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Abstract

The weighted least-squares solutions of coupled singular matrix equations are too difficult to obtain by applying matrices decom-
position. In this paper, a family of algorithms are applied to solve these problems based on the Kronecker structures. Subsequently,
we construct a computationally efficient solutions of coupled restricted singular matrix equations. Furthermore, the need to compute
the weighted Drazin and weighted Moore–Penrose inverses; and the use of Tian’s work and Lev-Ari’s results are due to appearance
in the solutions of these problems. The several special cases of these problems are also considered which includes the well-known
coupled Sylvester matrix equations. Finally, we recover the iterative methods to the weighted case in order to obtain the minimum
D-norm G-vector least-squares solutions for the coupled Sylvester matrix equations and the results lead to the least-squares solutions
and invertible solutions, as a special case.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and preliminary results

Let us recall some concepts that we will use in this study and throughout the study we consider matrices over the
field of complex numbers C or real numbers R. The set of m × n complex matrices is denoted by Mm,n(C) = Cm×n.
For simplicity we write Mm,n instead of Mm,n(C) and when m = n, we write Mn instead of Mn,n. The notations AT,
A∗, A−1, r(A), R(A) and tr(A) stand for the transpose, conjugate transpose, inverse, rank, range and trace of matrix
A, respectively.

Given two matrices A = [aij ] ∈ Mm,n and B = [bkl] ∈ Mp,q , then the Kronecker product of A and B is defined by
(see, e.g., [2,3,12,17,26,38])

A ⊗ B = [aijB]ij ∈ Mmn,pq . (1.1)

While if A=[a1 a2 · · · an] ∈ Mm,n and B =[b1 b2 · · · bn] ∈ Mp,n are matrices (where ai and bi are the ith columns
of A and B, respectively, i = 1, 2, . . . , n), then the columns of A ⊗ B are {ai ⊗ bj } for all i and j, that is

A ⊗ B = [a1 ⊗ b1 · · · a1 ⊗ bn · · · an ⊗ b1 · · · an ⊗ bn] ∈ Mmp,n2 . (1.2)
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Thus, the Khatri–Rao product of A and B is defined by (see, [5,18,26])

A � B = [a1 ⊗ b1 a2 ⊗ b2 · · · an ⊗ bn] ∈ Mmp,n (1.3)

consists of a subset of the columns of A ⊗ B. Additionally, if both matrices A = [aij ] and B = [bij ] ∈ Mm,n have the
same size, then the Hadamard product of A and B is defined by (see, e.g., [2,3,17,26,38])

A ◦ B = [aij bij ]ij ∈ Mm,n. (1.4)

This product is much simpler than Kronecker and Khatri–Rao products and it can be connected with isomorphic diagonal
matrix representations. The fundamental relationship between Kronecker, Khatri–Rao and Hadamard products can be
expressed as follows, see [18]

P T
n (A � B) = P T

n (A ⊗ B)Pn = A ◦ B, (1.5)

where the selection matrix Pn is given by

Pn = [e1 en+2 e2n+3 · · · en2 ] ∈ Mn2,n, (1.6)

and ek is an n2-column vector with a unity element in the kth position and zeros elsewhere (1�k�n2). Moreover, the
columns of a selection matrix Pn are mutually orthonormal, that is, P T

n Pn = In.
The mentioned three matrix products and some vector operators affirming their capability of solving some matrix

equations. Such equations can be readily converted into the standard linear equation form by using the well-known
identities (e.g., [10,12,14,18,39])

Vec(AXBT) = (B ⊗ A)Vec(X), (1.7)

Vec(AXBT) = (B � A)Vecd(X) : X is diagonal, (1.8)

Vecd(AXBT) = (B ◦ A)Vecd(X) : X is diagonal. (1.9)

where Vec(X) = [x11 · · · xm1 x12 · · · xm2 · · · x1m · · · xmn]T ∈ Mmn,1 denotes vectorization by columns of
arbitrary matrix X ∈ Mm,n, and Vecd(X) = [x11 x22 · · · xnn]T ∈ Mn,1 denotes vectorization by diagonal elements
of a square matrix X ∈ Mn.

The weighted generalized inverses of an arbitrary matrix (including singular and rectangular) are very useful in
various applications such as control system analysis, statistics, singular differential and difference equations, Markov
chains, iterative methods, generalized least-squares problem, weighted perturbation theory, neural networks problem
and many other subjects that can be found in the literature e.g. [4,6,8,24,25,27,31–37,39]. Here we study the following
weighted generalized inverses:

(a) The weighted Moore–Penrose inverse (WMPI) of a matrix A ∈ Mm,n with respect to the two positive definite
matrices M ∈ Mm and N ∈ Mn is defined to be the unique solution of the following four matrix equations:

AXA = A, XAX = X, (MAX)∗ = MAX, (NXA)∗ = NXA, (1.10)

and is often denoted by X = A+
M,N , In particular, when M = Im and N = In, then A+

M,N is reduced to the

Moore–Penrose inverse (MPI) A+, while if A is square and non-singular matrix, then A+ is reduce to A−1.
The important properties related to WMPI of matrix A ∈ Mm,n might be given by (see, [30,31]):
(i)

(A+
M,N)∗ = (A∗)+

N−1,M−1 . (1.11)

(ii) If A has full column-rank, then

A+
M,N = (A∗MA)−1A∗M . (1.12)

(iii) If A has full row-rank, then

A+
M,N = N−1A∗(AN−1A∗)−1. (1.13)
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(b) The weighted Drazin inverse (WDI) of a matrix A ∈ Mm,n with respect to the matrix W ∈ Mn,m is defined to be
the unique solution X ∈ Mm,n of the following three matrix equations [8]:

(AW)k+1XW = (AW)k, XWAWX = X, AWX = XWA, (1.14)

where

k = max {Ind(AW), Ind(WA)} , (1.15)

and is often denoted by X = Ad,W . In particular, when A is a square matrix of order m × m and W = Im, then
Ad,W is reduced to the Drazin inverse (DI) Ad . Note that for a matrix A ∈ Mm, Ind(A)=k is the smallest positive
integer such that

r(Ak+1) = r(Ak). (1.16)

For any compatible matrices A, B, C and D, we shall frequently use the following properties of Kronecker product
(see, e.g., [12,17]):
(i) If AC and BD are well defined, then

(A ⊗ B)(C ⊗ D) = AC ⊗ BD. (1.17)

(ii) For any natural number s,

(A ⊗ B)s = As ⊗ Bs . (1.18)

(iii)

r(A ⊗ B) = r(A)r(B). (1.19)

(iv) If A and B are positive definite matrices, then A ⊗ B is a positive definite.
(v) If A ∈ Mm,n and B ∈ Mp,q are matrices with respect to the positive definite matrices M ∈ Mm, N ∈ Mn,

L ∈ Mp and Q ∈ Mq , then [30]

