
Computers Math. Applic. Vol. 26, No. 9, pp. l-10, 1993 0898-1221/93 $6.00 + 0.00

Printed in Great Britain. All rights reserved Copyright@ 1993 Pergamon Press Ltd

Monkey Tests for Random Number Generators

G. MARSAGLIA AND A. ZAMAN
Supercomputer Computations Research Institute

and
Department of Statistics, The Florida State University

Tallahasse, FL 32306, U.S.A.

(Received and accepted May 1993)

Abstract-This article describes some very simple, as well as some quite sophisticated, tests that
shed light on the suitability of certain random number generators.

INTRODUCTION

Few images invoke the mysteries and ultimate certainties of a sequence of random events as well as

that of the proverbial monkey at a typewriter. Surprisingly, many questions about the monkey’s

literary output--the times between appearances of certain strings, the number of distinct four-

letter words in a million keystrokes, the time needed to spell CAT, for example-are well suited

for assessing both uniformity and independence in the output of a random number generator (the

monkey). Technically, we are concerned with overlapping m-tuples of successive elements in a

random sequence.

For years, in our annual course Computer Methods in Probability and Statistics, we called

these Overlapping m-Tuple Tests. But for the last few years we have used the monkey metaphor.

It seems a better way to stimulate the interests of the students and, by invoking an interesting

image, make them more readily accept the ideas and even feel as though they were their own.

We hope it will have a similar effect on you, the reader-not that we necessarily equate you

with the students (or the monkey).

This article describes some very simple, as well as some quite sophisticated, tests that shed

light on the suitability of certain random number generators. The generators are used to provide

the random keystrokes for our monkey. The keyboards range from the standard 26 upper-case

letters to an organ-like keyboard with 1024 keys to the DNA keyboard with four keys: C,G,A,T.

CAT TESTS

Now, to business. We start with an idea that provides a very inefficient test, but one that some

random number generators (RNG’s) fail. Our monkey (RNG) has a typewriter with 26 upper-

case letters A,B, . . . ,Z that he strikes at random. (Assume our RNG monkey produces uniform

reals in [O,l), say by means of a procedure UNI(). The integer part of 26.*UNI() provides the

random keystroke.) Now the CAT test: how many keys must the monkey strike until he spells

CAT?
There are 263 = 17,576 possible bletter words, so the average number of keystrokes necessary

to produce CAT should be around 17,576. We will provide exact and approximate distributions
below, and more efficient tests; for now, let’s try this simple CAT test for a few common RNG’s.

Research supported by NSF Grant DMS-9206972.

Typeset by AM-T#

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82489523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 G. MARSAGLIA AND A. ZAMAN

The congruential monkey, I = 69069I mod 232, converting to a real UN1 on [O,l), gets CAT

after 13,561 keystrokes, then after 18,263, then another 14,872 strokes produces the third CAT.

Quite satisfactory.

Now consider the shift-register (Tauseworthe) monkey that produces Sl-bit integers by exclu-

sive or’s, left shift 28 and right shift 3. This is the very generator suggested [l] as a replacement

for congruential generators after discovery of their lattice structure [2]. The shift-register monkey

never spells CAT, even after two million keystrokes. He can’t get KAT, DOG, GOD, SEX, WOW

or ZIG either. But he can get ZAG, and too often-very few thousand keystrokes. Indeed, it

turns out that this monkey was only able to get 7,834 of the possible 17,576 3-letter words, (in

a string of l,OOO,OOO keystrokes) and of course with his limited vocabulary, he gets those words

too often.

Note that inability to get CAT should not be attributed to the equivalent of broken keys on the

typewriter. This monkey still types each of the letters A to Z with the expected frequencies (and

thus would pass a standard test for letter frequency). For example, 26,000 keystrokes produced

984 C’s, 967 A’s and 1021 T’s, quite satisfactory. Yet continuing the run to 2,600,OOO keystrokes

failed to produce a single CAT!

As silly as it seems, this is a very effective and convincing way to show the unsuitability of

certain random number generators. You may easily write a program and try it yourself. Although

details have been lost, we remember using the CAT test to shoot down RNG’s provided with

Apple and Radio Shack computers (TRS80’s ?) when they first came out in the 1970’s.

