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Abstract

Necrosis has long been described as a consequence of physico-chemical stress and thus accidental and uncontrolled. Recently, it is becoming
clear that necrotic cell death is as well controlled and programmed as caspase-dependent apoptosis, and that it may be an important cell death
mode that is both pathologically and physiologically relevant. Necrotic cell death is not the result of one well-described signalling cascade but is
the consequence of extensive crosstalk between several biochemical and molecular events at different cellular levels. Recent data indicate that
serine/threonine kinase RIP1, which contains a death domain, may act as a central initiator. Calcium and reactive oxygen species (ROS) are main
players during the propagation and execution phases of necrotic cell death, directly or indirectly provoking damage to proteins, lipids and DNA,
which culminates in disruption of organelle and cell integrity. Necrotically dying cells initiate pro-inflammatory signalling cascades by actively
releasing inflammatory cytokines and by spilling their contents when they lyse. Unravelling the signalling cascades contributing to necrotic cell
death will permit us to develop tools to specifically interfere with necrosis at certain levels of signalling. Necrosis occurs in both physiological and
pathophysiological processes, and is capable of killing tumour cells that have developed strategies to evade apoptosis. Thus detailed knowledge of
necrosis may be exploited in therapeutic strategies.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Programmed cell death (PCD) is a genetically encoded form
of cell suicide that is central to the development and
homeostasis of multicellular organisms. In the context of
embryonic development, three main morphologies of PCD have
been described [1,2]. Type I apoptotic cell death is characterized
by cell shrinkage and extensive chromatin condensation.
Formation of autophagic vacuoles inside the dying cell is
typical of autophagic or type II cell death, whereas type III PCD
is distinguished by rapid loss of plasma membrane integrity and
spillage of the intracellular content. The type of cell death
selected depends on the stimulus and the cellular context
because every cell death program is a net result of self-
propagating signals and others that suppress the other cell death
programs [1].

Apoptosis is the major cell death pathway used to remove
unwanted and harmful cells in a “clean or silent”manner during
embryonic development, tissue homeostasis and immune
regulation [3]. In addition, most anti-cancer therapies are
based on activation of apoptotic pathways. An evolutionarily
conserved family of cystein proteases, called caspases, is
responsible for most of the observed morphological changes
during apoptosis [4]. Two distinct pathways initiate apoptosis:
the extrinsic apoptotic pathway starting with the aggregation of
death receptors [5], and the intrinsic apoptotic pathway starting
with the release of mitochondrial factors in response to various
stimuli, such as growth factor withdrawal, UV irradiation and
cytotoxic drugs [6]. The extrinsic apoptotic pathway can also
impinge on the mitochondrial pathway, which serves to amplify
the apoptotic process. The molecules that integrate the
signalling of these different cell death stimuli and converge
on the release of mitochondrial factors are the BH3-only
members of the Bcl-2 family. Apoptosis and the role of
mitochondria and Bcl-2 family members therein have been
amply described [6,7].

Increasing evidence supports the existence of caspase-
independent cell death pathways that induce cell death in a
manner that is as well controlled and programmed as in caspase-
dependent PCD [8]. Caspase-independent cell death can
provide a backup suicide mechanism if the classical apoptosis
machinery fails [9,10]. Cell death induced under such
conditions lacks the typical features of apoptosis and instead
resembles necrosis [11–13]. Necrosis is characterized by
cytoplasmic swelling, irreversible plasma membrane damage,
and organelle breakdown [10,14]. DNA in apoptotic cells is
degraded specifically, giving rise to the characteristic ladder
pattern on the gels, whereas DNA in necrotic cells is usually
degraded randomly by extracellular DNAse I present in culture
serum that has not been heat-inactivated [15], or by lysosomal
DNAse II [16], giving rise to a smear of DNA [17]. In necrosis,
the cellular contents leak into the extracellular environment,
where they may act as a “danger signal”, and consequently
necrosis is usually associated with inflammation [18]. However,
this issue is still controversial because we and others showed
that exposure of macrophages to necrotic cells is not sufficient
to trigger macrophage activation and the concomitant induction
of proinflammatory cytokine expression [19,20]. Rather,
necrotic cells trigger an increase in the secretion of proin-
flammatory cytokines from independently activated macro-
phages [20]. It is also conceivable that the release of cytokines
or other factors from the necrotic cells themselves [21] may be
crucial for an inflammatory response.

Autophagy is evolutionarily conserved, and is probably
initiated as a survival response to cellular stress-associated
damage or nutrient deprivation. Its primary function is to
recycle proteins from engulfed cytoplasm or damaged orga-
nelles. Autophagy is recognized by the formation of autophago-
somes, double membrane autophagic vacuoles that eventually
fuse with lysosomes to form autolysosomes. Engulfed contents
and the inner membrane of the autophagosome are subsequently
degraded by lysosomal hydrolases [22]. Various forms of
environmental stress induce autophagy, which eventually
results in either caspase-dependent [23,24] or caspase-indepen-
dent cell death [24–26].

In this review, we will focus on necrotic cell death. Cellular
signalling pathways are characterized by three consecutive
phases: initiation, propagation and execution. However, our
present knowledge of necrotic cell death does not enable us to
clearly distinguish between these phases, particularly between
propagation and execution events. Many cellular events are
initiated and occur at the same time. They may interplay or they
may be just bystander consequences of cellular damage.
However, despite the actual premature state in definition of a
necrotic cell death pathway, we will discuss data illustrating
possible signal transduction cascades leading to necrosis with
emphasis on important mediators of the propagation and
execution steps of necrotic cell death. It will also become
apparent that necrosis is not just accidental cell death but fulfils
an important role in physiology and pathology.

2. Signal transduction cascades leading to necrotic cell
death

Death receptors belong to the TNF receptor superfamily.
When they bind their extracellular ligands they aggregate and
initiate a signalling pathway that results either in cell survival or
in death [27]. Depending on the cellular context, cells die by
apoptosis or necrosis (Fig. 1). TNFα, a pleiotropic cytokine
produced primarily by macrophages, induces apoptosis in many
cells, but it can induce necrosis in the L929 mouse fibrosarcoma
cell line [14,28]. Addition of the pan-caspase inhibitor zVAD-
fmk or CrmA further sensitizes L929 cells to TNFα-induced
necrotic cell death [29]. Likewise, Fas ligand in the presence of
zVAD-fmk leads to necrosis of this cell line [11]. Similarly,
triggering of TNF-R1, Fas or TRAIL-R in Jurkat cells in the
presence of zVAD-fmk or in Jurkat cells deficient in FADD or
caspase-8 results in necrosis [12,13,30]. Besides that, TNFα in
the presence of caspase inhibitors can induce caspase-
independent cell death in murine embryonic fibroblasts
(MEFs) [31]. These results indicate that necrotic cell death
may function as a backup cell death pathway when caspases are
blocked or the caspase-dependent pathways cannot be properly
activated.



