EMBEDDINGS OF STEINER TRIPLE SYSTEMS

Jean DOYEN*
Department of Mathematics, University of Brussels, 1050 Brussels, Belgium
and
Richard M. WILSON
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210, USA

Received 24 September 1971

1. Introduction

If X is a set whose eiements are called points and A is a collection of subsets of X (called lines) such that:
(i) any two distinct points of X are contained in exactly one line,
(ii) every line contains at least two points, we say that the pair (X, A) is a linear space.

A Steiner triple system is defined as a finite non-empty linear space $(X, \mathrm{~A})$ all of whose lines are of size 3 , i.e., contain exactly 3 points. A Steiner triple system with $|X|=v$ is said to be of order v and is denoted by $S(v)$. Kirkman [4] has proved that there exists an $S(v)$ if and only if $v \equiv 1$ or 3 (mod 6); any positive integer satisfying this congruence will be called admissible.

If (X, A) and (Y, B) are two Steiner triple systems such that $Y \subseteq X$ and $B \subseteq A$, we shall say that (Y, B) is embedded in (or is a subsystem of) (X, A) and that (X, A) contains (Y, B). If (X, A) is of order v and (Y, B) is of order $u<v$, then $v \geqslant 2 u+1$. Indeed, let $p \in X-Y$. Any line containing p has at most one point in Y. Therefore there are exactly u lines

[^0]joining p to the u points of Y and each of these lines has two points distinct from p, so that $v \geqslant 2 u+1$. Our purpose is to prove that conversely,

Theorem 1.1. Any $S(u)$ can be embedded in some $S(v)$ for every admissible $v \geqslant 2 u+1$.

The proof of this result is greatly simplified by noticing that if there exists a single $S(v)$ containing a subsystem of order u, then any $S(u)$ can be embedded in a 'slightly modified' $S(v)$. Indeed, if $(X, A),\left(Y, B_{1}\right)$, (Y, B_{2}) are three Steiner triple systems and if $\left(Y, B_{1}\right)$ is a subsystem of ($X A$), then $\left(X,\left(A-B_{1}\right) \cup B_{2}\right)$ is a Steiner triple system containing (Y, B_{2}) as a subsystem. Roughly speaking, subsystems can be unplugged and replaced.

We have still to introduce a few definitions and notations which will be used throughout this paper.

A parallel class of lines of a linear space (X, A) is a subset A^{\prime} of A such that every point of X is contained in exactly one line of A^{\prime}, i.e., such that A^{\prime} is a partition of X. Let ($X, \mathrm{~A}$) be a finite linear space of cardinality $m n$, with a distinguished parallel class of lines $\mathrm{A}^{\prime}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ such that
(i) every line of A^{\prime} has size n,
(ii) every line of $A-A^{\prime}$ has size m.

Such a linear space will be called a transversal system $T(m, n)$; the lines of \AA ' will be called groups, the other lines transversals. Clearly, every transversal intersects each group in precisely vne point. It is well-known (see for irstance [2, Chapters 13 and 15]) that the existence of a $T(m, n)$ is equivalent to the existence of $m-2$ mutually orthogonal latin squares of order n. Therefore, by a result of Bose, Parker and Shrikhande [1], there is a $T(4, n)$ for every $n \neq 2,6$. Any transversal system $T(m, n)$ containing s pairwise disjoint parallel classes of transversals will be denoted by $T_{s}(m, n)$.

A Steiner triple system ($X, \mathrm{~A}$) is called a Kirkman sustem if the set A admits a partition $A=A_{1} \cup A_{2} \cup \ldots \cup A_{r}$ into parallel classes. RayChaudhuri and Wilson [6] have proved that there exists a Kirkman sys. tem of order v if and only if $v \equiv 3(\bmod 6)$. A Steiner triple system (X, A) of order v is called cyclic if its automorphism group contains a cyclic permutation α (i.e. a permutation consisting of a single cycle of
length v). Peltesohn [5] has constructed a cyclic $S^{(}(v)$ for every admissible v, except $v=9$.

In this paper, we shall sometimes consider cartesian products of the form $X \times\{1,2, \ldots, t\}$; any element (x, i) of such a product (where $x \in X$ and $1 \leqslant i \leqslant t$) will be deroted simply by x_{i} and any subset $X \times\{i\}$ simply by X_{i}.