(A ⊗ B)+F,G = A+
M,N ⊗ B+

L,Q , (1.20)

where F = M ⊗ L and G = N ⊗ Q.
It is well known that the weighted matrix Frobenius norm (WMFN) of a matrix A ∈ Mm,n with respect to positive
definite matrices M ∈ Mm and N ∈ Mn is given by Wang [31] as follows:

‖A‖M,N = ‖M1/2AN−1/2‖2, (1.21)

where ‖P ‖2 = (tr(P ∗P))1/2 is called the Frobenius norm of matrix P ∈ Mm,n. Many scientific applications gave
rise to the weighted least-squares problem (WLSP):

min
x

‖Ax − b‖M , (1.22)

where ‖y‖M = ‖M1/2y‖2 is called the weighted vector Frobenius norm (WVFN) of y ∈ Cm with respect to
positive definite matrix M ∈ Mm. Generally speaking, the WLSP has multiple solution. In such a case, e.g., Wang
[31] considered that the unique minimum N-norm M-least-squares solution (or weighted solution) of (1.22) as
follows:

x = A+
M,Nb. (1.23)
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In the next we need to compute the A+, A+
M,N , Ad , Ad,W and A−1, and use the following two lemmas which was given

by Tian [27] that are due to appearance in the solutions of coupled least-squares problems (LSPs).

Lemma 1. If the block matrix A =
[

A11
A21

A12
A22

]
∈ Mm,n satisfies the following five conditions:

r(A) = r(A11) + r(A22), R(A12) ⊆ R(A11), R(A21) ⊆ R(A22),

R(A∗
21) ⊆ R(A∗

11), R(A∗
12) ⊆ R(A∗

22).

Then the MPI of A can be expressed as

A+ =
[

S+
A22

−A+
11A12S

+
A11

−S+
A11

A21A
+
11 S+

A11

]
, (1.24)

where SA22 =A11 −A12A
+
22A21 and SA11 =A22 −A21A

+
11A12 are the Schur complements of A22 and A11, respectively,

in A.

Lemma 2. If the block matrix A =
[

A11
A12

A21
A22

]
∈ Mm,n satisfies the following five conditions:

r(A) = r(A11) + r(A22), R(A12) = R(A11), R(A21) = R(A22),

R(A∗
21) = R(A∗

11), R(A∗
12) = R(A∗

22).

Then the MPI of A can be expressed as

A+ =
[
S+

A22
S+

A12

S+
A21

S+
A11

]
=
[
(A11 − A12A

+
22A21)

+ (A21 − A22A
+
12A

+
11)

+
(A12 − A11A

+
21A

+
22)

+ (A22 − A21A
+
11A12)

+
]

. (1.25)

The coupled matrix equations have been widely used in several areas such as stability theory, control theory, com-
munication systems, perturbation analysis, economics and many other fields of pure and applied mathematics; and
recently it is in the context of the analysis and numerical simulation of descriptor systems therefore many interesting
problems can lead to coupled matrix equations. For example, the non-zero sum differential games, optimal control sys-
tem, Sylvester matrix equations, matrix Schrödinger equations, axial N-index transportation problems and state-space
equations which were discussed, respectively, by Cruz et al. [9], Zhang [39], Ding and Chen [10], Carlson [7], Al Zhour
and Kılıçman [1] and Mouroutsos and Sparis [21].

Research on solving systems of linear matrix equations has also been active for past years, for example, the conditions
for the existence of a solution and a representation of the general common solution to the matrix equations A1XB1 =C1
and A2XB2 = C2 were provided in [20], a representation of the general common solution to the matrix equations
A1XB1 = C1; A2XB2 = C2 were also studied by Navarra et al. [22], the existence of a common solution X to the
matrix equations AiXBj = Cij , (i, j) ∈ � were obtained by van der Woude [28], the iterative method for symmetric
solutions and optimal approximation of the system matrix equations A1XB1 = C1; A2XB2 = C2 were also presented
in [23] the nearest Kronecker product problems are solved in [29], the perturbation for the constrained and weighted
least-squares problems were derived by Gulliksson et al. [13], and the solutions of coupled matrix convolution and
matrix differential equations were studied by Kılıçman and Al Zhour [14–16]. Finally, Fulton and Wu [11] described
an implementation of the matrices decompositions such as QR, SVD, LU, and Van Loan [29] mentioned also that the
linear system of the form (A ⊗ B)x = c can be solved fast by compared with matrices decompositions.

Depending on the problem in consideration, different coupling terms may appear. However, in several cases, it is
difficult to find the weighted least-squares solutions by using matrix decomposition. In present paper, a family of
coupled singular matrix equations are formulated and several algorithms for computing the weighted solutions of these
coupled are also proposed by using the effective Kronecker structures. We construct a computationally efficient solution
of coupled restricted singular matrix equations (RSME) and derive the representation for the WDI of the Kronecker
product in order to find the weighted solution of RSME. We also consider several special cases which includes the
well-known coupled Sylvester matrix equations.

For some applications such as stability analysis, it is often not necessary to compute exact solutions, approximate
solutions are sufficient since sometimes computational efforts will rapidly increase with the size of matrix functions.
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Here we recover the iterative methods given by the Ding and Chen [10] due to the weighted case in order to find the
minimum D-norm G-vector least-squares solutions of the coupled Sylvester matrix equations.

2. Restricted singular matrix equations

First of all, we derive the representation for the WDI of the Kronecker product A ⊗ B as follows:

Theorem 3. Let A ∈ Mm,n,W ∈ Mn,m, B ∈ Mp,q and R ∈ Mq,p be matrices, and let Z=W ⊗R and k=max{k1, k2}
such that

k1 = max{Ind(AW), Ind(WA)}, k2 = max{Ind(BR), Ind(RB)}.
Then

(i)

Ind{(A ⊗ B)Z} = k, (2.1)

(ii)

(A ⊗ B)d,Z = Ad,W ⊗ Bd,R . (2.2)

Proof. (i) By assumptions, we have

r(AW)k1 = r(AW)k1+1, r(BR)k2 = r(BR)k2+1.

From properties of Kronecker products, we have

r((A ⊗ B)Z)s = r((A ⊗ B)(W ⊗ R))s = r(AW ⊗ BR)s = r(AW)rr(BR)s .