Fig. 1. Signal transduction cascades leading to necrotic cell death and the role of RIP1. Triggering death receptors and TLR3/4 initiates a signalling pathway that leads
to either cell survival or death. Depending on the cellular context (presence (dashed line) or absence (full line) of caspase inhibitors), cells die by apoptosis or necrosis.
FADD is an important adaptor in death receptor signalling upstream of RIP1. Studies in RIP1−/− Jurkat cells demonstrated that propagation of Fas/TNF-R/TRAIL-R-
induced necrosis depends on the presence of kinase active RIP1 (*). Caspase-8 mediated cleavage of RIP1 during apoptosis mediated by TNF-R1, Fas or TRAIL-R
suppresses necrotic and anti-apoptotic pathways. Necrosis can be blocked by adding Hsp 90 inhibitors geldanamycin (GA) or radicicol (RC), which are responsible for
strong down-regulation of RIP1 levels, and RIP1 RNAi. RIP1 is also a crucial adaptor kinase in TRIF-dependent TLR3/4 signalling (MyD88 signalling is omitted for
clarity). A FADD/caspase-8 mediated apoptotic pathway can be initiated downstream of RIP1. TLR3/4-induced necrosis occurs independently of FADD. Besides,
DNA damage (e.g. MNNG) can result in overactivation of PARP-1, which catalyzes the hydrolysis of NAD+ into nicotinamide and poly-ADP ribose, causing
depletion of NAD+ and resulting in a profound drop of ATP. MNNG-induced cell death depends on RIP1 and TRAF2, which function downstream of PARP-1 and are
crucial for the activation of JNK. This kinase then impairs mitochondrial membrane integrity, causing release of mitochondrial intermembrane space proteins, and
consequent necrosis. (See text for details).
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At the crossroad of apoptotic and necrotic signalling
pathways is the crucial adaptor molecule FADD (Fig. 1). It
contains both a death domain (DD) crucial for initiating necrotic
signalling, and a death effector domain (DED) that can
propagate apoptotic cell death [32,33]. In Fas and TRAIL-R-
induced signalling, FADD is recruited to the receptor and can
initiate downstream signalling cascades, such as apoptosis and
activation of NF-κB and MAPKs [5,34]. Impeding caspase
activation switches cell death from apoptosis to necrosis. In
contrast to the triggering of TRAIL-R and Fas, engagement of
TNF-R1 does not result in recruitment of FADD to the receptor
[35–37]. At the plasma membrane, formation of complex I,
which consists of TNF-R1, TRAF2 and RIP1, leads to rapid
activation of NF-κB [38,39] and MAPKs, such as p38 MAPK,
JNK and ERK [21,40]. Following receptor endocytosis, a
second complex is formed, in which TRADD recruits FADD
and procaspase-8 or -10 [41,42]. Schneider-Brachert and co-
workers showed that the endocytic vesicles fuse with trans-
Golgi vesicles containing pro-acid-sphingomyelinase (pro-A-
SMase) and pre-pro-cathepsin D. This leads to formation of
multivesicular endosomes in which acid-sphingomyelinase and
cathepsin D are activated [36]. If complex I does not succeed in
inducing sufficient expression of antiapoptotic proteins, cas-
pase-8 is activated, initiating apoptosis. However, if caspases
are blocked, necrotic death ensues [29,43]. The importance of
FADD in TNFα-induced caspase-independent signalling is
controversial: FADD seems necessary for TNFα-induced death
in MEFs [31], but it is dispensable for TNFα-induced death of
Jurkat cells [12,37,43]. TNF-R2 is not essential for TNFα-
induced necrosis but it seems to potentiate the process [31,43].

Studies in RIP1−/− Jurkat cells demonstrated that propaga-
tion of necrosis induced by triggering of Fas/TNF-R/TRAIL-R
depends on the presence of kinase active RIP1 [12,37,43] (Fig.
1). Caspase-8 mediated cleavage of RIP1 during TNF-R1, Fas
and TRAIL-R-mediated apoptosis suppresses necrotic and anti-
apoptotic pathways [43,44], also demonstrating that full-length
RIP1 is required for necrosis. Moreover, the C-terminal RIP1
cleavage fragment containing the DD sensitizes cells to
apoptosis by inhibiting NF-κB activation [44,45]. Studies on
the heat shock protein (Hsp) 90, a cytosolic chaperone for many
kinases, including RIP1 [46], have also revealed the importance
of RIP1 in necrotic signalling. Fas- and TNF-R1-induced
necrosis are inhibited by Hsp90 inhibitors geldanamycin (GA)
and radicicol (RC), which are responsible for a strong down-
regulation of RIP1 levels [12,47]. Moreover, knockdown of
RIP1 in L929 cells protects the cells against necrosis induced by
TNFα/zVAD-fmk or FasL/zVAD-fmk (Vanden Berghe et al.,
unpublished results).

Besides death receptor-induced necrosis, triggering of toll-
like receptor (TLR) 4 and TLR3 can also lead to necrosis (Fig.
1). When caspase-8 activation is suppressed by IETD-fmk,
CrmA or zVAD-fmk, LPS induces a RIP1-dependent, non-
apoptotic death of macrophages [48]. The presence of dsRNA
in mammalian cells is a hallmark of viral infection, as most
viruses produce dsRNA during their replication. Both viral and
synthetic dsRNA were shown to kill cells, predominantly by
FADD/caspase-8 mediated apoptosis [49]. Synthetic dsRNA,
however, induces necrosis in human Jurkat cells and murine
L929 fibrosarcoma cells in a caspase-8 and FADD-independent
way, and type I and II-interferons (IFNs) can sensitize for this
necrosis [13].

We should remark that in some studies following addition of
zVAD-fmk or specific RNAi-mediated caspase-8 knockdown in
L929 cells, RIP1-dependent autophagic cell death instead of
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necrosis was observed [50,51]. However, death kinetics need to
be very extended to detect autophagy whereas the death
receptor-induced necrosis in this model system proceeds very
fast (24–36 h respectively 5–6 h). Additionally, there is some
controversy about the induction of necrosis or autophagic death
of macrophages following treatment with LPS in the presence of
caspase inhibitors [48,52]. Thus whether necrosis or autophagy
ensues when apoptosis is inhibited will surely depend on cells
and circumstances. Due to the lack of specific markers and
clear-cut definitions of necrotic and autophagic cell death, both
types of death will frequently get entangled.