MORE EFFICIENT TESTS

Most of our RNG monkey’s output is wasted if we only count the number of keystrokes between

successive appearances of CAT, DOG or some such 3-letter word. So, instead, suppose we count

the frequencies of all the possible 3-letter words produced in a string of, say 1,757,603 keystrokes

(the extra 3 so that we have exactly 1,757,600 S-letter words, and our expected frequency is 100

for each particular word). We need an array of 17576 elements to count the frequencies. Let

21,x2,..., xl7576 be the observed counts.

Technically, the z’s are asymptotically jointly normally distributed (they are m-dependent

variables), and the appropriate statistical test is the quadratic form in the weak inverse of the

covariance matrix of the z’s, that is the quadratic form in the variables zrr-100, zr100, . . . ,x17576

100 with coefficients the elements of any weak inverse C- of the covariance matrix of the z’s. (If

that covariance matrix is C, then a weak inverse C- satisfies CC-C = C, and the value of the

quadratic form is invariant (with probability 1) under choice of C-.)

Note that the quadratic form C’(observed-expected)/expected, Pearson’s classical chi-square,

is not the appropriate test. That test applies only for the classical occupancy problem (multi-

nomial distribution), wherein balls are put into cells independently. Here we do not have in-

dependence; incrementing the count for, say, QCA certainly influences a possible increment for

CAA,CAB,. . . , CAZ, whichever the next keystroke brings, but does not influence possible incre-

ments to the other cells.
But it turns out that we get the correct (or rather, a correct) quadratic form by applying

Pearson’s form twice: If we naively get Pearsons quadratic form for the S-letter words, say

Q3 = i=y (Xi -loo)2,

i=l

and if we also count the frequencies of 2-letter words in the first

naive Pearson form, say

Q2 = i=T (yi - 1000)2

i=l
1000 ’

1,757,602 keystrokes and use the

Monkey Tests 3

where YI,Y~,..., ~676 are the counts for the possible 2-letter words, then the difference, Qs -
Qz, is a zero-centered quadratic form in a weak inverse of the covariance matrix of the counts

a,-.*, x17576, and is the appropriate (likelihood ratio) test that the z’s came from a normal
distribution with the specified means and covariance matrix.

If the hypothesis is true (the monkey is striking the keys uniformly and independently), then
Qs - Qz will have a chi-square distribution with 263 - 262 degrees of freedom, (the rank of C).

SPARSE OCCUPANCY TESTS: OPSO, OTSO, OQSO AND DNA

What if we want to apply the above test to, say, 4-letter words? We might take a string of two
million keystrokes and count the frequencies of all the possible 264 = 456976 4-letter words. But
that requires an array of 456,976 elements. That many bytes will do, if the frequencies are 100 or
so. That’s half a meg of bytes-quite a few. We might manage with a carefully tailored program,
but we are pressing the limit. Counting 5-tuple or 6-tuple frequencies seems beyond reach. (Note
that, in order to invoke asymptotic joint normality for the m-dependent cell counts, we need
expected counts of some 20 or more, so we will need at least 6 bits for each cell.)

And yet 4-,5-,6-tuples, and longer, are where we are more likely to find unacceptable output
from our RNG monkeys. What to do ? Our approach is this: instead of counting frequencies
of, say, 4-letter words in a long string of keystrokes, requiring a memory location-or at least a
byte-for each possible 4-letter word, why not just count the presence or absence of each possible
word? That requires a single bit for each possible word, or 264 = 456796 bits for Cletter words
in an alphabet of 26 letters. That’s about 14,000 computer (32-bit) words, a reasonably-sized
array for most high level languages.

We call these sparse-occupancy tests. Because counting actual frequencies requires arrays too
large, we only count the number of empty cells, that is, in a long string of keystrokes, we use a bit
map to find how many 4 (5-,6- or higher-) letter words are missing. Some interesting probability
theory is required to develop appropriate tests.

THE OPSO TEST

Here OPSO means Overlapping-Pairs-Sparse-Occupancy. We observe 2-letter words in a long
sequence of keystrokes from an alphabet of 21° letters. By setting a bit, we mark the presence
or absence of every possible 2-letter word. The first 10 bits (or any particular 10 bits) of an
integer produced by a generator (monkey) determines the keystroke. (We abandon the 26letter
alphabet from here on; alphabets of size 2, 22, 23 , . . . , 21° are better suited for testing RNG’s.)