Similarly,

r((A ⊗ B)Z)s+1 = r(AW)s+1r(BR)s+1

It is obvious that the smallest non-negative integer that

r((A ⊗ B)Z)s+1 = r((A ⊗ B)Z)s

is k = max{k1, k2}. Hence (2.1) is true.
(ii) Let X = Ad,W ⊗ Bd,R and Z = W ⊗ R. From properties of the Kronecker product and (1.14) we have

((A ⊗ B)Z)k+1XZ = ((A ⊗ B)(W ⊗ R))k+1(Ad,W ⊗ Bd,R)(W ⊗ R)

= ((AW)k+1Ad,WW) ⊗ ((BR)k+1Bd,RR)

= (AW)k ⊗ (BR)k = (AW ⊗ BR)k = ((A ⊗ B)(W ⊗ R))k

= {(A ⊗ B)Z}k , (2.3)

XZ(A ⊗ B)ZX = (Ad,W ⊗ Bd,R)(W ⊗ R)(A ⊗ B)(W ⊗ R)(Ad,W ⊗ Bd,R)

= (Ad,WWAWAd,W ) ⊗ (Bd,RRBRBd,R) = Ad,W ⊗ Bd,R

= X, (2.4)

(A ⊗ B)ZX = (A ⊗ B)(W ⊗ R)(Ad,W ⊗ Bd,R)

= AWAd,W ⊗ BRBd,R = Ad,WWA ⊗ Bd,RRB

= (Ad,W ⊗ Bd,R)(W ⊗ R)(A ⊗ B)

= XZ(A ⊗ B). (2.5)

From (2.3)–(2.5) we can obtain (2.2) immediately. �
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One of the important application of Theorem 3 is that the WDI of Kronecker product arise naturally in solving the
so-called RSME as follows.

Theorem 4. Let A ∈ Mm,n, W ∈ Mn,m, B ∈ Mp,q , R ∈ Mq,p and C ∈ Mn,q be given constant matrices and
X ∈ Mm,p be an unknown matrix to be solved. Also, let

L = R ⊗ W, k1 = Ind((B ⊗ A)L), k2 = Ind(L(B ⊗ A))

such that

r((B ⊗ A)L)k1 = r(L(B ⊗ A))k2 , Vec C ∈ R(L(B ⊗ A))k2 , Vec X ∈ R((B ⊗ A)L)k1 . (2.6)

Then the unique solution of the following RSME

(WAW)X(RBR)T = C (2.7)

is given by

X = Ad,WCBT
d,R . (2.8)

Proof. On using the identity (1.7) it is not difficult to transform (2.7) into the following vector form:

(L(B ⊗ A)L)Vec X = Vec C. (2.9)

It is easy to verify under (2.6) that the unique solution of (2.9) is

Vec X = (B ⊗ A)d,LVec C = (Bd,R ⊗ Ad,W )Vec C

= Vec(Ad,WCBT
d,R),

which is the required result. �

In particular case, if m = n, p = q, W = Im and R = Ip, we obtain the following corollary:

Corollary 5. Let A ∈ Mm, B ∈ Mp and C ∈ Mm,p be given constant matrices and X ∈ Mm,p be an unknown matrix
to be solved. Then the unique solution of the following RSME:

AXBT = C : Vec C, Vec X ∈ R(B ⊗ A)k, k = Ind(B ⊗ A) (2.10)

is given by

X = AdCBT
d . (2.11)

Another important case can be obtained from (1.7), (1.20), (1.11), (1.23) and Magnus and Neudecker’s idea [19,
Theorems 12 and 13, p. 37] as in the following corollary:

Corollary 6. Let A ∈ Mm,n, B ∈ Mp,q , C ∈ Mm,p be given constant matrices and X ∈ Mn,q be an unknown matrix
to be solved. Also, let M ∈ Mm, N ∈ Mn, L ∈ Mp and Q ∈ Mq be positive definite matrices, and G = M ⊗ L and
D = N ⊗ Q. Then the minimum D-norm G-least squares solution of AXBT = C is given by

X = A+
M,NC(B+

L,Q)T = A+
M,NC(BT)+

Q−1,L−1 . (2.12)

Furthermore, a necessary and sufficient condition for the matrix equation AXBT = C in order to have a weighted
solution can be given by

AA+
M,NC(BB+

L,Q)T = C, (2.13)

in which case, the general minimum D-norm G-least squares solution is given by

X = A+
M,NC(B+

L,Q)T + F − A+
M,NAF(B+

L,QB)T, (2.14)

where F is an arbitrary matrix of order n × q.
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In particular, the unique least-squares solution of AXBT = C can be given by

X = A+C(B+)T. (2.15)

Now we note that if A ∈ Mm, B ∈ Mp are non-singular matrices, then Ind(A) = Ind(B) = 0, Ad = A+ = A−1 and
the unique solution of AXBT = C is given by

X = A−1C(B−1)T. (2.16)

3. Coupled restricted singular matrix equations

In this section, we will study the vector least-squares solutions of the so-called coupled restricted singular matrix
equations (CRSME) based on Tian’s Lemmas and Kronecker structures and we consider some special cases. First of
all, we have the following theorem:

Theorem 7. Let A1, B1, C1, D1, A2, B2, C2 and D2 ∈ Mm,n be given full column-rank matrices such that

R(D1 ⊗ C1) ⊆ R(B1 ⊗ A1), R(B2 ⊗ A2) ⊆ R(D2 ⊗ C2),

R(B∗
2 ⊗ A∗

2) ⊆ R(B∗
1 ⊗ A∗

1), R(D∗
1 ⊗ C∗

1 ) ⊆ R(D∗
2 ⊗ C∗

2 ).

Also, let E, F ∈ Mm be given constant matrices, and X, Y ∈ Mn be unknown matrices to be solved. Then the vector
least-squares solution of the following CRSME:

A1XBT
1 + C1YDT

1 = E, A2XBT
2 + C2YDT

2 = F (3.1)

is given by

Vec X = − (B+
1 D1 ⊗ A+

1 C1)(D2 ⊗ C2 − B2B
+
1 D1 ⊗ A2A

+
1 C1)

+Vec F

+ (B1 ⊗ A1 − D1D
+
2 B2 ⊗ C1C

+
2 A2)

+Vec E, (3.2)

Vec Y = − (D2 ⊗ C2 − B2B
+
1 D1 ⊗ A2A

+
1 C1)

+(B2B
+
1 ⊗ A2A

+
1 )Vec E

+ (D2 ⊗ C2 − B2B
+
1 D1 ⊗ A2A

+
1 C1)

+Vec F . (3.3)

Proof. The CRSME in (3.1) can easily be transformed to the following vector form:[
B1 ⊗ A1 D1 ⊗ C1
B2 ⊗ A2 D2 ⊗ C2

] [
Vec X

Vec Y

]
=
[

Vec E

Vec F

]
. (3.4)

Since
[

B1⊗A1
B2⊗A2

D1⊗C1
D2⊗C2

]
is a full-column rank, then the least-squares solution of (3.4) is

[
Vec X

Vec Y

]
=
[

B1 ⊗ A1 D1 ⊗ C1
B2 ⊗ A2 D2 ⊗ C2

]+ [
Vec E

Vec F

]
. (3.5)

Now applying (1.24) of Lemma 1 and (1.20) into (3.5), we establish (3.2)–(3.3). �

Similarly by using (1.25) of Lemma 2 we obtain the following corollary:

Corollary 8. Let A1, B1,C1 , D1 , A2, B2, C2 and D2 ∈ Mm,n be given full column-rank matrices such that

R(D1 ⊗ C1) = R(B1 ⊗ A1), R(B2 ⊗ A2) = R(D2 ⊗ C2),

R(B∗
2 ⊗ A∗

2) = R(B∗
1 ⊗ A∗

1), R(D∗
1 ⊗ C∗

1 ) = R(D∗
2 ⊗ C∗

2 ).