Some pathophysiological processes, such as ischemia–
reperfusion, inflammation, ROS-induced injury and glutamate
excitotoxicity, are accompanied by poly-(ADP-ribose) poly-
merase-1 (PARP-1)-mediated cell death [53–55] (Fig. 1).
Stimuli that directly or indirectly affect mitochondria, such as
H2O2 and the DNA-alkylating agent N-methyl-N′-nitro-N-
nitrosoguanidine (MNNG), also induce cell death mediated by
PARP-1 [56,57]. Activation of PARP-1 catalyzes the hydro-
lysis of NAD+ into nicotinamide and poly-ADP ribose, causing
depletion of NAD+ [58]. This results in cellular energy failure
and caspase-independent death of different cell types [59,60].
MNNG-induced cell death depends on RIP1 and TRAF2,
which function downstream of PARP-1 and are crucial for JNK
activation. JNK in turn affects mitochondrial membrane
integrity, with consequent release of proteins of the mitochon-
drial intermembrane space, and necrosis [61]. It is not clear
how JNK induces mitochondrial membrane depolarization, but
it is plausible that it occurs through modifications of Bcl-2
family members [62,63], or via caspase-independent JNK-
mediated processing of Bid [64]. PARP-mediated cell death
induced by H2O2 [65] also depends on a TRAF2/RIP1/JNK-
mediated signalling cascade [57]. How intracellular molecules
such as RIP1 and TRAF2 sense PARP-1 activation remains
elusive.

3. Important mediators involved in the propagation and
execution of necrotic cell death

3.1. Reactive oxygen species (ROS)

3.1.1. ROS in physiology and oxidative stress
ROS are produced during normal physiological cellular

events, and are involved in various biological processes,
including regulation of proliferation, activation of gene
expression and cellular response to cytokines [66–68].
Mitochondria are the major source of ROS within the cell
[69,70]. Electrons frequently escape along the electron transport
chain (ETC), most usually at complex I [71] and complex III
[72]. The reaction of the renegade electron with molecular
oxygen produces an oxygen radical, which is normally
converted into H2O2 or other ROS, including hydroxyl radicals
and superoxide anions, before being eliminated [73]. To
counteract the production of ROS, mitochondria and cells in
general, possess numerous ROS defence systems. The redox
state of the cell is controlled by different redox buffers and
specific antioxidant enzymes confined to specific subcellular
locations. These enzymes include glutathione peroxidase
(GPx), phospholipid hydroperoxide glutathione peroxidase
(PHGPx: cytosolic, mitochondrial and nuclear isoforms), Mn-
superoxide dismutase (MnSOD: mitochondrial matrix), Cu/Zn-
containing dismutase (Cu/ZnSOD: cytoplasm and mitochon-
drial intermembrane space), and catalase (peroxisomes) [74,75].

The source of oxidative stress is not the ROS generation per
se but spatiotemporal imbalance of ROS production and
detoxification. However, in some physiological and pathophy-
siological conditions, the balance between free radicals and
their scavengers is disturbed, and overproduction of the former
can damage biomolecules, including DNA [76], proteins [77]
and lipids [78]. This cellular damage can be associated with
apoptosis, inflammation, septic shock [79], neurodegeneration
[80], ischemia/reperfusion injury [81], tumour promotion [82]
or necrosis.

3.1.2. Mitochondrial and glycolyis-derived ROS and necrosis
Several independent studies have reported the involvement

of mitochondria-produced ROS in necrotic killing of L929
fibrosarcoma cells by TNFα [83,84] (Fig. 2). These cells
could not be protected by hydrophilic reducing agents, or by
overexpression of antioxidant enzymes in the mitochondrial
matrix [85]. However, treatment with the lipophilic chemical
antioxidants butylated hydroxyanisole (BHA) or butylated
hydroxytoluene (BHT) clearly delayed TNFα-induced necro-
tic cell death [10,86]. These results supported the idea that
ROS formed and acting in the hydrophobic environment of
the inner mitochondrial membrane play an important role in
TNFα-induced necrotic cytotoxicity. This is also confirmed
by the inhibitory effect of the complex I inhibitor rotenone
on TNFα-induced ROS production and toxicity in vitro and
in vivo [86,87]. ROS were also shown to occur and were
suggested to be involved in dsRNA-induced necrosis [13].
Although BHA and BHT caused similar reductions in ROS
levels upon treatment of L929 cells with TNFα or dsRNA,
BHA was far more effective than BHT in protecting cells
against TNFα-induced necrosis [86]. Moreover, BHA
protects L929 cells from dsRNA-induced necrosis and shifts
the response to apoptosis, whereas BHT does not modulate
cell death type [13,86]. These observations support the
hypothesis that players other than mitochondrial ROS are
also necessary for executing necrosis [86]. Two of these
mediators were identified as phospholipase A2 and lipox-
ygenases (see below).

TNFα treatment of L929 cells also increases phosphoryla-
tion of glyoxalase I, which is mediated by protein kinase A and
required for cell death. Concomitantly, a substantial increase in
intracellular levels of methylglyoxal (MG) leads to the
formation of a specific MG-derived advanced glycation end
product (AGE) (Fig. 2) [88,89]. MG is a cytotoxic metabolite
produced primarily as a by-product of glycolysis, by non-
enzymatic phosphate elimination from the glycolytic pathway
intermediates dihydroxyacetone phosphate and glyceraldehyde
3-phosphate [90]. Under normal physiological conditions, most
MG is bound to cellular proteins as adducts formed with Lys,
Arg and Cys residues [91]. Although the reaction with Cys is



Fig. 2. Mitochondria- and glycolysis-derived ROS and necrosis. Mitochondria are the major source of ROS in the cell. Electrons frequently escape along the
electron transport chain (ETC), most usually at complexes I and III. The reaction of the renegade electron with molecular oxygen produces an oxygen radical.
ROS formed and acting in the hydrophobic environment of the inner mitochondrial membrane play an important role in TNFα-induced necrotic cytotoxicity.
BHA can scavenge ROS and block complex I, thus protecting from necrotic cell death. Further, TNFα induces increased phosphorylation of glyoxalase I by
protein kinase A, a process that is required for cell death. Concomitantly, intracellular levels of methylglyoxal (MG) are substantially increased, probably due to
enhanced glycolysis. MG leads to the formation of a specific MG-derived advanced glycation end product (AGE). BHA blocks the formation of TNFα-induced
MG-derived AGEs, demonstrating that their formation is consequent to increased ROS production. OMM, outer mitochondrial membrane; IMM, inner
mitochondrial membrane; IMS, intermembrane space.
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considered reversible, elevated concentrations of MG can lead
to irreversible modifications of Lys and Arg residues through
formation of AGEs [92]. Because AGEs induce protein cross-
links and oxidative stress within cells and tissues, they were
thought to contribute to several pathophysiological conditions,
such as tissue damage after ischemia/reperfusion [93], as well as
aging [94]. TNFα-induced MG-derived AGEs are mainly Arg-
modified, and their formation may be a consequence of
increased ROS production, as it is blocked by BHA [89]. It is
thus plausible that ROS produced by the mitochondria
contribute to AGE-formation, and that MG acts as a signalling
molecule in the regulation of necrotic cell death.