2. Main results

Lemma 2.1. Let $u \geqslant u^{\prime}$ be two admissible integers such that the congruences $u \equiv 1(\bmod 6)$ and $u^{\prime} \equiv 3(\bmod 6)$ do not hold simultaneously. Then there exists a Steiner triple system (Y, B) of order u satisfying the following conditions:
(i) there is a subset B^{*} of B such that every point of Y is contained in exactly $\frac{1}{2}\left(u^{\prime}-1\right)$ lines of B^{*},
(ii) there is a cyclic permutation α of Y taking B^{*} onto itself, i.e., mapping any pair of points joined by a line of B^{*} cnto a pair of points of the same type.

Proof. Suppose $u \neq 9$ and let (Y, B) be a cyclic Steiner triple system of order u, α one of its cyclic automorphisms. If $u=6 t+1, \alpha$ partitions B into t orbits $B_{1}, B_{2}, \ldots, B_{t}$ of length u; write $u^{\prime}=6 t^{\prime}+1$ and take $B^{*}=$ $B_{1} \cup B_{2} \cup \ldots \cup B_{t^{\prime}}$. If $u=6 t+3, \alpha$ partitions B into t orbits B_{1}, B_{2}, \ldots, B_{t} of length u and one orbit B_{0} of length $\frac{1}{3} u$; take $B^{*}=B_{1} \cup B_{2} \cup \ldots \cup B_{t}$. when $u^{\prime}=6 t^{\prime}+1$ and $B^{*}=B_{0} \cup B_{1} \cup B_{2} \cup \ldots \cup B_{t^{\prime}}$ when $u^{\prime}=6 t^{\prime}+3$.

Now let $u=9$ and let B be the following collection of subsets of $Y=\{1,2,3,4,5,6,7,8,9\}:$

$$
\begin{array}{llll}
\{1,2,3\}, & \{1,5,9\}, & \{1,6,8\}, & \{1,4,7\}, \\
\{4,5,6\}, & \{2,6,7\}, & \{2,4,9\}, & \{2,5,8\}, \\
\{7,8,9\}, & \{3,4,8\}, & \{3,5,7\}, & \{3,6,9\} .
\end{array}
$$

If $u^{\prime}=1, B^{*}=\emptyset$ and α may be any cyclic permutation of Y.
If $u^{\prime}=3$, let B^{*} consist of the three lines in the last coiumn and take $\alpha=(1,2,3,4,5,6,7,8,9)$.

If $u^{\prime}=7$, let B^{*} consist of the 9 lines in the first three columns and take $\alpha=(1,2,3,4,5,6,7,8,9)$.

If $u^{\prime}=9, B^{*}=B$ and α may be any cyclic permutation of Y.
Proposition 2.2. Let $u \geqslant u^{\prime}$ be two given admissible integers such that the congruences $u \equiv 1(\bmod 6)$ and $u^{\prime} \equiv 3(\bmod 6)$ do not hold simultaneously. If $v=2 u+u$ ', there exists an $S(v)$ containing an $S(u)$ and a disjoint $S\left(u^{\prime}\right) .{ }^{1}$

Proof. Let (Y, B) be an $S(u)$ satisfying the conditions of Lemma 2.1; select sone point $p_{1} \in Y$ and let $p_{1}, p_{2}, \ldots, p_{u^{\prime}}$ denote the points of Y lying on the lines of B^{*} containing p_{1}. Let ($\left.Y^{\prime}, B^{\prime}\right)$ be an $S\left(u^{\prime}\right)$ with $Y^{\prime}=\left\{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{u^{\prime}}^{\prime}\right\}$.

Consider the sei $X=(Y \times\{1,2\}) \cup Y^{\prime}$ of cardinality $v=2 u+u^{\prime}$ and let A_{α} denote the collection of all subsets of X of the form $\left\{p_{j}^{\prime},\left(\alpha^{i}\left(p_{1}\right)\right)_{1}\right.$, $\left.\left(\alpha^{i}\left(p_{j}\right)\right)_{2}\right\}$, where $1 \leqslant i \leqslant u$ and $1 \leqslant j \leqslant u^{\prime}$. For ench line $B=\{x, y, z\} \in B$, let

$$
A_{B}=\left\{\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}, y_{2}, z_{2}\right\}\right\}
$$

if $B \in B^{*}$, and

$$
A_{B}=\left\{\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{1}, y_{2}, z_{2}\right\},\left\{y_{1}, z_{2}, x_{2}\right\},\left\{z_{1}, r_{2}, y_{2}\right\}\right\}
$$

if $B \notin B^{*}$.
Then, with $A=A_{\alpha} \cup\left(U_{B \in B} A_{B}\right) \cup B^{\prime}$, the pair (X, A) is an $S(v)$ containing a subsystem of order u on the subset Y_{1} and a subsystem of order u^{\prime} on the subset Y^{\prime}.