1058 A. Kılıçman, Z.A.A.A. Zhour / Journal of Computational and Applied Mathematics 206 (2007) 1051–1069

Also, if we let E and F ∈ Mm be given constant matrices, and X, Y ∈ Mn be unknown matrices to be solved then the
vector least-squares solution of the following CRSME:

A1XBT
1 + C1YDT

1 = E, A2XBT
2 + C2YDT

2 = F (3.6)

is given by

Vec X = (B1 ⊗ A1 − D1D
+
2 B2 ⊗ C1C

+
2 A2)

+Vec E

+ (B2 ⊗ A2 − D2D
+
1 B1 ⊗ C2C

+
1 A1)

+Vec F , (3.7)

Vec Y = (D1 ⊗ C1 − B1B
+
2 D2 ⊗ A1A

+
2 C2)

+Vec E

+ (D2 ⊗ C2 − B2B
+
1 D1 ⊗ A2A

+
1 C1)

+Vec F . (3.8)

Corollary 9. Let A1, B1,C1 , D1 , A2, B2, C2 and D2 ∈ Mn and E, F ∈ Mn be given constant matrices, and X,
Y ∈ Mn be unknown matrices to be solved. Then the vector least-squares solution of the following coupled matrix
equations:

A1XBT
1 + C1YDT

1 = E, A2XBT
2 + C2YDT

2 = F (3.9)

is given by

Vec X = − (B−1
1 D1 ⊗ A−1

1 C1)(D2 ⊗ C2 − B2B
−1
1 D1 ⊗ A2A

−1
1 C1)

−1Vec F

+ (B1 ⊗ A1 − D1D
−1
2 B2 ⊗ C1C

−1
2 A2)

−1Vec E, (3.10)

Vec Y = − (D2 ⊗ C2 − B2B
−1
1 D1 ⊗ A2A

−1
1 C1)

−1(B2B
−1
1 ⊗ A2A

−1
1 )Vec E

+ (D2 ⊗ C2 − B2B
−1
1 D1 ⊗ A2A

−1
1 C1)

−1Vec F (3.11)

assuming that all relevant inverses exist.

If we set B1 = C1 = B2 = C2 = I in Corollary 8 we obtain the vector least-squares solution of coupled Sylvester
matrix equations as follows:

Corollary 10. Let A, B, C and D ∈ Mm,n be given full column-rank matrices such that

R(I ⊗ A) = R(C ⊗ I ), R(I ⊗ B) = R(D ⊗ I ), R(I ⊗ A∗) = R(I ⊗ B∗),

R(C∗ ⊗ I ) = R(D∗ ⊗ I ).

Also, if we let E and F ∈ Mm be given constant matrices and X, Y ∈ Mn be unknown matrices to be solved then the
vector least-squares solutions of the coupled restricted singular Sylvester matrix equations

AX + YCT = E, BX + YDT = F (3.12)

can be given by

Vec X = (I ⊗ A − CD+ ⊗ B)+Vec E + (I ⊗ B − DC+ ⊗ A)+Vec F , (3.13)

Vec Y = (C ⊗ I − D ⊗ AB+)+Vec E + (D ⊗ I − C ⊗ BA+)+Vec F . (3.14)

Now, if we set B1 = D1 = B2 = A2 = D2 in Corollary 8 we obtain the following corollary:

Corollary 11. Let A, B and C ∈ Mm,n be given full column-rank matrices such that

R(C ⊗ A) = R(C ⊗ B), R(C∗ ⊗ A∗) = R(C∗ ⊗ B∗).
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Now, if E and F ∈ Mm are constant matrices, and X, Y ∈ Mn are unknown matrices to be solved then the vector
least-squares solution of the CRSME

AXCT + BYCT = E, BXCT + AYCT = F (3.15)

can be given by

Vec X = (C ⊗ A − C ⊗ BA+B)+Vec E + (C ⊗ B − C ⊗ AB+A)+Vec F , (3.16)

Vec Y = (C ⊗ B − C ⊗ AB+A)+Vec E + (C ⊗ A − C ⊗ BA+B)+Vec F . (3.17)

As an example, we will discuss the efficient least-squares solution of the following coupled matrix equations:

AXCT + BYCT = E, BXCT + AYCT = F , (3.18)

where A, B ∈ Mm,n, C ∈ Mp,n, E and F ∈ Mm,p are given scalar matrices, and X and Y ∈ Mn are unknown matrices to
be solved. We also assume that n < mp, so that the coupled matrix equations (3.18) is over-determined, which suggests
using a least-square approach. We consider the CLSP:

min
X,Y

∥∥∥∥[E

F

]
−
[
AXCT + BYCT

BXCT + AYCT

]∥∥∥∥2

2
. (3.19)

It is not difficult to transform (3.19) into the vector CLSP form:

min
X,Y

∥∥∥∥[Vec E

Vec F

]
−
[

C ⊗ A C ⊗ B

C ⊗ B C ⊗ A

] [
Vec X

Vec Y

]∥∥∥∥2

2
(3.20)

which has the following solution:[
Vec X

Vec Y

]
=
{[

C ⊗ A C ⊗ B

C ⊗ B C ⊗ A

]∗ [
C ⊗ A C ⊗ B

C ⊗ B C ⊗ A

]}−1[
C ⊗ A C ⊗ B

C ⊗ B C ⊗ A

]∗ [
Vec E

Vec F

]
. (3.21)

It is easily verified that the

U = 1√
2

[
I −I

I I

]
is a unitary matrix and[

C ⊗ A C ⊗ B

C ⊗ B C ⊗ A

]
= U

[
C ⊗ (A + B) 0

0 C ⊗ (A − B)

]
UT. (3.22)

If Q = A + B , T = A − B , H = C ⊗ (A + B) and W = C ⊗ (A − B), then we have[
C ⊗ A C ⊗ B

C ⊗ B C ⊗ A

]∗ [
C ⊗ A C ⊗ B

C ⊗ B C ⊗ A

]
= U

[
(C ⊗ Q)∗(C ⊗ Q) 0

0 (C ⊗ T )∗(C ⊗ T )

]
UT (3.23)

and ([
C ⊗ A C ⊗ B

C ⊗ B C ⊗ A

]∗ [
C ⊗ A C ⊗ B

C ⊗ B C ⊗ A

])−1

= U

[
((C ⊗ Q)∗(C ⊗ Q))−1 0

0 ((C ⊗ T )∗(C ⊗ T ))−1

]
UT

= 1

2

[
I −I

I I

] [
(H ∗H)−1 0

0 (W ∗W)−1

] [
I I

−I I

]
= 1

2

[
(H ∗H)−1 + (W ∗W)−1 (H ∗H)−1 − (W ∗W)−1

(H ∗H)−1 − (W ∗W)−1 (H ∗H)−1 + (W ∗W)−1

]
. (3.24)
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Now, the least-squares solutions (3.21) can be written into the form[
Vec X

Vec Y

]
= 1

2

[
(H ∗H)−1 + (W ∗W)−1 (H ∗H)−1 − (W ∗W)−1

(H ∗H)−1 − (W ∗W)−1 (H ∗H)−1 + (W ∗W)−1

] [
(C ⊗ A)∗ (C ⊗ B)∗
(C ⊗ B)∗ (C ⊗ A)∗

] [
Vec E

Vec F

]
.