The contribution of mitochondria to TNFα-induced caspase-
independent death is confirmed by the fact that overexpression
of Bcl-2 can delay the onset of TNFα-induced toxicity in L929
cells [95,96]. As there is no early release of cytochrome c in
necrosis [96], Bcl-2 must exert its protective effect by another
molecular mechanism. In this respect, it was suggested that Bcl-
2 might act by binding BNIP3, a cytotoxic Bcl-2 family member
[97], causing increased production of ROS and decreased
mitochondrial membrane potential, without release of inter-
membrane space proteins [98,99]. Alternatively, Bcl-2 might
prolong the integrity of mitochondrial oxidative phosphoryla-
tion [100]. It has also been reported that Bcl-2 has direct anti-
oxidant functions, but the molecular mechanism is still unclear
[101,102]. It has been shown that overexpression of Bcl-2,
although it elevated the basal levels of hydrogen peroxide,
nevertheless restricted the excessive production of hydrogen
peroxide induced by TNFα [103].
3.2. Calcium

3.2.1. Calcium homeostasis and mitochondria
The endoplasmic reticulum (ER) is the major intracellular

Ca2+ store, and regulated Ca2+ release from this organelle is
essential for cellular signalling. The primary role of
mitochondrial Ca2+ is the stimulation of oxidative phosphor-
ylation, which can occur at different levels [104,105]. As Ca2+

is a global positive effector of mitochondrial function, any
perturbation in mitochondrial or cytosolic Ca2+ homeostasis
will have profound implications for cellular function [106] (Fig.
3). Mitochondrial Ca2+ overload will cause excessive stimula-
tion of the tricarboxylic acid (TCA) cycle, enhancing electron
flow into the respiratory chain, with concomitant overproduc-
tion of ROS. Moreover, Ca2+ stimulation of nitric oxide
synthase (NOS) and subsequent nitric oxide (NO) generation
can also affect mitochondrial respiration and increase ROS
production (see below). On the other hand, mitochondrial
dysfunction and production of ROS can theoretically modulate
extramitochondrial Ca2+ pools. A direct consequence of
ischemic injury is a drastic decrease in the available amount
of glucose and oxygen. Anoxic and ischemic damage can thus
result in the uncoupling of oxidative phosphorylation [107–
109]. According to Lemasters et al., this may result in ROS
production and uncontrolled hydrolysis of ATP by the inner
membrane ATPase [110]. To maintain ATP production during
ischemic conditions, cells make use of remaining glucose in the
surrounding tissue and bring into play glycogen stores by
anaerobic glycolysis [111,112]. The latter results in tissue



Fig. 3. Mechanism for Ca2+ stimulation of mitochondrial ROS generation.
Ca2+ stimulation of the TCA cycle enhances electron flow into the res-
piratory chain, and Ca2+ stimulation of NOS and subsequent NO generation
inhibit respiration at complex IV. These events enhance ROS production
from the Q cycle. In addition, NO

U
and Ca2+ can inhibit complex I, possibly

enhancing its production of ROS. Ca2+ at high concentrations triggers the
opening of the PTP (permeability transition pore). OMM, outer mitochon-
drial membrane; IMM, inner mitochondrial membrane; IMS, intermembrane
space.
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acidosis, which in turn increases Ca2+ influx by activating acid-
sensing ion channels [113]. Sustained Ca2+ can stimulate
mitochondrial dehydrogenases with concomitant increase in
NADH levels. The augmented NADH concentration contri-
butes to an increased mitochondrial ROS production following
reperfusion, which can lead to disruption of mitochondrial inner
membrane integrity and again loss of the ability to generate ATP
[114].

Besides, and as mentioned above, processes such as
ischemia–reperfusion, inflammation, ROS-induced injury and
glutamate excitotoxicity are also accompanied by a decrease in
ATP due to overactivation of PARP-1 [53–55]. Generally,
energy depletion slows active transmembrane ion transport
systems [115], leading to increased cell membrane perme-
ability, altered distribution of K+, Na+ and Ca2+ ions, and
decreased mitochondrial transmembrane electrical potential
[116]. If the onset of mitochondrial permeability transition
(MPT) is widespread and involves most mitochondria in a cell,
and glycolytic sources of ATP are unavailable, cells become
profoundly ATP depleted. This will ultimately lead to
organelle disruption and cell lysis. Adenine nucleotide translo-
case (ANT)-deficient mitochondria still display MPT in
response to calcium ionophores, demonstrating that ANT
may not be essential for MPT [117]. Ca2+-induced death of
ANT−/− hepatocytes occurs via a caspase-independent path-
way that can be blocked by cyclosporine A, indicating that
cyclophylin D (CypD) is a key regulator of MPT-related
necrotic cell death [117]. This is corroborated by the resistance
of CypD-deficient cells to necrotic cell death induced by H2O2

and Ca2+ overload. In addition, CypD-deficient mice are
highly resistant to cardiac injury induced by ischemia/
reperfusion, confirming that CypD-dependent MPT regulates
some forms of necrotic death [118–121].

It is important to mention that TNFα-induced necrosis of
L929 cells proceeds with normal amounts of ATP [122], while
Ca2+ chelators are clearly protective (Denecker, G. and Vanden
Berghe, T., unpublished data), demonstrating that ATP- and
Ca2+-mediated signalling processes are not always interrelated.
The fact that translation persists during necrosis of Jurkat and
L929 cells also argues against a massive drop in ATP con-
centrations during necrotic cell death [123].

The important role of calcium during necrotic cell death
is underscored by the fact that necrotic cell death in C.
elegans seems to be influenced by at least four ER proteins
regulating intracellular Ca2+ levels, namely the Ca2+

channels InsP3R and ryanodine receptor (RyR), and the
Ca2+-binding chaperones calreticulin and calnexin [124].
Besides calcium's effect on mitochondrial homeostasis, Ca2+-
dependent activation of phospholipases, lysosomal hydrolases
and proteases leads to rapid loss of proteins, DNA and RNA
(see below).

3.2.2. Calcium stimulation of nitric oxide synthase (NOS)
Oxidative stress arises not only from increased levels of

ROS; a significant increase in concentrations of reactive
nitrogen species (RNS), such as nitric oxide (NO) and
peroxynitrite (ONOO−), also enhance oxidative stress (Fig.
3). Calmodulin, the first protein shown to interact with NOS,
is necessary for the enzymatic activity of all three isoforms
[125]. The Ca2+ dependence of NO synthesis distinguishes
the NOS isoforms, with nNOS (neuronal isoform) and eNOS
(endothelial isoform) requiring much more Ca2+ than iNOS
(inducible isoform) [126]. Excessive influx of Ca2+ can lead
to enhanced activation of NOS and disproportionate produc-
tion of NO. The latter can inhibit complex IV of the ETC,
which would in turn enhance ROS production, and impair
mitochondrial ATP synthesis and cell function [127]. In
addition, a combination of NO and high concentrations of
mitochondrial Ca2+ can inhibit complex I [128], possibly
enhancing ROS generation by this complex. As NO can
impede caspase-3 activity by nitrosylation [129], it may
directly inhibit apoptosis and thereby promote necrosis.