Proposition 2.3. Let $u \equiv 3(\bmod 6)$. If $v=4 u+1$, there exists an $S(v)$ containing an $S(u)$.

Proof. Let (\boldsymbol{Y}, B) be a Kirkman system of order u and let B_{1} be a parallel class of lines of B. Consider the set $X=(Y \div\{1,2,3,4\}) \cup\{\infty\}$ of cardinality $v=4 u+1$. Let $B=\{x, y, z\}$ be any line of B. If $B \in B_{1}$, let A_{B} denote the collection of lines of an $S(13)$ constructed on the subset $(B \times\{1,2,3,4\}) \cup\{\infty\}$ of X in such a way that $\left\{x_{1}, y_{1}, z_{1}\right\} \in A_{B}$. If

[^1]$B \leftrightarrows B_{1}$, let A_{B} denote the collection of transversals of a $T(3,4)$ whose groups are $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\},\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\},\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ and such that $\left\{x_{1}, y_{1}, z_{1}\right\} \in A_{B}$.

Then $\left(X, \mathrm{U}_{R \in B} A_{B}\right)$ is an $S(v)$ containing a subsystem of order u on the subset Y_{1}.

Lemma 2.4. Let (Y, B) be a finite linear spice on v points. If $|B| \equiv 0$ or $1(\bmod 3)$ for every line $B \in B$, there exists a Steiner triple system (X, A) of order $2 v+1$ containing a subsystem of order $2|B|+1$ for every $B \in B$.

Proof. Consider the set $X=(Y \times\{1,2\}) \cup\{\infty\}$ of cardinality $2 v+1$.
For each line $B \in B$, the subset $X_{B}=(B \times\{1,2\}) \cup\{\infty\}$ has cardinality $2|B|+1 \equiv 1$ or $3(\bmod 6)$; let A_{B} denote tre collection of lines of a Steiner triple system constructed on X_{B} in such a way that $\left\{x_{1}, x_{2}, \infty\right\} \in A_{B}$ for every $x \in B$. Then $\left(X, \mathrm{U}_{B \in B} A_{B}\right)$ is an $\mathcal{S}(2 v+1)$ with the required properties.

Lemma 2.5. There exists a $T_{n}(3, n)$ for every positive integer $n \neq 2,6$.
There exists a $T_{4}(3,6)$ and no $T_{1}(3,2)$.
Proof. If $n \neq 2$ and 6 , there is a $T(4, n)$ with 4 groups $A_{1}, A_{2}, A_{3}, A_{4}$ of size n. The set $X=A_{1} \cup A_{2} \cup A_{3}$, provided with the groups A_{1}, A_{2}, A_{3} and the restriction to X of all transversals of the $T(4, n)$, is a $T_{n}(3, n)$; the n parallel classes are obtained by taking the restriciion to X of all transversals containing one of the n points of A_{4}.

Hanani has proved [3, Theorem 2.12] that the existence of a $T_{s}(m, n)$ and of a $T(m, s)$ implies the existence of a $T_{s^{2}}(m, n s)$. By applying this result in the particular case where $m=n=3$ and $s=2$, we get a $T_{4}(3,6)$.

Finally, it is easy to check that the $T(3,2)$ is unique (up to isomorphism) and contains no parallel class of transversals.

Lemma 2.6. For every positive integer t, there exists a linear space (X, A) on $24 t+1$ points with one line of size $6 t+1$, three lines of size $6 t, 6 t$ lines of size 4 and all remaining lines of size 3 .

Proof. Let (Y, B) be the linear space whos; set of points is $Y=\left\{a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, d, d^{\prime}\right\}$ and whose set of lines is $B=B_{2} \cup B_{3} \cup B_{3}^{\prime}$,
where
$B_{2}=\left\{\left\{a, a^{\prime}\right\},\left\{b, b^{\prime}\right\},\left\{c, c^{\prime}\right\},\left\{d, d^{\prime}\right\}\right\}$,
$B_{3}=\left\{\left\{a, b^{\prime}, d^{\prime}\right\},\left\{b, c^{\prime}, d^{\prime}\right\},\left\{c, a^{\prime}, d^{\prime}\right\},\left\{a^{\prime}, b, d\right\},\left\{b^{\prime}, c, d\right\},\left\{c^{\prime}, a, d\right\}\right\}$, $\bar{B}_{3}^{\prime}=\left\{\{a, b, c\},\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right\}$.

