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l- Introduction 

If X is a set whose elements are called points and A is a collectioxr of 
subsets of X (called lines) such that: 

(i) any two distinct points of X are contained in exactly one line, 
(ii) every line contains at least two points, 

we say that the pair (X, A) is a linear space. 
A Steiner triple system is defilaed as a finite nocempty linear space 

(X, A) all of whose lines are of size 3, i.e., contain exactly 3 points. A 
Steiner triple system with 1x1 = u is said to be of order u and is denoted 
by S(u). Kirkman [ 41 has proved that th.ere exist. 4 an S(u) if and only if 
u 2 1 or 3 (mod 6); any positive integer satisfying this congruence will 
be called admissible. 

If (X, A) and (Y, 23) are two Steiner triple systc’:ms such that Y E X 
and B c A, we :;hall say that (Y, B) is embedded in (or is a subsystem of) 
(X, A) and that (X, A) contains (Y, 8). If (X, A) is) of order u and (Y, 8) 
is of order u < u, then u > 2u + 1. Indeed, let p E X - Y. Any line cow 
taining p has aa: most one point in Y. Therefore tlhere are exactly er lines 
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joining p to the u points of Y and each of these lines has two points dis- 
tinct from p, so that u 2 2~ + 1. Our purpose is to prove that conversely, 

Thowrn 11.1. Any S(u) can be embedded in some S(v) for every ad- 
m&sib/e v 2 21.4 + ‘1. 

The proof of this result is greatly simplified by noticing that if there 
exists a single S(u) containing a subsystem of order u, then any S(u) can 
be embedded in a ‘slightly modified’ S(u). Indeed, if (X, A), (Y, iSI), 
(Y, g2) are three Steiner triple systems and if (Y, B1 ) is a subsystem of 
( Y A), then (X, (A - B1) U B2) is a Steiner triple system containing 
(Y, B2) as a subsystem. Roughly speaking, subsystems can be unplugged 
and replaced. 

We have still to introduce a few definitions and notations which will 
be used throughout this paper. 

A parallel class of lines of a linear space (X, A) is a subset A! of A such 
that every plaint of X is contained in exactly one line of A', Le., such 
that A’ is a partition of X. Let (X9 A) be a finite linear space of cardinali- 
ty mn, with a distinguished parallel class of lines A’ = { lrll 1, A,, . . . , A, ) 

such that 
(i) every line of A' has size n, 
(ii) every line of A - A ’ has size m. 

Such a linear space will be called a transversal system T(m, n); the lines 
of t;’ will be called groups, the other lines transversals. Clearly, every 
transversal intersects each group in precisely t+le point. It is well-known 
(see for instance [ 2, Chapters 13 and 151) th& the existence of a 
T(m, n) is equivalent to the existence of m - 2 mutually orthogonal latin 
squares of order n. Therefore, by a result of Bose, Parker and Shrikhande 
[ 11, there is a T(4, m) for every R + 2,6. Any transversal system T(m, n) 
containing s pairwise disjoint parallel classes of transversals will be de- 
noted by Y’Jrn, ~2). 

A Steiner triple system (X, A) is called a Kirkman svstem if the set A 
admits a pcrtition A = Al U A2 u . . . U A, into parallel classes. Ray- 
ChaJdhuri and Wilson [6] have proved that there exists a Kirkman sys-B 
tern of order u if and only if u = 3 (mod 6). A Steiner triple system 
(X, A) of order u is called cyclic if its automorphism group contains a 
cyclic permutation it (i.e. a permutation consisting of a single cycle of 
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length u). Peltesohn [S] has constructed a cyclic 6’(u) for every admis- 
sible U, except v = 9. 

In this paper, we shall sometimes consider Cartesian products of the 
form x x { 1,2, . . . . t ) ; any element (x, i) of such a product (where 
Wy E X and 1 < i < t) will be denoted simply by Xi and any subset 
X X (i } simply by Xi- 

2. Main results 

Lemma 2.1. Let u 2 u’ be two admissible integers such that the congru- 
ences u = 1 (mod 6) and u’= 3 (mod 6) do not hold simultaneously. Then 
there exists a Steiner triple system (Y, 8) of order u sQtis,@ing the fol- 
lowing conditions: 

(i) there is a subset 8’ of pd such that every @nt of ‘Y is contained 
is exactly i(u’ - 1) lines of 8*, 

(ii) there is a cyclic permutation a of Y taking E* onto itself, i.e., 
mapping any pair of points joined by a line of I3* onto a pair of points 
of the same type. 