(3.25)

This gives the following vector least-squares solutions:

Vec X = 1
2 ({(H ∗H)−1 + (W ∗W)−1}(C ⊗ A)∗ + {(H ∗H)−1 − (W ∗W)−1}(C ⊗ B)∗)Vec E

= + 1
2 ({(H ∗H)−1 + (W ∗W)−1}(C ⊗ B)∗

+ {(H ∗H)−1 − (W ∗W)−1}(C ⊗ A)∗)Vec F , (3.26)

Vec Y = 1
2 ({(H ∗H)−1 − (W ∗W)−1}(C ⊗ A)∗ + {(H ∗H)−1 + (W ∗W)−1}(C ⊗ B)∗)Vec E,

+ 1
2 ({(H ∗H)−1 − (W ∗W)−1}(C ⊗ B)∗

+ {(H ∗H)−1 + (W ∗W)−1}(C ⊗ A)∗)Vec F . (3.27)

In order to be able to use (3.21), (3.26) and (3.27) we must ascertain that the matrix[
C ⊗ A C ⊗ B

C ⊗ B C ⊗ A

]∗ [
C ⊗ A C ⊗ B

C ⊗ B C ⊗ A

]
(3.28)

is invertible if and only one

H ∗H = (C ⊗ (A + B))∗(C ⊗ (A + B)), W ∗W = (C ⊗ (A − B))∗(C ⊗ (A − B)) (3.29)

are invertible matrices.
In some problems (for example the multistatic antenna processing problem) the unknown matrices might be diagonal.

As we observed earlier, when the unknown matrices X and Y ∈ Mn are diagonal in CLSP in (3.19), the solution for
Vec X and VecY are highly inefficient since most of the elements of X andY vanish. Instead we can use the more compact
vectorization identity (1.8) to rewrite the CLSP in (3.19) in the reduced-order vector form:

min
X,Y

∥∥∥∥[Vec E

Vec F

]
−
[

C � A C � B

C � B C � A

] [
Vecd{X}
Vecd{Y }

]∥∥∥∥2

2
. (3.30)

Note that Vecd{X} and Vecd{Y } consists of only the nontrivial (i.e., diagonal) elements of matrices X andY. The explicit
efficient solution of (3.30) is can easily show that

Vecd{X} = 1
2 ({(R∗R)−1 + (S∗S)−1}(C � A)∗ + {(R∗R)−1 − (S∗S)−1(C � B)∗})Vec E

+ 1
2 ({(R∗R)−1 + (S∗S)−1}(C � B)∗

+ {(R∗R)−1 − (S∗S)−1}(C � A)∗)Vec F , (3.31)

Vecd{Y } = 1
2 ({(R∗R)−1 − (S∗S)−1}(C � A)∗ + {(R∗R)−1 + (S∗S)−1}(C � B)∗)Vec E

+ 1
2 ({(R∗R)−1 − (S∗S)−1(C � B)∗

+ {(R∗R)−1 + (S∗S)−1}(C � A)∗)Vec F , (3.32)

where R = C � (A + B) and S = C � (A − B). In order to be able to use (3.31) and (3.32), we must ascertain also that

R∗R = (C � (A + B))∗(C � (A + B)), S∗S = (C � (A − B))∗(C � (A − B)) (3.33)

are invertible matrices.
It turns out that the expressions (3.31) and (3.32) can be also implemented involving Hadamard product by applying

identities (1.5) and (1.9).
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Corollary 12. Let A, B, C, E and F ∈ Mn be given constant matrices. Then the coupled matrix equations:

AXC + BYC = E, BXC + AYC = F (3.34)

has a unique solution if and only if C , Q = A + B and T = A − B are invertible matrices, in this case, the unique
solution is given by

X = 1
2 {(A + B)−1(E + F) + (A − B)−1(E − F)}C−1, (3.35)

Y = 1
2 {(A + B)−1(E + F) − (A − B)−1(E − F)}C−1. (3.36)

4. Weighted least-squares iterative solutions

In this section, we study the weighted least-squares iterative algorithms to solve the coupled Sylvester matrix
equations

AX + YB = C, DX + YE = F , (4.1)

where A, D ∈ Mm and B, E ∈ Mn and C , F ∈ Mm,n are given constant matrices, X, Y ∈ Mm,n are the unknown
matrices to be solved.

First, let us introduce a large family of iterative methods to solve the linear equation

Ax = b, (4.2)

where A = [aij ] ∈ Mn is a given full-rank matrix with non-zero diagonal elements, b ∈ Cn is a constant vector, and
x ∈ Cn is an unknown vector to be solved. Let F ∈ Mn be a full-rank matrix to be determined and �̇ > 0 be the step-size
or convergence factor. Ding and Chen [10] presented a large family of iterative methods as follows:

xk = xk−1 + �F(b − Axk−1), k = 1, 2, 3, . . . (4.3)

which includes the Jacobi and Gauss–Seidel iterations as special cases (where xk is the iterative solution of x). For
example, when F = D−1and � = 1, we get the Jacobi method; when F = (L + D)−1 and � = 1, we obtain the
Gauss–Seidel method (where D and L are diagonal and strictly lower triangular parts of A). Unfortunately, the Jacobi
and Gauss–Seidel iterations cannot guarantee that xk converges to the exact solution x = A−1b , and are not suitable
for solving the non-square system: T x = g with T ∈ Mm,n. Ding and Chen [10] mentioned also that

(i) if we take F = A∗, then the gradient iterative algorithm,

xk = xk−1 + �A∗(b − Axk−1), 0 < � <
2

�max[A∗A] or 0 < � <
2

‖A‖2
2

(4.4)

yields limk→∞xk = x .
(ii) if we take F = A−1, then the following iterative algorithm converges to x:

xk = xk−1 + �A−1(b − Axk−1), 0 < � < 2. (4.5)

This motivates us to study the so-called weighted least-squares iterative method in the following lemma. This lemma
is straightforward and its proof is omitted.

Lemma 13. If A be a non-square m × n full column-rank matrix with respect to positive definite matrices M ∈ Mm

and N ∈ Mn. Then we have limk→∞ xk = x in the following weighted least-squares iterative algorithm,

xk = xk−1 + �(A∗MA)−1A∗M(b − Axk−1), 0 < � < 2, (4.6)

for k = 1, 2, 3, . . . .
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It is also easy to prove that the weighted iterative solution in (4.6) converges to the minimum N -norm M-least-squares
solution x = (A∗MA)−1A∗Mb at a fast exponential rate, or it is linearly convergent. When � = 1, the iteration in (4.6)
gives x1 = (A∗MA)−1A∗Mb.