Let $I_{3 r}=\{1,2, \ldots, 3 t\}$ aind consider the set $X=\left(Y \times I_{3 t}\right) \cup\{\infty\}$ of cardinality $24 t+1$. By Lemma 2.5 , there is a $T_{1}(3,3 t)$ for every t. For each line $B \in B_{3} \cup B_{3}^{\prime}$, let A_{B} denote the collection of transversals of a $T_{1}(3,3 t)$ constructed on $B \times I_{3 t}$ and having as groups the 3 subsets $\{x\} \times I_{3 t}$, where $x \in B$. Let A_{B}^{*} be a parallel class of transversals of A_{B} and, for each line $B \in B_{3}^{\prime}$, put $A_{B}^{\prime}=A_{B}-A_{B}^{*}$. Finally, let

$$
A_{0}=\left\{\left\{a, a^{\prime}\right\} \times I_{3 t},\left\{b, b^{\prime}\right\} \times I_{3 t},\left\{c, c^{\prime}\right\} \times I_{3 t}\right\}
$$

and let A_{∞} denote the collection of the following $6 t+1$ subsets of X :

$$
\left(\left\{d, d^{\prime}\right\} \times I_{3 i}\right) \cup\{\infty\}
$$

and $A_{B}^{\prime} \cup\{\infty\}$ for every $A_{B}^{\prime} \in A_{B}^{\prime}$, where $B \in B_{3}^{\prime}$.
Then, with

$$
A=A_{0} \cup A_{\Delta 0} \cup\left(U_{B \in B_{3}} A_{B}\right) \cup\left(U_{B \in B_{3}^{\prime}} A_{B}^{\prime}\right)
$$

the pair $(X, \mathrm{~A})$ is a linear space with the required properties.

Proposition 2.7. Let $u \equiv 1(\bmod 6)$. If $v=4 u-1$, there exists an $S(v)$ containing an $S(u)$.

Proof. (a) If $u=12 t+1$ for some integer t, the existence of an $S(48 t+3)$ containing an $S(12 t+1)$ follows from Lemmas 2.4 and 2.6.
(b) Suppose now $u=12 t+7$. By Proposition 2.3 , there exists a Steiner triple system (X, A) of order $24 t+13$ containing a subsystem (Y, B) of order $6 t+3$. The pair $\left(X, A^{\prime}\right)$, where $A^{\prime}=(A-B) \cup\{Y\}$, is a linear space on $24 t+13$ points with one line of size $6 t+3$ and allother lines of size 3. Therefore, by Lemma 2.4, there is an $S(48 t+27)$ containing an $S(12 t+7)$.

Lemma 2.8. Let $s \leqslant n$ be two given positive integers $\equiv 0$ or $1(\bmod 3)$. There exists a linear space (X^{\prime}, A^{\prime}) on $3 n+s$ points such that every line has size $\equiv 0$ or $1(\bmod 3)$ and at least one line has size n if $n \geqslant 3$.

Proof. For every such n and s, except for $n=s=6$, Lemma 2.5 implies the existence of a $T_{s}(3, n)$. Let (Y, B) be such a transyersal system and let $B=B_{1} \cup B_{2} \cup \ldots \cup B_{s} \cup B^{\prime}$, where $B_{1}, B_{i}, \ldots, B_{s}$ are s pairwise disjoint parallel classes of transversals. Take $X^{\prime}=Y \cup Y^{\prime}$, where the set $Y^{\prime}=\left\{\infty_{1}, \infty_{2}, \ldots, \infty_{s}\right\}$ is disjoint from Y. Finally, for each $i=1, \ldots, s$, let

$$
B_{i}^{\prime}=\left\{B_{i} \cup\left\{\infty_{i}\right\} \mid B_{i} \in B_{i}\right\} .
$$