Proof. Suppose u # 9 and let ( Y, 8) be a cyclic Steiner triple system of 
order u, CY one of its cyclic automorphisms. Jf u = 6t + 1, Q! partitions 8 
into t orb&s &, Bzt . . . . Bt of length u; write u’ = 6t’ + 1 and take: 8* = 
8r u B2 u . . . u &. If u = 6t + 3, cy partitions 8 into t orbits B1, G2, . . . . 

Bt of length ZL and one orbit 8c of length $u; take B* = B1 1J 8% . . . u 

whenu’=6t’+land8*=J$,~B1u82U...W3t~whenu’=6tf+3. 
NOW let u = 9 and let 8 be the following col?ection of subsets of 

Y=(l,2,3,4,5,6,7,8,9): 

{1,2,3), {1,5,91, 

a=(1,2,3,4,5,6,7,8,9). 
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B $ Br , let As denote the collection of transversals of a T(3,4) whose 

groups are {+ ~2, ~3, ~43, CY~#Y~, ~3, ~41, ~q9z2,z3,z4~ and wh 

that Iq,yl, ql E AgO 
Then (X, lJREg A& is an S(u) containing a subsystem of order u on 

the subset Y,. 

Ltmma 2.4. Let (Y, 8) be a finite linear spke on u points. If 1 B 1 = 0 or 
1 (mod 3) for every li,ue B E 73, there exists a Steiner triple system (X, A) 
of order 2~ + 1 contaiining a subsystem of order 2 IBI + 1 for every B E 8. 

Proof. Consider the set X = (Y X { 1,2 )) u (00 } of cardinality 2u + 1. 
For each line B E 8, the subset XD =(BX 11,2})u{-1 hascardinality 
2IBI + 1 E 1 or 3 (mod 6); let AB denote tb’e collection of lines of a 
Steiner triple system constructed on XB inj such a way that {xl, x2, 00) E AmB 
for every x E B. Then (X, U 
properties. 

BE 8 As) is an $‘( 2u + 1) with the required 
i 

Emma 2.5. There exists a T,J3, n) for e&y positive integer n + 2,6. 
There exists a T4(3, 6) and no T, (3,2). 

Proof. I[fn # 2 and 6, there is a T(4,n) with 4 groupsta1,A2, A,, A4 of 

sizen.ThesetX=Ar~A+A~,provide$ withthegroupsAl,AZ,A3 
and the restriction to X of all transversals c)f the T(4, n), is a Tn(3, n); 
the n parallel classes are obtained by takin;; the restriciion to X of all 
transversals containing one of the n pointsjof A,. 

Hanani has proved [ 3, Theorem 2.121 tIllat the existence of a TS (m, n) 
and of a T(m, sz implies the existence of aiTs (m, ns). By applying this 
result in the particular case where m = n =!3 and s = 2, we get a T,(3,6). 

Finally, it is easy to check that the T(3,\2) is unique (up to isomer 
phism) and contains no parallel class of transversals. 

Lemma 2.6, For every positive integer t, there exists a linear space 
(X, A) on 24 t + 1 points with one line of r ize 6t + 1, three lines of size 
6t, 6t lines of size 4 and all ,remaining lines of size 3. 

Proof. Let (Y, 8) be the linear space whios,: set &points is 
Y = {a, a’, b, b’, c, c’, d, d’ ) and whose set 4 ,f lines is I:3 = 8 2 U 8 3 W 8; , 
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g:, = ({(II, 6'. d'), {b, c’, d'), Cd, d’3, ia’, b, d3, Ib’, c, d): Ic’,a, dH, 

s’, = 

Let Is,, = { 1,2, . . . . . . 2t) a~kdconsiderthesetX=(YXI&J{+ of 
cardinality 24~ + 1. By Le,mma 2.5, there is a Tr (3,3t) for every t. For 
each line B E 8 3 u S; , let As denote the collection of transversals of a 
Tr (3,3t) constructed on B X I3r and having as groups the 3 subsets 
(x) X Ijt, where x E B. Let A; be a parallel class of transversals of AB 
and, for each line B E B; , put Ai = AB - AZ. Finally, let 

A* = Ifa. a’3 >(: &, Ib, b’3 X 13r, Ic, ~‘3 X 1~3 

and let A o. denote the collection of the following 6t + P subsets of X: 

and Ah U (00) for every Ah E AL, where B E 6;. 
Then, with 

the pair (X, A) is a linear space with the required properties. 

Proposition 2.7. Let tl = 1 (mod 6). If u = $u - 1, there exists an S(u) 
containing an S(u). 

Proof. c(a) If u = 12t + 1 for some iriteger t, the existence of an S(48t + 3) 
containing an S( i2t + 1) follows from Lr.mmas 2.4 and 2.6. 