The weighted iterative algorithm in (4.6) is also suitable for solving non-square systems and is very useful for finding
the weighted iterative solutions of coupled matrix equations to be studied later; the convergence factor � do not rely on
the matrix A and is easy to choose, although the algorithm in (4.6) require computing weighted matrix inversion only
at the first step.

In order to derive the weighted iterative solutions to (4.1), we need to introduce the intermediate b1 and b2 as follows:

b1 =
[

C − YB

F − YE

]
, b2 = [C − AX F − DX]. (4.7)

Then from (4.1), we obtain two fictitious subsystems

S1 : GX = b1, S2 : YH = b2, (4.8)

where G = [ A
D

] ∈ M2m,m and H = [B E] ∈ Mn,2n are full column and full row-rank matrices, respectively.
Let Xk and Yk be a weighted iterative solutions of X and Y, respectively. By using Lemma 13 and (1.12)–(1.13), it

is easy to find the weighted iterative solutions to S1 and S2 with respect to positive definite matrices M ∈ M2m and
N ∈ M2n as follows:

Xk = Xk−1 + �(G∗MG)−1
[

A

D

]∗
M

{
b1 −

[
A

D

]
Xk−1

}
, (4.9)

Yk = Yk−1 + �{b2 − Yk−1[B E]}N−1 [B E]∗(HN−1H ∗)−1. (4.10)

Substituting (4.7) into (4.9) and (4.10) gives

Xk = Xk−1 + �(G∗MG)−1
[

A

D

]∗
M

[
C − YB − AXk−1
F − YE − DXk−1

]
, (4.11)

Yk = Yk−1 + �[C − AX − Yk−1B F − DX − Yk−1E]N−1 [B E]∗(HN−1H ∗)−1. (4.12)

We note that here, a difficulty arises in the expressions on the right-hand sides of (4.11) and (4.12) contain the unknown
parameter matrices X and Y , respectively, so it is impossible to realize the algorithm in (4.11) and (4.12). The solution
is based on the hierarchical identification principle; the unknown variables Y in (4.11) and X in (4.12) are replaced by
their estimates Yk−1and Xk−1. Thus, we obtain the weighted least-squares iterative solutions Xk and Yk of the coupled
Sylvester equations in (4.1) as

Xk = Xk−1 + �(G∗MG)−1
[

A

D

]∗
M

[
C − AXk−1 − Yk−1B

F − DXk−1 − Yk−1E

]
, (4.13)

Yk = Yk−1 + �[C − AXk−1 − Yk−1B F − DXk−1 − Yk−1E]N−1 [B E]∗(HN−1H ∗)−1, (4.14)

where

� = 1

m + n
or � = 1

�max[G(G∗MG)−1G∗M] + �max[N−1H ∗(HN−1H ∗)−1H ∗] . (4.15)

The weighted least-squares iterative algorithm in (4.13)–(4.15) requires to compute the weighted matrix inversions
(G∗MG)−1 and (HN−1H ∗)−1 only once at the first step. To initialize the algorithm, we take X(0)=Y (0)=0 or some
small real matrix, e.g., X(0) = Y (0) = 10−61m×n with 1m×n being an m × n matrix whose elements are 1.

Theorem 14. If the coupled Sylvester matrix equation determined by (4.1) has a unique solution X and Y, then the
weighted iterative solution Xn+1 and Yn+1 given by the algorithms in (4.13)–(4.15) converges to X and Y for any finite
initial values X(0) and Y (0), that is

lim
k→∞ Xk = X, lim

k→∞ Yk = Y . (4.16)
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Proof. Though the proof of Theorem 14 is quite similar to the proof of Theorem 1 in [10] for a special case when
M = I2m and N = I2n. We give proof of the general case for the sake of convenience. Define two error matrices

X̃k = Xk − X and Ỹk = Yk − Y . (4.17)

By using (4.1) and (4.13)–(4.14), it is easy to get

X̃k = X̃k−1 + �(G∗MG)−1
[

A

D

]∗
M

[−AX̃k−1 − Ỹk−1B

−DX̃k−1 − Ỹk−1E

]
, (4.18)

Ỹk = Ỹk−1 + �[−AX̃k−1 − Ỹk−1B − DX̃k−1 − Ỹk−1E]N−1[B E]∗(HN−1H ∗)−1. (4.19)

Taking the WMFN of (4.18) with respect to positive definite matrices M ∈ M2m, Z ∈ Mn and R ∈ Mm using the
following formula:

‖G(X + (G∗MG)−1Y )‖2
M,Z

= ‖M1/2G(X + (G∗MG)−1Y )Z−1/2‖2
2

= tr[Z−1/2(X∗ + Y ∗((G∗MG)−1)∗)G∗M1/2M1/2G(X + (G∗MG)−1Y )Z−1/2]
= tr[Z−1/2X∗G∗M1/2M1/2GXZ−1/2] + tr[Z−1/2X∗G∗M1/2M1/2G(G∗MG)−1YZ−1/2]

+ tr[Z−1/2Y ∗((G∗MG)−1)∗G∗M1/2M1/2GXZ−1/2]
+ tr[Z−1/2Y ∗((G∗MG)−1)∗G∗M1/2M1/2G(G∗MG)−1YZ−1/2]

= tr[(M1/2GXZ−1/2)∗(M1/2GXZ−1/2)] + 2 tr[Z−1/2X∗YZ−1/2]
+ tr[(M1/2G(G∗MG)−1YZ−1/2)∗M1/2G(G∗MG)−1YZ−1/2]

= ‖M1/2GXZ−1/2‖2
2 + 2 tr[Z−1/2X∗YZ−1/2] + ‖M1/2G(G∗MG)−1YZ−1/2‖2

2

= ‖GX‖2
M,Z + 2 tr[Z−1/2X∗YZ−1/2] + ‖G(G∗MG)−1Y‖2

M,Z (4.20)

gives

‖GX̃k‖2
M,Z

= ‖GX̃k−1‖2
M,Z + 2� tr

{
Z−1/2X̃∗

k−1

[
A

D

]∗
M

[−AX̃k−1 − Ỹk−1B

−DX̃k−1 − Ỹk−1E

]
Z−1/2

}

+ �2
∥∥∥∥G(G∗MG)−1

[
A

D

]∗
M

[−AX̃k−1 − Ỹk−1B

−DX̃k−1 − Ỹk−1E

]∥∥∥∥2

M,Z

�‖GX̃k−1‖2
M,Z − 2� tr{(AX̃k−1)

∗(AX̃k−1 + Ỹk−1B) + (DX̃k−1)
T(DX̃k−1 + Ỹk−1E)}

+ �2m{‖AX̃k−1 + Ỹk−1B‖2
R,Z + ‖DX̃k−1 + Ỹk−1E‖2

R,Z}. (4.21)

Similarly, taking the WMFN of (4.19) with respect to positive definite matrices N ∈ M2n, Z ∈ Mn and R ∈ Mm we
have