Then the pair ($X^{\prime}, \mathrm{A}^{\prime}$), where

$$
A^{\prime}=B_{1}^{\prime} \cup B_{2}^{\prime} \cup \ldots \cup B_{s}^{\prime} \cup B^{\prime} \cup\left\{Y^{\prime}\right\}
$$

is a linear space with the required properties.
If $n=s=6$, let $(X, \mathrm{~A})$ be the linear space on 25 points constructed in Lemma 2.6 (corresponding to the value $t=1$); remember that A_{∞} was the set of all lines of A containing the point ∞. Take $X^{\prime}=X-\{\infty\}$ and $\mathrm{A}_{\infty}^{\prime}=\left\{A-\{\infty\} \mid A \in \mathrm{~A}_{\infty}\right\}$. The linear space $\left(X^{\prime}, \mathrm{A}^{\prime}\right)$ with $\mathrm{A}^{\prime}=$ $\left(A-A_{\infty}\right) \cup A_{\infty}^{\prime}$ satisfies the required properties.

Proposition 2.9. Let $u, v \equiv 1$ or $3(\bmod 6)$. If $3 u \leqslant v \leqslant 4 u-3$, there $e x$ ists an $S(v)$ containing an $S(u)$.

Proof. Write $w=v-3(u-1)$. Clearly, $w \equiv 1$ or $3(\bmod 6)$ and the inequality $3 u \leqslant v \leqslant 4 u-3$ implies $3 \leqslant w \leqslant u$.

Let $s=\frac{1}{2}(w-1)$ and $n=\frac{1}{2}(u-1)$, so that $s, n \equiv 0$ or $1(\bmod 3)$ and $1 \leqslant s \leqslant n$. As $3 n+s=\frac{1}{2}(v-1)$, the existence of an $S(v)$ containing an $S(u)$ follows immediately from Lemmas 2.4 and 2.8.

Lemma 2.10. Let k be an odd integer, $1 \leqslant k \leqslant 12 t+5$. There exists a linear space (X, A) on $12 t+6$ points and a partition $A=A^{*} \cup A_{1} \cup A_{2} \cup$ $\ldots \cup A_{k}$ such that A^{*} consists of lines of size 3 and each $A_{i}, 1 \leqslant i \leqslant k$, is a parallel class of lines of size 2 .

Proof. Let (Y, B) be a Kirkman system of order $6 t+3$ and let $B=$ $B_{1} \cup B_{2} \cup \ldots \cup B_{r}(r=3 t+1)$ be a partition of B into parallel classes. Take $X=Y \times\{1,2\}$ and write $k=4 l+m$, where $m=1$ or 3 . Here $l \leqslant 3 t+1$ if $m=1$ and $l \leqslant 3 t$ if $m=3$.

For each line $B=\{x, y, z\} \in B_{i}, l \leqslant i \leqslant l$, let A_{B} denote the collecsion of the following subsets of X :

$$
\begin{aligned}
& \left\{x_{1}, y_{1}\right\},\left\{z_{1}, x_{2}\right\},\left\{y_{2}, z_{2}\right\}, \\
& \left\{x_{1}, z_{1}\right\},\left\{y_{1}, z_{2}\right\},\left\{x_{2}, y_{2}\right\}, \\
& \left\{x_{1}, z_{2}\right\},\left\{z_{1}, y_{2}\right\},\left\{y_{1}, x_{2}\right\}, \\
& \left\{x_{1}, y_{2}\right\},\left\{x_{2}, z_{2}\right\},\left\{y_{1}, z_{1}\right\} .
\end{aligned}
$$

Note that for each $i=1, \ldots, l, \cup_{B \in B_{i}} A_{B}$ admits a partition into four parallel classes of lines of size 2. Let $A_{k}=\left\{\left\{x_{1}, x_{2}\right\} \mid x \in Y\right\}$. We now have $4 l+1$ parallel classes on X.

Suppose $m=1$, so that $k=4 l+1$. For each $B=\{x, y, z\} \in B_{i}, l<i \leqslant r$, let

$$
A_{B}=\left\{\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{1}, y_{1}, z_{2}\right\},\left\{y_{1}, z_{2}, x_{2}\right\},\left\{z_{1}, x_{2}, y_{2}\right\}\right\} .
$$

Then with $A=\left(\cup_{B \in B} A_{B}\right) \cup A_{k},(X, A)$ is a linear space with the required properties.