Activation of nNOS and production of NO play important
roles in excitotoxicity, a phenomenon in which neuronal cells
undergo necrosis or apoptosis due to excessive release of
neurotransmitters or in response to overexposure to excita-
tory amino acids, such as N-methyl-D-aspartate (NMDA) and
glutamate [130]. In particular, prolonged activation of the
NMDA receptor leads to massive Ca2+ influx, resulting in
cytosolic Ca2+ overload and cell death. Ca2+ influx, besides
activating lipases and proteases and affecting mitochondrial
respiration, will activate nNOS and lead to excessive NO
production [131], which in the presence of O2

−U can generate
ONOO−U. The latter is a potent trigger of MPT, and damages
DNA, with consequent activation of PARP-1 [132]. Hyper-
activation of PARP-1 results in caspase-independent death
[60] (see above). Excitotoxicity plays an important role in



Fig. 4. The roles of phospholipases A2 and lipoxygenases in necrosis.
Phospholipases A2 (PLA2) are responsible for liberating arachidonic acid
(AA) from the sn-2 position of phospholipids. Translocation of cPLA2 to
the membranes, which enables it to interact with its substrates, is essential
for the release of AA from membranes. Ca2+ is essential for the translo-
cation of cPLA2 but not for its activity. On the other hand, phosphorylation
of four serine residues is essential for both the translocation and activity of
cPLA2. MAPKs are responsible for cPLA2 phosphorylation. Lipoxygenases
(LOXs) catalyze the conversion of polyunsaturated fatty acids into conju-
gated hydroperoxides. AA is the main substrate of LOXs, either in its
esterified or free form, depending on the type of enzyme, and PLA2s are
therefore considered upstream components of the LOX signalling pathway.
Generation of lipid hydroperoxides can also occur by nonenzymatic lipid
peroxidation processes. Dysfunction of mitochondria can cause the
generation of hydroxyl radicals, which attack unsaturated fatty acids to
generate lipid peroxides. Lipid hydroperoxidation may disrupt organelle and
plasma membranes.
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many neurodegenerative disorders such as Alzheimer's and
Huntington's disease and central nervous system disorders
such as seizure.

3.3. Phospholipases and lipoxygenases

Phospholipase A2 (PLA2) encompasses a family of esterases
that are responsible for the liberation of fatty acids from the sn-2
position of phospholipids. Several distinct mammalian PLA2

enzymes have been identified which are classified into three
major subfamilies. Ca2+-independent PLA2 (iPLA2) is thought
to be mainly involved in the maintenance of the composition of
membrane phospholipids. Secretory PLA2 (sPLA2) is an
extracellular low molecular mass enzyme that shows antibac-
terial and inflammation-inducing properties and which activa-
tion requires millimolar amounts of Ca2+. Cytosolic PLA2

(cPLA2) is an intracellular enzyme preferentially hydrolyzing
arachidonate-containing phospholipids and thus mainly respon-
sible for the release of arachidonic acid (AA) [133]. The
translocation of cPLA2 to the membranes of the nucleus, ER
and Golgi apparatus, which enables it to interact with its
substrates, is essential for cPLA2-mediated release of AA from
membranes [134]. Ca2+ is indispensable for the translocation of
cPLA2 but not for its activity [135]. On the other hand,
phosphorylation of four serine residues is essential for both
cPLA2-translocation and activity. MAPKs, in particular p38
MAPK, MAPK activated protein kinases, and Ca2+/calmodulin
kinase-II, are responsible for cPLA2 phosphorylation [133]
(Fig. 4). Once released, the AA can be further converted by one
of three major enzymatic pathways: the cyclooxygenase, the
lipoxygenase or the cytochrome P450 mono-oxygenase path-
way which are responsible for the production of eicosanoids
[82]. Besides their role in inflammatory signalling pathways,
lipoxygenases (LOXs) are also involved in the mobilization of
lipids and peroxidation reactions [136]. LOXs constitute a
family of monomeric non-heme, non-sulphur iron dioxygenases
that catalyze the conversion of polyunsaturated fatty acids into
conjugated hydroperoxides [136]. Nevertheless, the main
substrate of LOXs in mammals is arachidonic acid, either in
esterified or free form depending on the type of LOX. LOX
activity depends on the presence of Ca2+ which concentration
increases following the generation of free fatty acids as this
causes a change in cytosolic pH with concomitant activation of
acid-sensing ion channels and subsequent influx of Ca2+ [113]
(Fig. 4). LOX activity is also regulated by the hydroperoxide
tone of the cells as the presence of some hydroperoxides is
necessary for converting the non-heme iron from the resting
Fe2+ to the active Fe3+ oxidation state [137]. Lipid peroxida-
tion can be switched from an enzymatic to a nonenzymatic
form by inactivating LOXs. Liberated iron ions then react with
lipid hydroperoxides, starting a chain reaction. Nonenzymatic
lipid peroxidation can also be initiated by hydroxyl radicals
generated by dysfunctional mitochondria. These radicals attack
unsaturated fatty acids, generating lipid peroxides [138].

Lipid hydroperoxidation may lead to disruption of
organelle and plasma membranes [138–140], key features
of necrosis. The involvement of LOXs in TNFα-induced
apoptosis and other apoptotic pathways has been reported
several times [138,141]. Treatment of L929 cells with TNFα
leads to activation of PLA2, and overexpression of cPLA2

sensitized TNFα-resistant L929 variants to TNFα-induced
necrosis [142,143]. cPLA2 was also shown to play a major
role in TNFα-induced necrosis of MCF7 cells [144] and in
chemically-induced and oxidant-induced renal epithelial cell
necrosis [145,146]. A contribution of cPLA2 to TNFα-
induced lethal shock was also proven in vivo [87].
Additionally, injury after brain ischemia was proven to be
decreased in cPLA2

−/− mice [147]. Besides a role for cPLA2

in necrosis, a contribution of iPLA2 has been demonstrated in
several caspase-independent cell death signalling pathways
leading to nuclear shrinkage [147]. We recently showed that
activation of a PLA2/LOX pathway contributes to TNFα-
induced necrotic death of L929 cells [86].