Before developing the theory, here is an example of the OPSO test: We generate 221 keystrokes
from an alphabet of 2 lo = 1024 letters. Each keystroke is produced by the first 10 bits of the
congruential generator 2, = 69069x,-i mod 232. We count the number of missing 2-letter words.
As we shall see, the number of missing 2-letter words should be approximately normal with
p = 141909 and o = 290. Our first run (with seed value 1234567) of 221 keystrokes has 141,979
missing 2-letter words, corresponding to a standard normal variate of .240, the next three runs of
221 keystrokes have 141980, 141753 and 141785 missing 2-letter words, corresponding to standard
normal values .243, -.535, -.428. Good. Our 69069 congruential monkey comes through again.

Now let’s put the 31-bit left-28-right-3 shift-register monkey at the keyboard. We already
saw he couldn’t manage CAT on a 26-key typewriter; how will he do on a veritable organ with
1024 keys? Lousy! With a seed value of 1234567, his first string of 221 keystrokes had 1,032,192
missing 2-letter words, some 3070 sigmas from the mean. The second was as bad.

Next, let’s import a monkey from Berkeley, with keystrokes determined by the leading 10 bits
from the Berkeley Unix RNG xn = 62605x,-i + 113218009 mod 22g. Again with seed 1234567,
six runs of 2 21 keystrokes p reduced what should be the equivalent of six independent standard
normal values: -1.771, -3.447, -1.585, -2.903, -1.757, -2.370. Not good; this Berkeley monkey
fails the OPSO test, but it is not the spectacular failure of the shift-register monkey.

4 G. MAFISAGLIA AND A. ZAMAN

Another shift-register monkey: left shift 18, right shift 13 on 31 bit words. This monkey uses

what we have found to be the best of the shift-register generators. How will she do on OPSO?

With seed value 1234567, our monkey provides 2 21 keystrokes (from leading 10 bits) that have

139,375 missing 2-letter words. That is -8.74 sigmas from the mean. Bad. The next run of 221

keystrokes has 139,946 missing 2-letter words: -6.77 sigmas of 290 from the mean of 141,909.

Even the best of the shift-register generators fails the OPSO test, but not in as spectacular

fashion as those for other shift register generators.

OPSO THEORY

The OPSO test counts the number of missing 2-letter words in a long string of n random

keystrokes. If n = 2 21 = 2,097,152 and there are (Y = 2 lo = 1024 letters in the alphabet,

then the number of missing words should average 141,909 with a standard deviation of 290. How

is this determined?

The answer: not easily. At least, the variance is not easy; the mean is easy. To get the

mean, we take advantage of the near lack-of-memory property of the monkey’s output. If he

has not typed a particular word after, say, 1000 keystrokes, then the distribution of the time

remaining until he does has virtually the same distribution as the original. In other words, the

time until the monkey types a particular 2-letter word should be close to exponential, with mean

1-1 = o2 = 220, and the probability he does not type the word within n keystrokes should be

e +/p, to considerable accuracy.

To determine that accuracy, we need the true probability that n keystrokes will not produce a

particular a-letter word. There are two kinds of 2-letter words: AB and AA. The probability of

no AB in n keystrokes is

The coefficient of .zn in the Taylor expansion of
1

l-z+pszs

where p = 2 -lo, the probability for each of the keystrokes.

The general form of the required probability is cir~+c&, with ri, ~2 the roots of x2-x+p2 = 0

and ci = ri/(ri - p2). Even with n as small as 100 this becomes, to great accuracy, cir?, with ri

the dominant root:

Pr(no AB in n strokes) = 1.000001907354(.99999904632477409731349945987)~.

When n = 221 this becomes .135335154, while eV2 = .135335283.

The probability of no AA in n keystrokes is slightly different,

The coefficient of zn in the Taylor expansion of
1tpz

l-z-(l-p)z-(p-p2)z2’

For large n, this becomes

Pr(no AA in n strokes) = 1.0000019045637(.99999904725519072388710142577)~.