Corsider now the case $m=3$, so that $k=4 l+3$. For each $B=\{x, y, z\} \in B_{l+1}$, let A_{B} denote the collection of the following subsets of X :

$$
\begin{aligned}
& \left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}, y_{2}, z_{2}\right\}, \\
& \left\{x_{1}, y_{2}\right\},\left\{y_{1}, z_{2}\right\},\left\{z_{1}, x_{2}\right\}, \\
& \left\{x_{1}, z_{2}\right\},\left\{y_{1}, x_{2}\right\},\left\{z_{1}, y_{2}\right\},
\end{aligned}
$$

ard for each $B=\{x, y, z\} \in \mathcal{E}_{i}, l+1<i \leqslant r$, as before let

$$
A_{B}=\left\{\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{1}, y_{2}, z_{2}\right\},\left\{y_{1}, z_{2}, x_{2}\right\},\left\{z_{1}, x_{2}, y_{2}\right\}\right\} .
$$

Note that the subsets of size 2 occurring in $\mathrm{U}_{B \in B_{l+1}} \AA_{B}$ can be partitioned into two parallel classes and thus the linear space (X, A), where $A=\left(\cup_{B \in B} A_{B}\right) \cup A_{k}$, has the required properties.

Proposition 2.11. Let $u \equiv 1$ or $3(\bmod 6)$ and $v=u+(12 t+6)$ for some integer t. If $v \geqslant 2 u+1$, there exists an $S(v)$ containing an $S(u)$.

Proof. Let (Y, B) be an $S(u)$ with $Y=\left\{\infty_{1}, \infty_{2}, \ldots, \infty_{u}\right\}$. Clearly, u is odd and $1 \leqslant u \leqslant 12 t+5$ because of the hypothesis $v \geqslant 2 u+1$. Let (X, A) be the linear space of Lemma 2.10, with $k=u$ and $A=A^{*} \cup A_{1} \cup \ldots \cup A_{u}$.

Consider the set $X^{\prime}=X \cup Y$ of cardinality $v=u+(12 t+6)$. For each $i=1, \ldots, u$, let

$$
A_{i}^{\prime}=\left\{A \cup\left\{\infty_{i}\right\} \mid A \in A_{i}\right\} .
$$

a

Then, with $A^{\prime}=A^{*} \cup A_{1}^{\prime} \cup \ldots \cup A_{u}^{\prime} \cup B,\left(X^{\prime}, A^{\prime}\right)$ is an $S(U)$ containing (Y, B) as a subsystem of order u.

Theorem 2.12. Let u and v be two admissible integers. Whenever $v \geqslant 2 u+1$, there is an $S(v)$ containing an $S(u)$.

Proof. The thecrem is clearly valid for $u=1$ or 3 , so we shall fix u and assume $u>3$ (and hence $u \geqslant 7$).

We remark that if there is an $S(v)$ containing an $S(w)$ and an $S(w)$ containing an $S(u)$, then surely there is an $S(v)$ containing an $S(u)$.

We first claim that there is an $S(v)$ containing an $S(u)$ for every $v \equiv 3$ (mod 6) with $2 u+1 \leqslant v \leqslant 3 u$; for $u^{\prime}=v-2 u$ is admissible and satisfies $1 \leqslant u^{\prime} \leqslant u$, whence our cl-im follows from Proposition 2.2. Propositions $2.3,2.7$ and 2.9 show that the theorem is valid whenever $3 u \leqslant v<4 u+3$. The theorem also holds for $v=4 u+3=2(2 u+1)+1$, since we have an $S(2 u+1)$ containing an $S(u)$ and an $S(4 u+3)$ containing an $S(2 u+1)$, both by Proposition 2.2.

We now proceed by induction to prove the validity of the theorem for $v \geqslant 3 u$. Let an admissible v_{0} be given, $v_{0} \geqslant 3 u$, and asstme the assertion of the theorem for all $v, 3 u \leqslant v<v_{0}$. If $v_{0} \leqslant 4 u+3$, there is an $S\left(v_{0}\right)$ containing an $S(u)$ as we have observed above. If $v_{0}>4 u+3$, write (uniquely) $v_{0}=2 w+u^{\prime}$, where $w \equiv 3(\bmod 6)$ and $u^{\prime}=1,3,7$ or 9 . The inequalities $v_{0}>4 u+3, u \geqslant 7, u^{\prime} \leqslant 9$ and the congruence $w \equiv 3$ $(\bmod 6)$ imply $u^{\prime}<2 u+1 \leqslant w<v_{0}$. Now by our claim of the previous paragraph (if $w \leqslant 3 u$) or by our induction hypothesis (if $w \geqslant 3 u$), there is an $S(w)$ containing an $S(u)$; and by Proposition 2.2, there is an $S\left(v_{0}\right)$
containing an $S(w)$. We conclude that the theorem holds for v_{0}, and, inductively, for every admissible $v \geqslant 3 u$.

