ByV B,yL ..U B, (r= 3t +1) be a partition of B into parallel classes.
Take X =Y X {1,2} and write k = 4/ + m, where m = 1 or 3. Here
I<3t+1ifm=1andI<3tifm=3.

Foreachline B ={x,y,z}€ B;, 1 <i<|, let A; denote the collec-
ticn of the following subsets of X

{xp. y1h{z %3} {4, 2,51,

{x,2;}, {r1. 22}, {-’Cg.}’z},

{xy, 25 Lz v 1, (v %51,

{x1, v}, {x9, 25}, {¥. 24}
Note that foreachi=1,.., 1/, UBeB,-A p admits a partition into four
parallel classes of lines of size 2. Let Ag = {{x, x,}| x € Y'}. We now
have 4/ + | parallel classes on X.

Suppose m = 1, so that k =4/+1. Foreach B = {x,y,2} € B;,I< i<,
let

Ag={{x,y1. 21}, {xlyf"gyzz}, {r1. 29, x51, {zy, x4, ¥,}}

Then with A = (Upgeg Ap) U Ay, (X, A) is a linear space with the re-
quired properties.
Consider now the case m = 3, so that k = 4/ + 3. For each

B={x,y,2}€B;,;,let Ap denote the collection of the following sub-
sets of X:

{~’Cg,yl,21}, {xzy y2’ 22}9
{(x,y:5 {31 22}, {24, x5},
{3y, 2}, {y. 2} {2, ¥2 ),

ard foreach B={x,y,z} € B;, I +1 <i<r, as before let
Ap=Uxy, ¥y, 201, {x, ¥5, 23}, (01, 29, X3}, {24, %5, ¥, 1)
Note that the subsets of size 2 occurring in U s<B,., A can be parti-

tioned into two parallel classes and thus the lmear spac== (X, A), where
A =(Upeg Ag) U A, has the required properties.
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Proposition 2.11. Let u =1 or 3 (mod 6) and v =u + (12t + 6) for some
integer t. Ifv> 2u + 1, there exists an S(v) containing an S (u).

Proof. Let (Y, B) be an S(u) with ¥ = {eo,%0,,...,00, }. Clearly, u is odd
and 1 < u < 12¢ + 5 because of the hypothesis v > 2u + 1. Let (X, A) be
the linear space of Lemma 2.10, with k=uand A= A*U A U...UA,.

Consider the set X' = X U Y of cardinality v = u +(12¢ + 6). For each
i=1,..,u,let

Ai={AU{=;}|A€ A;}. 8

Then, with A’ = A* U Aj U...UA, UB, (X', A") is an S{v) containing
(Y, B) as a subsystem of order u.

Theorem 2.12. Let u and v be two admissible integers. Whenever
v=2u+t 1, there is an S (v) containing an S(u).

Proof. The thecrem is clearly valid for u = 1 or 3, so we shall fix « and
assume u > 3 (and hence u = 7).

We remark that if there is an S (v) containing an S(w) and an S(w)
containing an S(u), then surely there is an S(v) containing an S(u).

We first claim that there is an S (v) containing an S(u) for every v =3
(mod 6) with 2u + 1 < v < 3u; for u' = v — 2u is admissible and satisfies
1 < ¥’ < u, whence our cl~im follows from Proposition 2.2. Propositions
2.3, 2.7 and 2.9 show that the theorem is valid whenever 3u <v < 4u + 3.
The theorem also holds forv=4u + 3 =2(2u +1) + 1, since we have an
S(2u + 1) containing an S(«#) and an S(4u + 3) containing an S(2u + 1),
both by Proposition 2.2.

We now proceed by induction to prove the validity of the theorem
for v > 3u. Let an admissible v, be given, vy = 3u, and assume the as-
sertion of the theorem for all v, 3u <v <. If vy < 4u + 3, there is an
S(vy) containing an S(u) as we have observed above. If vy > 4u +3,
write (uniquely) vy = 2w + u’, wherew =3 (mod 6) and u' = 1, 3, 7or 9.
The inequalities vy > 4u +3,u > 7, u' < 9 and the congruence w = 3
(mod 6) imply #' < 2u +1 < w < v,. Now by our claim of the previous
paragraph (if w < 3u) or by our induction hypothesis (if w = 3u), there
is an S(w) containing an S(u); and by Proposition 2.2, there is an S(v)
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containing an S(w). We conclude that the theorem holds for v, and,
inductively, for every admissible v > 3u. ~ e

Suppose thatu =3 (mod 6), v=1(mod 6) and 2u +1 < v < 3u. Here
u' =v - 2u is admissible and 1 < u’ < u, so there is an S(v) containing an
S(u) by Proposition 2.2. The proof is now complete in the case that
u =3 (mod 6).

So it remains only to prove that if 4, u= 1 (mod 6), 2u + 1 <v < 3u,
there exists an S(v) containing an S(«). The proof given below uses the
fact that the theorem is now known to be true for every admissible
v=>3u

Proposition 2.13. Let u= 1 or 3 (mod 6) be given. Then for every v=u
(mod 6) with 2u + 1 <v < 3u, there exists an S (v) containing an S(u).

Preof. We proceed by induction on u. Let ug =1 or 3 (mod 6) and as-
sume the validity of Proposition 2.13 for every u = 1 or 3 (mod £),
u < uy. (Proposition 2.13 is clearly valid foru =1 or 3.)

Now let v be given, 2uy + 1 < v < 3uy. If v—uy =6 (mod 12), the
existence of an S (v) containing an S(«) is asserted by Proposition 2.11,
sc we assume U = uy + 12¢ for some integer £. Let w = uy — 6¢, so that
w = ug(mod 6). The inequality 2uy + 1 < v < 3u, implies uy > 2w + 1
and thus, by the partial result of the above theorem (if uy > 3w) or our
induction hypothesis (if uy < 3w), there exists an §(uy) containing an
S(w). Let A’ be the collection of all transversais of a T'(3, 6¢) with 3
groups X;, X;, X3 of size 6f and let (Y, B) be an S(w). Consider the set
X=X{UX,U X, UY of carcinality 18¢ +w =v. Foreachi=1,2,3,
let (X;U'Y, A; U B) be an S(u,,) containing (Y, B) as a subsystem of or-
der w. Then, with A = A’U A’} U A, U A’ U B, the pair (X, A) is an S(v)
containing an S(u).
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