When n = 221 this becomes .135599426952, compared to e -2 = .135335283 that comes from the

lack-of-memory assumption.
Now, to find the expected number of missing 2-letter words in a string of n keystrokes, we use

indicator variables. Let wr, 2~2,. . . , w2097152 be the set of possible 2-letter words and let

xi = 1 if word wi is missing, else xi = 0.

Then the number of missing words is x1 + . . . + xscsrr52, and the expected number of missing

words is

E(zi) + . . . + E(~sos7152).

Monkey Tests 5

There are 220 - 2i” 2-letter words of type AB, and 21° of type AA. When n = 221, our expected
number of missing P-letter words is

(220 - 21°) x .13533515417056227716252 + 21° x .135599481189688440420574,

and this reduces to 141909.4652904189697.
On the other hand, the approximation based on the lack-of-memory assumption yields

2%?-221/220 = 141909.32995511439001.

Thus, the easy method for finding the average number of missing 2-letter words from n key-
strokes 220e-n/220 is quite suitable for practical applications of the OPSO test.

Those not acquamted with methods for developing generating functions and solving recurrence
equations such as those above may wish to look at the marvelous treatment in the book [3]
developed out of Donald Knuth’s concrete mathematics course at Stanford, in particular, sections
7.1-7.3 and 8.4.

Now for the hard part: the variance of the number of missing 2-letter words. It is the sum of
cov(zi, xj) for i and j each ranging from 1 to 2 lo. There are 220 such covariances. They fall into
some 17 different types, with a generating function for each type. Thus the expected value of
xixj, with xi associated with a word such as AB, and xj associated with CA, requires a different
generating function than does that associated with AA,BA.

We omit details of extensive calculations of the covariances for each of the 17 types. If their
frequencies are accounted for, the total yields the required variance. It is 84255.766087785. Thus,
with an alphabet of 21° letters, the number of missing a-letter words in a string of 221 keystrokes
has mean 141,909 and standard deviation 290.27. It has a distribution close enough to normal
that the statistic (z - 141909)/290 is the appropriate one for the OPSO test; it should behave
as a standard normal variate. Here x is the number of 2-letter words that are missing from the
string of 2 21 keystrokes. A value of (zc - 141909)/290 in absolute value greater than, say, 3 is
cause for concern. A really good monkey (RNG) would cause concern only a few times in 1000
tests.

Now an aside with a call for help: We have not been able to find a suitable justification for
an approximation for the variance of the number of missing &letter words in a long string of n
keystrokes. Perhaps some reader can. By just fooling around with simple formulas, we find this:
the variance is approximately

cr”emx(l - 3emX),

with o the number of letters in the alphabet and X = n/c?. For example, with cr = 21°, n = 221
this approximation yields 84293, for 2-letter words, compared to the true variance of 84255. The
corresponding square roots are 290.27 and 290.33. Not bad. With an alphabet of a = 221 and
n = 223, the true mean and standard deviation are 567,639 and 580.8, whereas the formula
a2emx(1 - 3emX) yields an approximate standard deviation of 580.7.

We have not been able to find the true variance for OTSO, overlapping triples of 3-letter
words, but sampling suggests its variance is consistent with the value given by the approximation.
Similarly for OQSO, overlapping 4-letter words. Both OTSO and OQSO are discussed in more
detail in the next sections.

But we can find no heuristic reason why, for k-letter words, crkemx(l - 3ewX) should give the
approximate variance, with X = n/o k. But it does. Perhaps it is just a coincidence for the range
of alphabet sizes and keystroke lengths of the size suited for monkey tests. It certainly is not
suitable unless 3emX < 1, and for very long sequences, with X = n/o2 > 6 or so, the number
of missing k-letter words becomes nearly Poisson distributed, with variance equal to the easily
found mean. So a general variance-approximation formula of the form akeex(l - cedX) may do,
with c ranging from 3 to 0. c = 3 does nicely for the tests here.

6 G. MARSACLIA AND A. ZAMAN

THE OTSO TEST

OTSO means Overlapping-Triples-Sparse-Occupancy, meaning the number of missing 3-letter

words in a long string of n keystrokes. Constraints on the size of our bit map make LL = 26 a

reasonable size for the alphabet, calling for an array of 2 l3 32-bit words to record the presence
or absence of each possible word. The RNG monkey’s keystroke will be determined by six bits

from the random integer-most often the leading six, the most important, bits. But every set

of six bits should provide suitably random and independent keystrokes, if we are to have a truly

satisfactory RNG.