‖ỸkH‖2
R,N

�‖Ỹk−1H‖2
R,N − 2� tr(Ỹk−1B)∗(AX̃k−1 + Ỹk−1B) + (Ỹk−1E)∗(DX̃1 + Ỹk−1E)

+ �2n{‖AX̃k−1 + Ỹk−1B‖2
R,Z + ‖DX̃k−1 + Ỹk−1E‖2

R,Z}. (4.22)

Defining a non-negative definite function:

Wk = ‖GX̃k‖2
M,Z + ‖ỸkH‖2

R,N , (4.23)
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and using (4.21) and (4.22), we have

Wk �Wk−1 − 2�
{
‖AX̃k−1 + Ỹk−1B‖2

R,Z + ‖DX̃k−1 + Ỹk−1E‖2
R,Z

}
+ �2(m + n){‖AX̃k−1 + Ỹk−1B‖2

R,Z + ‖DX̃k−1 + Ỹk−1E‖2
R,Z}

�Wk−1 − �{2 − �(m + n)}{‖AX̃k−1 + Ỹk−1B‖2
R,Z + ‖DX̃k−1 + Ỹk−1E‖2

R,Z}

�W0 − �{2 − �(m + n)}
k−1∑
i=1

{‖AX̃i + ỸiB‖2
R,Z + ‖DX̃i + ỸiE‖2

R,Z}. (4.24)

If the convergence factor is chosen to satisfy: 0 < � < 2/(m + n), then

∞∑
k=1

{‖AX̃k + ỸkB‖2
R,Z + ‖DX̃k + ỸkE‖2

R,Z} < ∞. (4.25)

It follows that as k → ∞,

‖AX̃k + ỸkB‖2
R,Z + ‖DX̃k + ỸkE‖2

R,Z = 0,

or

AX̃k + ỸkB = 0, DX̃k + ỸkE = 0. (4.26)

According to (1.7) we have[
In ⊗ A BT ⊗ Im

In ⊗ D ET ⊗ Im

] [
Vec X̃k

Vec Ỹk

]
=
[

0
0

]
(4.27)

and the unique solution of (4.27) is X̃k → 0 and Ỹk → 0 as k → ∞. This completes the proof of Theorem 14. �

The convergence factor in (4.15) may not the best and may be conservative. In fact, there exist a best � such that
the fast convergence rate of Xk to X and Yk to Y can be obtained as in the following numerical example which is given
in [10].

Example 15. Suppose that the coupled matrix are

AX + YB = C, DX + YE = F

with

A =
[

2 1
−1 2

]
, B =

[
1 −0.2

0.2 1

]
, D =

[−2 −0.5
0.5 2

]
,

E =
[−1 −3

2 −4

]
, C =

[
13.2 10.6
0.6 8.4

]
, F =

[−9.5 −18
16 3.5

]
.

Then the exact solutions of X and Y are

X =
[
x11 x12
x21 x22

]
=
[

4 3
3 4

]
, Y =

[
y11 y12
y21 y22

] [
2 1

−2 3

]
.

Taking X(0) = Y (0) = 10−612×2 , M = N = I4, and applying the algorithms in (4.13) and (4.14) to compute Xk and
Yk . The iterative solutions Xk and Yk is shown for � = 1/1.1 as in Table 1 where

� =
√√√√‖Xk − X‖2

R,Z + ‖Yk − Y‖2
R,Z

‖X‖2
R,Z + ‖Y‖2

R,Z

(4.28)

is the relative error.
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Table 1

k x11 x12 x21 x22 y11 y12 y21 y22 �(%)

5 3.6143 2.9900 2.9409 3.6971 3.3228 0.3895 −2.9754 3.2708 22.3326
10 3.5861 3.0545 2.9027 3.8764 2.3446 0.7818 −2.111 3.09467 7.8486
15 3.8223 3.0602 2.9532 3.9752 2.2117 0.8313 −2.1088 3.0717 4.3430
20 3.8947 3.0514 2.9703 3.9963 2.1074 0.9035 −2.0499 3.0407 2.4141
25 3.9404 3.0339 2.9826 4.0011 2.0624 0.9399 −2.0272 3.0252 1.4291
30 3.9645 3.0217 2.9894 4.0017 2.0364 0.9638 −2.0153 3.0151 0.85256
35 3.9788 3.0134 2.9936 4.0013 2.0217 0.9780 −20089 3.0091 0.51332
40 3.9872 3.0082 2.9961 4.0009 2.0130 0.9867 −2.0053 3.0055 0.30979
45 3.9923 3.0050 2.9977 4.0005 2.0079 0.9919 −2.0032 3.0034 0.18728
50 3.9953 3.0030 2.9986 4.0003 2.0047 0.9951 −2.0019 3.0020 0.11329
55 3.9972 3.0018 2.9991 4.0002 2.0029 0.9970 −2.0012 3.0012 0.06855
60 3.9983 3.0011 2.9994 4.0001 2.0017 0.9982 −2.0007 3.0007 0.04149
Solution 4 3 3 4 2 1 −2 3

From Table 1, it is clear that � are becoming smaller and smaller and goes to zero as k increases. This indicates the
algorithm is effective.

How to extend the use of weighted iterative method in (4.6) by using the connection between Vec(.) and Kronecker
products to find the weighted least-squares iterative solution of more general coupled matrix equations of the following
form requires further research:

A11X1B11 + A12X2B12 + · · · + A1pXpB1p = C1,

A21X1B21 + A22X2B22 + · · · + A2pXpB2p = C2,
...

Ap1X1Bp1 + Ap2X2Bp2 + · · · + AppXpBpp = Cp, (4.29)

where Aij ∈ Mm, Bij ∈ Mn and Ci ∈ Mm,n are given constant matrices, Xi ∈ Mm,n are the unknown matrix functions
to be solved. This work requires further research. Although the weighted iterative algorithms are presented for coupled
Sylvester matrix equations; the idea adopted may extend to find the weighted least-squares iterative solutions of the
general coupled matrix equations determined by (4.29).

5. Concluding remarks

In general, there are two classes of methods to solve matrix equations:

• Direct methods, such as LU-factorization or QR-factorization or Kronecker structures. These methods Theoretically
lead to an exact solution of the problem in finitely many steps.

• Iterative methods, such as Jacobi iteration or Gauss–Seidel iteration or SOR. These methods provide an approximate
solution to the problem.

In fact, the Kronecker products and vector operators affirming their capability of solving matrix and matrix equations
fast (more fast when the unknown matrices are diagonal). The way exists which transform the coupled matrix into the
following simple form: Ax = b, and we can solve this system fast if A is a Kronecker product.