(b) Suppose now u = Ii 2 t + ‘7. By Proposition 2.3, there exists a Stei- 
ner trkple system (X, A) of order 24 t + 13 containing a subsystem 
(:Y,6)oforder6t~-3,Thepair(X,A’),whereAt=(A-B)u{Y),isa 
linear space on 24t + 13 points with one line of size 6t + 3 and a ‘$1 other 
lines of size 3. Therefore, by Lemma 2.4, there is an S(48 t + 27) con- 
taifring an S( I2P + 7). 
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Lemma 2.8. Let s G n two given integers = or 1 (mod 
There exists linear space A’) on + s such that line 
has s 0 B 3) at one has n if n > 3. 

ProoR For every such n and s, except for yt = s = 6, Lcrnma 2.5 implies 
the existence of a 1’, (3, n). Let (Y, 8) be such a transversal system and 
let 73 = ;8r U B2 U . . . U 8, U 8’, where 8 1, B :;, . . ., 8, are s pairwise dis- 
joint parallel classes of transversals. Take x” = Y u Y’, where the set 
Y’ = {=r, 9, . . . . =$ ) is disjoint from Y. Finally, for each i = 1, . . . . s, let 

Bi = {Bi U {~i}l Bi E Bi}. 

Then the pair (X’, A’), where 

is a linear space with the required properties. 
If n = s = 6, let (X, A) be the linear spscf: on 25 points constructed in 

Lemma 2.6 (corresponding to the value t = 1); remember that A, was 
the set of all lines of A containing the point 43. Take X’ = X - ( OCJ } and 
A:, = {A - (00 ) 1 A E A, }. The linear space (X’, A’) with A’ = 
(A - A,) U Ab, satisfies the required properties. 

Propositiorr 2.9. Let u, v z lov3(mod6).If3u<v<4~-3,thereex- 
ists an S(u) containirylg an S(u). 

Proof. Write w = u - 3(u - 1). Clearly, w = 1 or 3 (mod 6) and the in- 
equality 3u G v G 4u - 3 implies 3 G w < u. 

Lets = f(w - 1) and n = i(u - I), so that s, n = 0 or 1 (mod 3) and 
I<s<n.As3nt-s:=i (u - I), the existence of an S(u) containing an 
S(U) follows immediately from Lemmas 2.4 and 2.8. 

Lemma 2.10. Let k be an odd integq 1 s: k G 12t + 5. 7?zt!re exists a 
linear space (X, A) on 12t + 6 points aprd a partition A = A*’ U AI IJ A2 U 
. . . U Ak such that A* consists of lines of Gze 3 and each Ai, 1 < i G k, is 
a parallel class of r.‘ines of size 2. 
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Proof. Let ( Y, 8) be a Kirkman system of order 6 t + 3 and let 8 = 
81 Lj 82 L . . . W 8, (r = 3t + 1.) be a partition of 8 into parallel classes. 
TakeX~YXC1,2)andwritek=4Z~na,wherem= 1 or3.Here 
2~3t+lifn~=landZ~33difm=3. 

For each line B = {x, Y, zj E 8 i, 1 < i < I, let A& denote the collec- 
tion of the following subsets of X: 

Note that for each i = 1, . . . . I, U,,B, AB admits a partition into four 
parallel classes of lines of size 2. Let Ak = ((x1, x2 31 x E Y 3. We now 
h;lve 42 + I parallel classes on X. 

Supposem= l,sothatk=4Z~I.ForeachB=(x,Y,z)~~i,Z<i~r, 
let 

Then with A = (LB,,6 AB) U Ak, (X, A) is a linear space with the re- 
quired properties. 

Consider now the case m = 3, so that k = 42 + 3. Forr each 
B = (x9 y, 23 E &+I, let Ag denote the collection of the following sub- 
sets of X: 

Cy:;*Y+I3, EX21Y2J21, 

IX; 9 Y23, {Y 1, z23, iz,,X& 

ard for each B = {x, Y, Z) % 8 i, I! + 1 < i < r, as before let 

N&e that the subsets of size 2 occurring in UBE~l+l As can be parti- 
tioned into two parallel classes and thus the linear space (X, A), where 
A = ( UB,g A,) U Ak , has tfle required properties. 
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Proposition 2.11. Let 24 s lor3(mod6)andv=ut-(l2t+6)forsome 
integer t. If u > 2u + 1, there exists an S(v) containing an S’(u). 