3.4. Proteases

Calpains are intracellular cysteine proteases ubiquitously
and constitutively expressed in mammalian cells. They are



Fig. 5. Ceramide, an important player in necrotic signalling pathways. Ceramide
is generated mainly by hydrolysis of the membrane sphingophospholipid
sphingomyelin (SM) through the action of a sphingomyelinase (SMase), a SM-
specific form of phospholipase C. Ceramide plays a pivotal role in TNFα-
induced caspase-independent death of L929 cells. TNFα in combination with
zVAD-fmk induced a much more pronounced increase of intracellular ceramide
than TNFα alone. Acid ceramidase-overexpressing cells and SMase-deficient
cells are more resistant to TNFα/zVAD-fmk than parental cells. Pharmacolo-
gical agents inhibiting A-SMase activity also enhanced resistance (D609:
inhibits PLC, an enzyme upstream of A-SMase, thus indirectly inhibiting
TNFα-dependent activation of A-SMase [238]; desipramine: inhibits A-SMase
by inducing proteolytic degradation of the enzyme [239]). Interference with
RIP1 by different means, such as addition of GA, RC or RIP1 RNAi, and the use
of RIP1 deficient cells uniformly conferred protection against TNFα/zVAD-
fmk-induced ceramide generation. RIP1 is thus essential for TNFα- and RIP1-
induced ceramide production. (See text for details).
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believed to participate in various signalling pathways
mediated by Ca2+ by modulating the activities and/or
functions of other proteins [148]. They are present in the
cytosol as inactive precursors that are activated by increased
cytosolic Ca2+ [149,150]. Extreme conditions often result in
elevation of cytosolic Ca2+ levels and overactivation of
calpains. The latter then cleave the Na+/Ca2+ exchanger,
which is required for extrusion of Ca2+, thus leading to a
sustained increase in intracellular Ca2+ [151]. Calpains were
shown to fulfil important roles in necrotic cell death in
neurons of C. elegans [152] and in necrosis of dystrophin-
deficient muscles [153]. Direct evidence for calpain activa-
tion preceding ischemic neuronal death was also obtained
from studies on cornu ammonis (CA) 1 neuronal death in
monkeys [154]. Immunoelectron microscopy showed that
activated μ-calpain was localized at the vacuolated or
disrupted lysosomal membrane [155,156]. In addition, this
type of necrotic cell death was attended by lysosomal
leakage of cathepsin B [157]. Lysosomal membrane perme-
ability (LMP) does not seem to be a secondary response, as
inhibitors of cathepsins B and L significantly reduced
neuronal death [155,157]. Yamashima and colleagues there-
fore postulated a “calpain–cathepsin hypothesis”, suggesting
that necrotic insults causing excessive Ca2+ overload lead to
calpain-mediated lysosomal disruption with consecutive
release of cathepsins B and L [157]. Cathepsin B was also
shown to be involved in caspase-independent cell death
induced by death receptor ligands [158]. Increased activity of
calpains is also observed in certain neurodegenerative
diseases, such as Parkinson's [159] and Alzheimer's diseases
[160,161]. Whether this activity is strictly linked to the
occurrence of necrosis during these pathologies remains
unclear.

In addition, oxidative stress induces the release of
lysosomal enzymes both in vitro [162] and in situ [163],
and depending on the severity of the insult, apoptotic or
necrotic cell death can ensue [164]. Addition of low
concentrations of O-methyl-serine dodecylamide hydrochlo-
ride (MSDH), a lysosomotropic agent [165], results in partial
LMP, activation of caspases, and apoptosis. At high
concentrations, MSDH causes extensive LMP and necrosis.
LMP can also activate MPT, and thus lead to cell death [166].
Besides the release of cathepsins, LMP is also associated with
the activation of PLA2, which in turn can again increase the
production of ROS [167], thus establishing a vicious cycle of
oxidative stress and damage. Thus it is likely that not only
calpain proteolysis but also oxidative stress is capable of
provoking lysosomal membrane damage leading to neuronal
death.

The Nec protein is a serine protease inhibitor controlling the
Toll-mediated immune response of Drosophila [168]. Muta-
tions in nec cause the formation of patches of epithelial necrosis
and consequent death of the fly [169], indicating that serine
proteases may be involved in the execution phase of necrotic
cell death. This is in line with the inhibition of TNFα-induced
necrosis of L929 cells in the presence of serine protease
inhibitors [28,96,170].
3.5. Ceramide

Ceramide, which is considered a second messenger, is
generated mainly by hydrolysis of membrane sphingophos-
pholipid sphingomyelin (SM) by sphingomyelinase (SMase), a
SM-specific form of phospholipase C (PLC). Ceramide was
also shown to play a pivotal role in the TNFα-induced caspase-
independent death of L929 cells [171,172]. cPLA2 activity
seemed to be necessary for ceramide generation [172] (Fig. 5).
TNFα in combination with zVAD-fmk even induced a much
more pronounced increase of intracellular ceramide than TNFα
alone [173], and was associated with a much more rapid killing
of L929 cells [29]. In line with a causative role for ceramide in
these cell death processes, L929 clones overexpressing acid
ceramidase (AC) were more resistant to TNFα/zVAD-fmk than
parental cells. Acid ceramidase degrades ceramide generated by
acid sphingomyelinase (A-SMase) in response to TNFα [171].
Sphingomyelinase-deficient cells were also pronouncedly more
resistant to TNFα/zVAD-fmk than WT cells, and pharmacolo-
gical agents inhibiting A-SMase activity also enhanced
resistance [173]. Comparable results were obtained in murine
NIH3T3 fibroblasts, in human leukemic Jurkat T cells
stimulated with TNFα/zVAD-fmk, and in FADD-deficient
Jurkat cells [173]. Ceramide accumulation starts well before
the onset of cell death, indicating that ceramide represents a
cause rather than a consequence of caspase-independent death.

Interfering with RIP1 by different methods, such as addition
of GA or RC or RIP1 RNAi, conferred protection against
TNFα/zVAD-fmk-induced generation of ceramide and caspase-
independent death in all types of cells studied [173]. RIP1
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deficient cells were also resistant. RIP1 is thus essential for
induction of ceramide production by TNFα, and both RIP1 and
ceramide mediate their death signals through the same pathway,
which is conserved across different cell types. As RIP1 appears
to be a central initiator of necrosis, one may speculate that RIP1
phosphorylates and activates cPLA2, which in turn mediates the
generation of ceramide. Because inhibition of ceramide
accumulation clearly diminished caspase-independent PCD
but not as completely as inhibition of RIP1, ceramide obviously
represents a central factor, but most likely not the only one,
transmitting the death signals generated by RIP1 in response to
TNFα. Besides, addition of ceramide analogues or induction of
intracellular ceramide accumulation were shown to mediate
caspase-independent death in several cell types other than L929,
Jurkat and NIH3T3 cells [174,175]. The fact that BHA protects
against TNFα-induced cytotoxicity in L929 and NIH3T3 cells
[86,173,176] but has no effect in Jurkat and U937 cells
[173,177] indicates that mechanisms of ceramide-induced death
may differ between cell types.