In order to demonstrate that application of Kronecker products method is effective, suppose we have to solve, for
example, the following matrix equation:

BXAT = C, (5.1)

where A, B and C ∈ Mn are given scalar matrices and X ∈ Mn is unknown matrix to be solved. Then it is not hard by
using (1.7) to establish the following equivalence:

(A ⊗ B)Vec X = Vec C. (5.2)
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If we ignore the Kronecker products structure, then we need to solve the following both matrix equations:

• BY = C,
where Y can be obtained in O(n3) arithmetic operations (flops) by using LU-factorization of matrix B (forward
substitution).

• XAT = Y ,
where X can be obtained also in O(n3) operations (flops) by using LU-factorization of matrix A (back substitution).

Without exploiting the Kronecker products structure, an n2 ×n2 system defined in (5.1) would normally (by Gaussian
elimination) require O(n6) operations to solve. But when we use Kronecker product structure in (5.2), the calculations
show that the Vec X can be obtained only in O(n3) operations by using LU-factorization of matrices A and B. Thus,
we can say that the system in (5.2) can be solved fast since the Kronecker structure avoids the formation of n2 × n2

matrices, and only the smaller lower and upper triangular matrices LA, LB , UA, UB are needed.
For example, if we consider matrices A and B are of order 3 × 3 and a vector C is of order 9 × 1. To demonstrate

the usefulness of applying Kronecker product and Vec(.), we can return to the system problem in (5.2). If A ⊗ B is
non-singular and regarding with LU-factorizations of A = LAUA and B = LBUB , then a solution of system exists and
can be written as

(UA ⊗ UB)Vec X = z, (LA ⊗ LB)z = Vec C.

First, the lower triangular system: (LA ⊗ LB)z = Vec C, can be solved by forward substitution as the following:

([
a11 0 0
a21 a22 0
a31 a32 a33

]
⊗
[

b11 0 0
b21 b22 0
b31 b32 b33

])⎡⎢⎢⎣
z1
z2
...

z9

⎤⎥⎥⎦=

⎡⎢⎢⎣
c1
c2
...

c9

⎤⎥⎥⎦ ,

that is

LA ⊗ LB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11b11 0 0 0 0 0 0 0 0
a11b21 a11b22 0 0 0 0 0 0 0
a11b31 a11b32 a11b33 0 0 0 0 0 0
a21b11 0 0 a22b11 0 0 0 0 0
a21b21 a21b22 0 a22b21 a22b22 0 0 0 0
a21b31 a21b32 a21b33 a22b31 a22b32 a22b33 0 0 0
a31b11 0 0 a32b11 0 0 a33b11 0 0
a31b21 a31b22 0 a32b21 a32b22 0 a33b21 a33b22 0
a31b31 a31b32 a31b33 a32b31 a32b32 a32b33 a33b31 a33b32 a33b33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which can be solved in O(n2) operations.

Thus the first three equations are given as:

• a11b11z1 = c1 ⇒ z1 = c1

a11b11
.

• a11b21z1 + a11b22z2 = c2 ⇒ z2 = b11c2 − b21c1

a11b11b22
.

• a11b31z1 + a11b32z2 + a11b33z3 = c3 ⇒ z3 = b11b22c3 − b11b32c2 − b22b31c1 + b32b21c1

a11b11b22b33
.

Now the next three equations are:

• a21b11z1 + a22b11z4 = c4.
• a21b21z1 + a21b12z2 + a22b21z4 + a22b22z5 = c5.
• a21b31z1 + a21b32z2 + a21b33z3 + a22b31z4 + a22b32z5 + a22b33z6 = c6.
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The first boldface expression a21b11z1 can be computed as a21c1/a11. The second boldface expression

a21b21z1 + a21b12z2

can also be computed as a21c2/a11. While the third boldface expression

a21b31z1 + a21b32z2 + a21b33z3

can be also computed as a21c3/a11.
Now, we use the previous expressions for obtaining z1, z2 and z3 in the first set of equations to simplify the second

set of three equations. The simplified second set of equations becomes

a22b11z4 = c4 − a21c1

a11
,

a22b21z4 + a22b22z5 = c5 − a21c2

a11
,

a22b31z4 + a22b32z5 + a22b33z6 = c6 − a21c3

a11
.

Solving the second set of equations takes O(n) operations and the forward solve step takes O(n2) operations (flops),
so obtaining z4, z5 and z6 takes O(n2) time. This simplification and using the work from the previous solution step
continuous so that solving each of n-sets of n-equations takes O(n2) time, resulting in an overall solution time of
O(n2). Exploiting the Kronecker structure reduce the usual, expected O(n4) time to solve (LA ⊗ LB)z = Vec C

to O(n2).
One final note regarding the exploitation of the Kronecker structure of the system remains. Suppose the matrices

A and B are different sizes. Then, the time required to solve the system: (A ⊗ B)Vec X = Vec C, is O(mn2), where
m and n are the sizes of A and B, respectively. In our work, the modeler has some choice for the size of the A and
B matrices. Thus, a wise choice would make n small, reducing the effect of the n2 term in the O(mn2) computation
time.

While if A ∈ Mm,n, B ∈ Mp,n, C ∈ Mm,p are given matrices and X ∈ Mn is a diagonal matrix, then also by using
(1.8), it is not difficult to transform (5.1) into the following equivalence:

(A � B)Vecd(X) = Vec C. (5.3)

Subsequently, to construct a computationally efficient solution of the least-squares problem

min
X

‖(A � B)Vecd(X) − Vec C‖2
2 (5.4)

requires O(n3) + O((m + p)n2) (multiply and add) operations. Then the explicit solution of (5.4) follows as

Vecd(X) = [(A � B)∗(A � B)]−1(A � B)∗Vec C. (5.5)

In contrast, the most efficient known alternative (i.e., (5.5) requires O(n3)+O((mp)n2) operations, which is significantly
higher when n>min(m, p)).

Similarly, when X and C ∈ Mn are diagonal matrix, we return to the system problem:

(A ◦ B)Vecd(X) = Vecd(C). (5.6)

If A ◦ B is non-singular and regarding with LU-factorizations of A ◦ B = LA◦BUA◦B , then a solution of system exists
and can be written as:

UA◦BVecd(X) = y, LA◦By = Vecd(C).

First, the lower triangular system LA◦B y = Vecd(C) can be solved by forward substitution as the following:[
a11b11 0 0
a21b21 a22b22 0
a31b31 a32b32 a33b33

][
y1
y2
y3

]
=
[

c11
c22
c33

]
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which can be solved in O(n) operations as follows:

• a11b11y1 = c11 ⇒ y1 = c11

a11b11
.

• a21b21y1 + a22b22y2 = c22 ⇒ y2 = a11b11c22 − a21b21c11

a11b11a22b22
.

• a31b31y1 + a32b32y2 + a33b33y3 = c33 ⇒

y3 = a11b11a22b22c33 − [a31b31a22b22 − a32b32a21b21]c11 − a32b32a11b11c22

a11b11a22b22a33b33
.

Thus we can say that the system in (5.6) can be solved faster since the calculations of Vecd(X) can be obtained only
in O(n) operations by using LU-factorization of A ◦ B since then we only need lower and upper triangular matrices
LA◦B and UA◦B .
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