So with a keyboard of (Y = 64 keys our RNG monkey produces, say, n = 221 keystrokes

and we count the number of missing 3-letter words. Enumerating the possible kinds of 3-letter

words: AAA, AAB, ABA, BAA, ABC, we find generating functions for the probability that each

particular type will be missing in n keystrokes, take into account their frequencies, and find the

true expected number of missing 3-letter words in a string of 221 keystrokes. It is 87.9393.

The value that results from the lack-of-memory assumption is 03eenla3 = 218ee8 = 87.9395.

So, once again, the approximation is very accurate.

It is a formidable task to find the exact variance for the number of missing S-letter words in 221

keystrokes. There are hundreds of different word-type pairs, such as ABA,CAB for example, for

which generating functions must be found. Then asymptotic forms must be found and combined

with the proper frequencies to get the true variance. We have a half-hearted project underway

to automate the process with a computer program, but have progressed only to the we-think-it-

is-feasible stage.

The formula cu3ewX(1 - 3emX) gives 87.85, with resulting (T = 9.37. This is consistent with

simulation results. But note that when X = 221/2 l8 = 8, the factor (1 -3emX) is of no consequence.

The estimated variance reduce8 to the mean value a3e-‘, which is what we expect if the number

of missing 3-letter words has a limiting Poisson distribution.

Note that the OTSO test does not require the true variance. One may test that a set of z

values, the number of missing 3-letter words in a string of 2 21 keystrokes, comes from a normal

distribution with mean 87.85 with a t-test, using cumulative estimates of the standard deviation

from the sample values. Larger samples of z’s are necessary to establish a test failure. The test

is a bit sharper when we know the variance.

Here is a practical example of the OTSO test. A random number generator proposed (and

touted on internet) by Haas [4], generates Cdigit ordinary decimal integers. Suppose we as-

sume an alphabet of cx = 100 characters and let the last two digits of Hass-generated numbers

determine our monkey’s keystrokes, then consider 3-letter words. If we let the monkey pro-

duce 2,000,003 keystrokes, and hence 2 million 3-letter words, we expect there should be around

~3e-2000000~1000000 = 135,335 missing 3-letter words.

The first three runs produced 147,440, then 147,922, then 147,691. These are all at least 43

sigmas from the mean, a spectacular failure that a more extensive t-test will confirm. (The above

empirical approximation for the variance suggests u = 283.5 for this OTSO test.)

THE OQSO TEST

The acronym OQSO means Overlapping-Quadruples-Sparse-Occupancy-the number of missing

Cletter words in a long string of keystrokes. We use an alphabet of (Y = 25 letters and a string of

n = 221 keystrokes. Thus selecting any five bits from the integer produced by the RNG provides

the resulting keystroke for our RNG monkey.

By enumerating the possible kinds of Cletter words, finding their generating functions and

asymptotic forms for the coefficients of zn, then combining them with the proper frequencies,

the true expected number of missing I-letter words in a string of n = 221 keystrokes may be

found to better than 40 digits of accuracy. To the first 11 digits, it is p = 141909.47365.. . . The
approximation based on the lack-of-memory property yields 141909.33.

Monkey Tests 7

We don’t know-and doubt that we ever will know-the true variance. There are just too

many kinds of pairs of Cletter words to undertake finding all the necessary generating functions.

The approximation akepA(l - 3edX) yields 84293, with a resulting CT of 290.33, the same

values as those for OPSO, since OPSO has the same values for crk and X. Simulation results are

consistent with c = 290 for OQSO, and we earlier found the true g for OPSO to be 290, to three

places.

The display below gives details of the enumeration necessary for finding the true expected

number of missing bletter words, in order to assess the accuracy of the approximation arising

from the lack-of-memory assumption.

For each type of word, we need the frequency, the generating function and the probability that

a string of n = 221 keystrokes will not contain that word. The notation A’ means not-A, X and Y

designate any letters of the alphabet. There are (a4 - a3) words of type AXYA’, (cy3 - o) of type

AXYA, with XY not AA, and CY words of type AAAA. For each particular 4-letter word there is a

generating function N(z). The coefficient of zn in the series expansion of the generating function

N(z) gives the probability that a string of n keystrokes will not contain that particular 4-letter

word.