4. Involvement of the cytoskeleton in the execution of
necrosis

Redistribution of mitochondria from a dispersed state to
perinuclear clustering has been associated with TNFα-induced
necrosis [178]. Disrupting microtubules with nocodazole and
inhibiting the motor protein kinesin can each block TNFα-
induced perinuclear redistribution of mitochondria in necrosis
[178]. TNFα also induces persistent phosphorylation of
oncoprotein 18 (Op18), a phosphorylation-responsive regu-
lator of microtubule dynamics [179]. Hyperphosphorylation
of Op18 promotes cell death. Since hyperphosphorylation
diminishes the ability of Op18 to destabilize microtubules,
stabilization of the microtubule network is believed to be
associated with TNFα-induced necrosis [179].

The cytoskeletal protein filament β-actin appears to function
downstream of TNF-R1 and upstream of TNFα-induced
mitochondrial changes during TNFα-induced necrosis of
L929 cells, as mutations in β-actin impeded perinuclear
redistribution of mitochondria. Moreover, ROS production in
TNFα-treated actinMut cells was much less than in parental cells
[180]. As zVAD-fmk does not have any effect on perinuclear
distribution of mitochondria but dramatically enhances TNFα-
induced ROS production [178], it can be suggested that ROS
production is a later or separate event of perinuclear redistribu-
tion of mitochondria. Actin mutation in L929 cells did not lead
to a global change in TNFα signalling: TNFα-induced
activation of NF-κB and p38 was normal in the mutant [180].

5. Immune response concomitant with necrotic cell death

5.1. Activation of inflammatory signalling pathways by
necrotic cells

Externalization of phosphatidylserine, the hallmark of
apoptosis, designates a cell with an “eat-me” label and is a
very early feature of apoptotic death [181]. In contrast,
necrotizing cells are phagocytosed only after loss of membrane
integrity by a macropinocytotic mechanism involving formation
of multiple ruffles directed towards necrotic debris [182]. This
means that uptake is delayed and less efficient [19]. Observa-
tions of PS exposure before loss of cell membrane permeability
in necrotic death [183,184] indicate that PS exposure may be
important for recognition, but additional factors may be
necessary for uptake. This idea is supported by the observation
that PS exposure is not sufficient to ensure clearance [185,186],
and that the PS receptor is not required for recognition and
clearance of apoptotic cells [187]. The late uptake of necrotic
cells allows the dying cells to activate pro-inflammatory and
immuno-stimulatory responses [18] whereas apoptotic cell death
is immunologically and inflammatorily silent [188].

Exposed or released intracellular components are potential
sources of autoantigens that might be processed and presented
to initiate an autoimmune reaction [189]. During cell death,
several post-translational modifications occur, such as hyper-
phosphorylation, (de)ubiquitination, methylation, citrullination,
transglutaminase crosslinking and proteolytic cleavage
[190,191]. These modifications can increase the risk of an
autoimmune response, especially when repeatedly presented to
the immune system in a proinflammatory context [192]. On the
other hand, increased transglutaminase activity might also
assure tissue integrity maintenance, limiting massive necrosis
and reducing the inflammatory response [193]. Further studies
are necessary to clearly demonstrate the function of increased
transglutaminase activities during necrotic cell death processes.

Spillage of the contents of necrotic cells into the surrounding
tissue activates inflammatory signalling pathways. Depending
on molecular signals from necrotic cells, diverse types of
immune cells (neutrophils, macrophages, dendritic cells)
become involved in the immune response. In contrast, apoptotic
cells induce antigen presenting cells (APCs) to secrete
cytokines that inhibit Th1 responses [194]. Immature dendritic
cells efficiently phagocytose a variety of apoptotic and necrotic
tumour cells, but only the latter induce maturation and optimal
presentation of tumour antigens [195,196].

High mobility group box I (HMGB1) is one of the
proinflammatory molecules passively released by necrotic
cells [197]. It is both a nuclear factor and a secreted protein.
In the nucleus it acts as an architectural chromatin-binding
factor that bends DNA, stabilizes nucleosomes and facilitates
transcription [198]. Outside the cell, it binds with high affinity
to receptor for advanced glycated end products (RAGE), TLR2
and TLR4, and is a potent mediator of inflammation, cell
migration and metastasis [199–201]. HMGB1 was shown to
play a major role in sepsis and synovial inflammation in arthritis
[202]. Apoptotic cells do not release HMGB1, which may help
avoid inflammation even if phagocytic clearance fails [197].
However, a recent study performed in our laboratory showed
that both primary and secondary necrotic cells (L929 and HeLa)
release HMGB1, indicating that HMGB1 is released passively
following membrane rupture (Vanden Berghe T., unpublished
data). The reason for this discrepancy is not clear yet.

Moreover, Hsp70, Hsp90, gp96 and calreticulin specifically
released by necrotic cells [195], activate APCs, including DCs



Fig. 6. Necrotic cell death is the result of interplay between several signalling
cascades. RIP1 appears to be a central initiator of necrosis. RIP1 has been
implicated in the generation of ceramide upon TNFα-induced necrosis, and its
kinase activity was shown to be crucial for Fas-, TNF-R1- and TRAIL-R-
induced necrosis. Necrotically dying cells can actively release inflammatory
cytokines due to the activation of NF-κB and MAPKs, a process in which RIP1
is also implicated. ROS and Ca2+ are main players during the propagation and
execution phases of necrotic cell death. ROS can be produced in the cytosol
when the glycolytic rate is high, but mitochondria are the main producers of
ROS. An increase in cytosolic Ca2+ concentrations can increase oxidative stress
by activating NOS, or by affecting mitochondrial respiration. On the other hand,
Ca2+ contributes to the activation of proteases, cPLA2 or lipoxygenases, which
in turn disrupt organelle and cell integrity by damaging protein structures or lipid
bilayers. (See text for details).
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[196,203–205]. mRNA released from necrotic cells is a potent
host-derived activator of TLR3, inducing the activation of NF-
κB and the expression of TNFα, IRF-1 and IL-1 receptor
associated kinase-M (IRAK-M) in DCs [206]. This results in
DC activation with concomitant secretion of IFNα.

However, the activation of macrophages by “danger signals”
present in the extracellular environment due to spillage of
necrotic debris remains controversial. We and others showed
that exposure of macrophages to necrotic cells is not sufficient
to trigger macrophage activation and the concomitant induction
of proinflammatory cytokines [19,20]. Rather, necrotic cells
trigger the enhanced secretion of proinflammatory cytokines
from independently activated macrophages [20].