Suppose that $u \equiv 3(\bmod 6), v \equiv 1(\bmod 6)$ and $2 u+1 \leqslant v \leqslant 3 u$. Here $u^{\prime}=v-2 u$ is admissible and $1 \leqslant u^{\prime} \leqslant u$, so there is an $S(v)$ containing an $S(u)$ by Proposition 2.2. The proof is now complete in the case that $u \equiv 3(\bmod 6)$.

So it remains only to prove that if $u, v \equiv 1(\bmod 6), 2 u+1 \leqslant v \leqslant 3 u$, there exists an $S(v)$ containing an $S(u)$. The proof given below uses the fact that the theorem is now known to be true for every admissible $v \geqslant 3 u$.

Proposition 2.13. Let $u \equiv 1$ or $3(\bmod 6)$ be given. Then for every $v \equiv u$ (mod 6) with $2 u+1 \leqslant v \leqslant 3 u$, there exists an $S(v)$ containing an $S(u)$.

Preof. We proceed by induction on u. Let $u_{0} \equiv 1 \operatorname{or} 3(\bmod 6)$ and as sume the validity of Proposition 2.13 for every $u \equiv 1$ or $3(\bmod 6)$, $u<u_{0}$. (Proposition 2.13 is clearly valid for $u=1$ or 3 .)

Now let v be given, $2 u_{0}+1 \leqslant v \leqslant 3 u_{0}$. If $v-u_{0} \equiv 6(\bmod 12)$, the existence of an $S(v)$ containing an $S(u)$ is asserted by Proposition 2.11, so we assume $v=u_{0}+12 t$ for some integer t. Let $w=u_{0}-6 t$, so that $w \equiv u_{0}(\bmod 6)$. The inequality $2 u_{0}+1 \leqslant v \leqslant 3 u_{0}$ implies $u_{0} \geqslant 2 w+1$ and thus, by the partial result of the above theorem (if $u_{0}>3 w$) or our induction hypothesis (if $u_{0} \leqslant 3 w$), there exists an $S\left(u_{0}\right)$ containing an $S(w)$. Let A' be the collection of all transversais of a $T(3,6 t)$ with 3 groups $X_{1}^{\prime}, X_{2}^{\prime}, X_{3}^{\prime}$ of size $6 t$ and let (Y, B) be an $S(w)$. Consider the set $X=X_{1}^{\prime} \cup X_{2}^{\prime} \cup X^{\prime}, \cup Y$ of carcinality $18 t+w=v$. For each $i=1,2,3$, let $\left(X_{i}^{\prime} \cup Y, A_{i}^{\prime} \cup B\right)$ be an $S\left(u_{1}\right)$ containing (Y, B) as a subsystem of order w. Then, with $A=A^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime} \cup A_{3}^{\prime} \cup B$, the pair (X, A) is an $S(v)$ containing an $S\left(u_{0}\right)$.

References

[1] R.C. Bose, E.T' Parker and S.S. Shrikhande, Further results on the construction of mul' ally orthogonal Latin squares and the falsity of Euler's conjecture, Canad. J. Math. 12 (1. u) 189-203.
[2] M. Hall, Combinatorial theory (Blai:idell, Waltham, Toronto, 1967).
[3] H. Hanani, The existence and constuluction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961) 361-386.
[4] TP. Kirkman, On a problem in combinations, Camb. and Dublin Math. J. 2 (1847) 191214.
[5] R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio Math. 6 (1939) 251-257
[5] D.K. Ray.Chaudhuri and R.M. Wilson, Solution of Kirkman's schoolgirl problem, in: Combinatorics, Am. Math. Soc. Proc. Symp. Pure Math. 19 (1971) 187-203.
[7] R.M. Robinson, Triple systems with prescribed subsystems, Notices Am. Math. Soc. 18 (1971) 637.
[8] A. Rosa, Steines triple systems and their chromatic number, Actã Fac. Rerum Natur. Univ. Comenian. Math. 24 (1970) 159-174.

[^0]: * Aspirant du Fonds National Belge de la Recherche Scientifique.

[^1]: This has been noticed independently by Rosa [8] and laier also by Robinson [7].