Proof. Let(Y, R) be anS(u) with Y = {=1,=2,...,=U). Clearly, u isodd 
and 1 G u < 12 t + 5 because of the h.ypothesis u >, 2 u + 1. Let (X, A) be 
the linear space of Lemma 2.10, with. k = u and A = A* u A 1 u . . . u A,. 

Consider the set X’ = X U Y of carldinality v =: u + ( 12t + 6). For each 
i = 1 , . . . . u, let 

Then, with A’ = A*' U Ai U . . . U AL U B, (X’, A’) is an S(v) containing 
(Y, 8) as a subsystem of order u. 

Theorem 2.12. Let u and v be two admissible integers. Whenever 
v > 2u f 1, there is an S(v) containing an S(u). 

lC”rosf. The theorem is clearly valid for u = 1 or 3, so we shall fix t& and 
assume 1~ > 3 (and hence u > 7). 

We remark that if there is an S(v) containing an S(w) and an S(w) 
containing an S(u), then surely there is an S(v) containing an S(u). 

We first claim that there is an S(v) containing an S(u) for every v s 3 
(mod 6) with 2u + 1 < v < 3~; for u’ = v - 2u is admissible and satisfies 
1 < uv < u, wht;nce our clqim follows from Proposition 2.2. Propositions 
2.3, 2.7 and 2.9 show that the theorem is valid whenever 3u < v < 4u + 3. 
The theorem also holds for v = 4u + 3 = 2(2u + 1) + 1, since we have an 
S(2u + 1) containing an S(u) and an S(4u f 3) containin,g am S(2u + l), 
both by Proposition 2.2. 

W’e now proceed by induction to prove the validity of the theorem 
for v > 32~. Let an admissible v. be given, v. > 3u, and assume the as- 
sertion of the theorem for all v, 3u < v < vo. If v. < 4u + 3, there is an 
S(vo) containing an S(u) as we have observed above. If v. > 4u + 3, 
write (uniquely) v. =2w+u’,wherew=3(modB’)andu’= 1,3,7or9. 
The inequalities v. > 4u + 3, u > 7, 21’ < 9 a,ld the congruence w = 3 
(mod 6) imply u’ < 2u + 1 G w < v. . Now by OUI claim of the previous 
paragraph (if w < 3~) or by our induction hypothesis (if w a 3u), there 
is an S(w) containing an S(u); and by Proposition 2.2, there is an S(vo) 



238 J. Doyen, R.M, Wilson, Embeddhgs of Steiner triple systems 

containing an S(w), We conclude that the theorem holds for uo, and, 
inductively, for every admissible u > 3~. 

Suppose that u = 3 (mod 6), v E 1 (mod 6) and 2u + 1 < v < 324. Here 
u’ := v _ 2~ is admissible and 1 < u’ f u, so there is an S(v) containing an 
S(u) by Proposition 2.2. The proof is now complete in the case that 
u ~2 3 (mod 6). 

So it remains only to prove that if u, v E 1 (mod 6), 2u + 1 < v f 324, 
there exists an S(v) containing an S(u). The proof given below uses the 
fact that the theorem is now known to be true for every admissible 
v>3u. 

Proposition 2. d. 3. Let u = 1 or 3 (mod 6) be given. Then for every v s u 
(mod 6) with 2u + 1 < v < 321, there exists an S(v) containing an S(u). 

Prmf. We proceed by induction on u. Let u. z 1 or 3 (mod 6) and a* 
sume the validity of Proposition 2.13 for every u = 1 or 3 (mod e), 
u < uo. (Proposition 2.13 is clearly valid for u = 1 or 3.) 

Now let v be given, 2uo + 1< v < 3uo. If v - uO = 6 (mod 12), the 
existence of an S(v) containin;!: an S(u) is asserted by Proposition 2.11, 
so we assume v = u. + 12t for some integer t. Let *N = u. - 6t, so that 
w 3 uo(mod 6). The inequalit; 2uo -I- 1 < v < 3uo implies u. > 2w + il 
and thus, by the partial result of the above theorem (if u. > 3wj or our 
induction hypothesis (if u. < 3w), there exists an S(uo) containing an 
S(w). Let A’ be the collection of all transversals of a T(3, 6t) with 3 
groups Xi, Xi, Xi of size 6,f and let (Y, 8) be an S(w). Consider the set 
x = xi u X$ U X:, U Y of carGinality 18t -t w = v. For each i = 1,2,3, 
let (Iyi’ 0 Y, Ai u pi) be an S(u,,) containing (Y, B) as a subsystem of or- 
der w. Then, with A = A' u Ai u A; LJ A; u 8, the pair (X, A) is an S(v) 
containing an S(uo). 
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