THE EXPECTED NUMBER OF MISSING
WORDS FROM A STRING OF n = 221 4-LETTER
WORDS. THE ALPHABET HAS a = 32 LETTERS.

Form of word: AXYA’, (a4 - cu3 of these)

N(z) = l/(1 -z +p?@)

Dominant root: r = .99999904632295509663 N 1 - p4 - 3ps

Coefficient: c = 1.00000381472273166747 N 1 + 4p4 + 28~’

Contribution to ~1: (cy4 - 03)cr” = 137474.27007432892416

Form of word: AXYA, with XY not AA (03 - cr of these)

N(z) = (1 + p3z3)/(1 - z + p3z3 + (p4 - p3)z4)

Dominant root: T = .99999904635205828873 N 1 - p4 + p7

Coefficient: c = 1.00000381451901068279 N 1 + 4p4 - 7p7

Contribution to CL: ((r3 - o)crn = 4430.59356383447583

Form of word: AAAA, ((Y of these)

N(z) = (1 + pz + p?2 + p32)/(1 - (1 - p)z - (p - p2)2 - (p2 - py.2 - (p3 - p4)zJ)

Dominant root: T = .999999076124591803097 N 1 - p4 + p5

Coefficient: c = 1.000003665716133590077 N 1+ p4 - 5p5

Contribution to p: (YCT” = 4.6100168562260065881307

Total: /.J = 141909.47365

Lack-of-memory approximation: a4e+la4 = 141909.33

THE DNA TEST

If we have an alphabet of 4 letters: C,G,A,T, then a succession of keystrokes from that alphabet

will look like the mapping of a segment of DNA. Hence the name. Our monkey generates long

strings and we look for the incidence of lo-letter words. Thus we have 220 possible lo-letter
words, and we need an array of 2 I5 32-bit words for mapping the presence or absence of all

possible lo-letter words.

As with OTSO and OQSO, we can find the exact expected number of missing lo-letter words
from a string of, say, n = 2 21 keystrokes, but finding the exact variance looks hopeless.

8 G. MARSAGLIA AND A. ZAMAN

To find the true expected number of missing lo-letter words, we must consider 22 kinds of lo-
letter words (depending on how many leading segments of each word match equal-length trailing
segments), find their generating functions, the probability the word will not appear in n = 221
keystrokes, then combine all those probabilities, with appropriate frequencies.

The result is 141910.5378411, the expected number of missing lo-letter words in a random
DNA segment of 221 C’s,G’s,A’s and T’s. The expected value from the lack-of-memory property
is the same as that for OPSO and OQSO, with cvlc = 220 and ;\ = 2: 141909.

The estimate of the variance from our formula cr lo e -‘(l - 3ebX) again yields a CT of 290. As
with OQSO, extensive simulations show that the true D must be very close to 290.

So a reasonble implementation of the DNA test is this: Generate 221 keystrokes from the
alphabet {C,G,A,T} (using two bits from each random integer), and let z be the number of
missing lo-letter words. Do this, say 4 times. The resulting values (zr - 141911)/290,. . . , (24 -

141911)/290) should look like a sample of 4 independent standard normal variables.

DIFFERENCES IN THE TESTS

How do the tests OPSO, OTSO, OQSO and DNA differ? All of them count the number of missing
k-letter words in a long string of n keystrokes from an alphabet of Q: letters, and thus test both
uniformity and independence in the output of a random number generator.

OPSO uses more of each random number, 10 bits, but space and time limitations only allow
testing 2-letter words, that is, independence for pairs (2 dimensions). On the other hand, DNA
can test lO-tuples (10 dimensional behaviour) but, again from time and space considerations, at
a depth of only 2 bits per random number. Some RNG’s may do well in one of the tests and not
in the other. OTSO and OQSO are in between, using 6 bits from each number for behaviour in
3 dimensions or 5 bits from each number for 4 dimensions.

Of course a good RNG monkey should pass all these tests. We next give examples of good and
not so good RNG monkeys.

RESULTS OF EXTENSIVE MONKEY TESTS

We have applied various monkey tests to many different RNG’s. We find OPSO,OQSO and DNA
to be the most effective. Simple tests such as the CAT test of Section 1 are easily programmed,
but more complicated programs such as those for OPSO, OQSO or DNA are really not that
complicated, and the reader may find it easier to program his own versions rather than get them
from us and figure out how to use them.