It is also conceivable that the active release of proin-
flammatory cytokines from necrotic cells due to the
activation of NF-κB and MAPKs [21] (see below) may be
crucial for an inflammatory response. In contrast, binding of
apoptotic cells to macrophages immediately leads to inhibi-
tion of proinflammatory cytokine gene transcription [188],
underscoring the innate immune discrimination of apoptotic
cells. These observations are in agreement with the inhibition
of translation during apoptosis, but not during necrosis
[123,207,208]. Apoptotic signalling thus negatively regulates
the release of inflammatory cytokines by down-regulating the
transcription and translation machineries.

5.2. Activation of proinflammatory pathways can be uncoupled
from the activation of necrotic cell death

The role of MAPKs in cell death signalling pathways is not
yet clear [209]. It was suggested that transient activation of
p38 MAPK or JNK can protect from cytotoxicity [210],
whereas their prolonged activation may induce apoptotic death
[211]. Sustained activation of both p38 MAPK and JNK is
observed following treatment of MEF cells with the DNA-
alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine
(MNNG). However, only JNK contributes to the MNNG-
induced necrosis, as demonstrated by the survival of JNK1−/−

and JNK2−/− MEFs, but not p38−/− MEFs, following MNNG
treatment [61]. During TNFα-, TNFα/zVAD-fmk and IFNβ/
dsRNA-induced necrosis, early and transient activation of p38
MAPK and JNK could be seen. However, this was not the case
for FasL/zVAD-fmk-induced necrosis [21], indicating that
these pathways are not absolutely required. TNFα also induced
a secondary prolonged activation of p38 MAPK, which was
absent for JNK. Prolonged activation of JNK has been
attributed to accumulation of ROS. The ROS hamper the
function of phosphatases that are important for inactivating
MKK, which is involved in the phosphorylation of JNK
[212,213]. NF-κB counteracts this process [212,213]. This
may explain why a secondary peak of JNK activation does not
occur during necrotic death of L929 cells, which is associated
with high levels of NF-κB [21]. Inhibition of NF-κB activation
blocked IL-6 production but did not block TNFα-induced
necrosis, instead it sensitized for it. This observation supports
the finding that NF-κB may act to inhibit ROS accumulation
[212,213] and thus may have anti-necrotic properties [31].
Necrotic cell death was not affected by inhibition of p38
MAPK [21]. These data clearly show that activation of
proinflammatory pathways could be uncoupled from activation
of necrotic cell death following certain stimuli.

6. Occurrence of necrosis in physiological and
pathophysiological conditions

Necrotic cell death has long been described as a consequence
of physico-chemical stress, such as freeze–thawing or severe
hyperthermia [14], and thus as accidental and uncontrolled
[214]. However, necrotic cell death has emerged as an important
and physiologically relevant signalling process that seems to
contribute to ovulation [215], immune defence [216,217], death
of chondrocytes controlling the longitudinal growth of bones
[218], and cellular turnover in the intestine [219]. In addition,
removal of interdigital cells in the paws of Apaf 1−/− mice
during embryogenesis occurs by a caspase-independent necro-
tic-like process [220]. Noteworthy, the occurrence of necrosis in
these in vivo models was mostly defined morphologically.
Several reports also illustrate the occurrence of necrotic cell
death during viral and bacterial infections. HIV-1 was shown to
kill CD4+ T lymphocytes by necrosis [221–223] and Shigella
and Salmonella can induce necrotic cell death of infected
neutrophils and macrophages, respectively [224,225]. Caspase-
independent death is also strongly induced in ischemia–
reperfusion injury after cerebral ischemia and myocardial
infarction, ROS-induced injury, and glutamate excitotoxicity
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[53–55,226]. Besides, diseases such as epilepsy [227],
Alzheimer's disease [228] and other inflammatory injuries
[229] are also attended by necrosis.

7. Conclusion

Necrotic cell death is not due to one well-described
signalling cascade but is the result of interplay between several
signalling pathways. With our present knowledge of necrotic
cell death, it is impossible to clearly distinguish between the
initiation, propagation and execution phases of necrotic cell
death (Fig. 6). In particular, differences between propagation
and execution events are not always clear-cut, for example,
ROS can either act as propagators by activating lipoxygenases
[137,141], or as executioners by directly modifying organelle or
plasma membranes [138] or proteins [77]. RIP1 appears to be a
central initiator of necrosis. It has been implicated in the
generation of ceramide during TNFα-induced necrosis [173],
and its kinase activity has been shown to be crucial for Fas-,
TNF-R1- and TRAIL-R-induced necrosis [12,43]. Identifying
substrates of RIP1 will thus give more insights into downstream
signalling pathways contributing to death receptor-induced
necrotic cell death. Additionally, RIP1 is involved in necrotic
cell death induced by TLR stimulation and DNA damage
[48,57,61]. Besides the capacity of necrotically dying cells to
induce an inflammatory response upon lysis and spillage of
their contents, they can also actively release inflammatory
cytokines due to the activation of NF-κB and MAPKs [21], a
process that also involves RIP1 [38–40,230–232].

ROS and Ca2+ are two main players during the propagation
and execution phases of necrotic cell death. ROS can be
produced in the cytosol if the glycolytic rate is high, but they are
produced mainly by the mitochondria. Higher cytosolic Ca2+

concentrations can increase oxidative stress by activating NOS
or by affecting mitochondrial respiration. On the other hand,
Ca2+ contributes to the activation of proteases, cPLA2 and
lipoxygenases, which in turn disrupt organelle and cell integrity
by damaging protein structures or lipid bilayers [106]. Calcium
thus acts mainly as an amplifier of necrotic signalling cascades.

Induction of necrotic cell death may be of utmost importance
upon, for example, viral or bacterial infection. In order to avoid
host cell apoptosis, several viruses encode caspase inhibitors.
Induction of necrotic cell death under these circumstances will
activate innate and adaptive immune responses, which are
crucial for conquering the infection and promoting recovery of
the host. On the other hand, inefficient clearance of necrotic
cells may contribute to the spread of a pathogen and generalized
infection. Moreover, stimulation of a caspase-independent
pathway may also contribute to eradication of certain tumour
cells, which often evade apoptosis by increasing expression of
anti-apoptotic proteins (e.g. XIAP, IAP1, IAP2, Bcl-2, Bcl-xL)
or accumulating mutations in crucial pro-apoptotic proteins
(e.g. p53 and Bax) [233,234]. Approaches for inducing necrotic
cell death in cancer cells include administering alkylating DNA-
damaging agents [235] and photosensitizing molecules that
preferentially accumulate in tumour cells and generate ROS
following excitation with light from various spectra [236,237].
Unravelling in more detail several caspase-independent
death pathways may thus help us to develop new therapeutic
options for preventing cell death in neurodegenerative diseases,
killing tumour cells, coping with pathogenic infections, and
various other applications.
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