Next, let us suggest various levels of stringency for tests of a random number generator. For
most applications, the leading bits, say the the first lo-16 bits, of a RNG are the most important
and should pass all tests. Thus, for monkey tests, keystrokes determined by the leading bits of the
random number must be satisfactorily random and independent. Such RNG’s will be satisfactory
for most purposes.

There are an increasing number of applications, however, where adequate randomness in the
most significant bits of a random integer or uniform variate on [O,l) is not enough. Monte Carlo
simulations using samples of several millions are examples, and another is use of the trailing
byte of a random integer to provide the dominant step in generating a discrete random variable.
(Probably the fastest method for generating a discrete variate is to express each of its probabilities
as a sum pi = Ici/256 + ri. Then the required variate is generated most of the time by fetching a
value from a table with index a random byte determined by the trailing 8 bits of a random 32-bit
integer.)

So, a really good random number generator must pass monkey tests with keystrokes determined
by all possible substrings of bits of its random numbers. Most, but not all, of the standard RNG’s
have satisfactory leading bits, but it is quite difficult to fashion generators with satisfactory
trailing bits.

Monkey Tests 9

Thus, for example, a really good HNG must pass OPSO with keystrokes determined by bits

l-10,2-11,..., 23-32. Similarly, it must pass OQSO with bits l-5,2-6,. . . ,28-32 and DNA with

bits l-2,2-3, . . . ,31-32.

A few generators are that good, others are not. Here is a summary of kinds of generators

and the extent to which they pass monkey tests. More detailed descriptions of the classes of

generators are in [5-81

SUMMARY FOR VARIOUS CLASSES OF RNG’S

Congruential Generators

These produce sequences zn = oz+r + b mod m. The modulus m is best taken to be 232

for speed and convenience in modern CPU’s, but a prime modulus produces better trailing bits.

Those with prime modulus seem to do well on all substrings of bits for the OPSO, OQSO and

DNA tests. They would be the congruential generators of choice if they were not so awkward to

implement.

Congruential generators with modulus a power of 2 usually do well if strings of bits from

the first 10 or 12 are used to determine a keystroke. But note, from above, that the Berkeley

congruential HNG failed OPSO with keystrokes determined by the leading ten bits. The widely

used generator x, = 69069x,-r mod 232 (the system generator for Vax’s) seems to pass all tests

determined by leading bits, but it fails badly on OPSO, OQSO and DNA if bits beyond the first

13 are used.

Shift Register Generators

Practical versions of these generators are perhaps best described by viewing a computer word

as a binary vector p. Then the sequence is p, /3T, PT2,. . . , with T a binary matrix. Such a

T is chosen to make the period long and implementation reasonable; among the most common

T’s are those of the examples above: T = (I + R15)(1 + L17) for 32-bit binary vectors, and

T= (I+R28)(1+L3) or T = (I + L”)(I + R13) for 31-bit vectors. R and L are matrices that

effect a right (left) shift of one position in the binary vector, and addition of binary vectors is

the exclusive-or operation. Shift register generators do poorly on most monkey tests, with the

exception of T = (I + L18)(I + R13) or its transpose, which do well on most, but not all-see,

for example, its poor performance on OPSO at the end of Section 4.

Lagged Fibonacci Generators

These generators use an initial set of elements 21, x2, . . . , xv and two “lags” r and s with r > s.

Successive elements are generated by the recursion, for n > r: x, = x,_, o x,+~, where o is

some binary operation. The initial (seed) elements are computer words and the binary operation

might be +,-,* or @ (exclusive-or). For + or -, the x’s might be integers mod 2k or single- or

double-precision reals mod 1. For *, odd integers mod 2 Ic. We designate such a generator loosely

es F(r,s,o), although each lagged-Fibonacci generator depends on details of the particular binary

operation and the finite set of elements it operates on.

Generators using multiplication on odd integers, automatically modulo 232, are the best of the

lagged Fibonacci generators, passing other tests as well as monkey tests. (The last bit is always 1,

so of course they cannot pass OPSO, OQSO or DNA if the last bit contributes to the keystroke.)

Overall, F(r,s,+) and F(r,s,-) and F(r,s,@) do very well on monkey tests for all strings of bits.

But F(r,s,@) may fail for pairs (r,s) such as (31,13) or (17,5) because of their their inadequate

period, 2*, in contrast to the other lagged Fibonacci generators, which have periods about 232+T.

10 G. MAR~AGLIA AND A. ZAMAN

AWC and SWB Generators

The recently developed add-with-carry (AWC) and subtract-with-borrow (SWB) generators
[S] have remarkably long periods and seem to pass OPSO, OQSO and DNA tests for strings of
bits from all parts of the random integer. They are based on recursions such as 5, = zn+ +
x,_, + c mod b, where the ‘c’ is not a constant, but the carry bit: 1 or 0, depending on whether
the previous addition did, or did not, exceed the modulus b. That describes an AWC generator.
An SWB generator forms x, = xn+ - x,+_~ -c mod b, with c either 1 or 0, depending on whether
the previous subtraction was negative.

An example: the SWB generator x, = x,-24 - x,-37 - c mod 232 has period about 21178
and passes all the CAT, OPSO, OQSO and DNA tests put to it, for all substrings of its 32-bit
integers. (However, it is not perfect; it fails the birthday-spacing test described in [5], as do other
AWC and SWB generators and lagged-Fibonacci generators using +,- or 6%)

Combination Generators

There is theoretical and empirical support for the idea that combining two random number
generators produces a generator with better randomness than either of its components [5]. For
example, consider the simple congruential generator zn = 69069x+1 mod 232 applied to OPSO
for bits 15-24, OQSO for bits 15-18 and DNA for bits 15-16. It fails all of them spectacularly,
producing, respectively, 984,860 and 983,840 and 983,840 missing words when 141,909 are ex-
pected. But if we combine it (by addition) with the shift register generator fl= fl(I+L17)(I+R15)
on 32 bits (which fails spectacularly on all substrings of bits), we get these missing-word counts
for OPSO,bits 15-24: 141909; OQSO, bits 15-18: 142116; and DNA, bits 15-16: 141,524. Very
good, being 0,.762 and -.092 standard deviations from the mean.

This example is for the widely used combination generator Super-Duper, combining 1 = 69069*
I with /3 = p(1+L17)(I+R15). But even that combination fails monkey tests on trailing bits. The
KISS generator (Keep-It-Simple-Stupid) is an example of a combination generator that is about
as simple as one can be and have very long period, about 2g5, and pass all tests on all strings
of bits. It combines a congruential and two shift register generators, I = 69069 * If23606797,
p = @(1 -t R17)(1 + L15) and /? = P(1 -I- L18)(1 + R13), the latter on 31-bit words.

AVAILABILITY

Descriptions and code for the KISS generator and for ULTRA, a generator that combines the
above SWB generator with I = 690691 and has period some 10366, are available from the authors
(geoastat , f su. edu). Also available: our DIEHARD battery of tests, recently completed for
distribution in “user friendly” form. It includes the monkey tests described here as well as other
stringent tests described in [5] and our versions of standard tests.

1.

2.
3.
4.

5.

6.

7.

8.

References

J.R.B. Whittlesey, On the multidimensional uniformity of pseudorandom number generators, Comm. ACM

12, 247, (1969).
G. Marsaglia, Random numbers fall mainly in the planes, Proc. Nat. Acad. Sci. 61, 25-28, (1968).
R.L. Graham, D.E. Knuth and 0. Patsshnik, Concrete Mathematics, Addison-Wesley, Reading, MA, (1989).
A. Haas, The multiple prime random number generator, ACM Transactions on Mathematical Software 13

(4), (1987).
G. Marsaglia, Keynote address: A current view of random number generators, In Proceedings, Computer
Science and Statistics: 16th Symposium on the Interface, Elsevier, (1985).
G. Marsaglia and L.H. Tsay, Matrices and the structure of random number sequences, Linear Algebra and
its Applications 67, 147-156, (1985).
G. Marsaglia, The mathematics of random number generators, Proceedings of Symposia on Applied Mathe-
matics 46, 73-89, (1992).
G. Marsaglia and A. Zaman, A new class of random number generators, Annals of Applied Probability 1 (3),
462-480, (1991).

