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Abstract 

We show that the problem of finding a maximal vertex-induced (resp., edge-induced) 
subgraph of maximum degree k is in NC’ for k 2 0 (resp., k > 1). For these problems, we 

develop a method which exploits the NC algorithm for the maximal independent set problem. 
By using the same scheme, the maximal vertex-induced subgraph which satisfies a hereditary 
graph property rr and whose maximum degree is at most A can be found in time 
O(d”(“‘T,(n)(log(n + m))‘) using a polynomial number of processors, where i,(n) is the max- 
imum of diameters of minimal graphs violating TT and T,(n) is the time needed to decide whether 
a graph with n vertices and m edges satisfies n. 

1. Introduction 

Karp and Wigderson [7], Luby [S], Goldberg and Spencer [4,5] have shown that 

the maximal independent set problem, called MIS, is solvable in NC, which is known 

to be the class of problems computed by PRAMS with a polynomial number of 

processors in O((logn)k) time for some k > 0 [14-161. In this paper, we show that the 

problem of finding a maximal subset of vertices whose induced subgraph is of degree 

at most k allows an NC algorithm for any k 2 0. For the proof, we devise a systematic 

scheme which employs the NC algorithm for MIS [7,8]. We also show that the 

problem of finding a maximal set of edges which forms a subgraph of degree at most 

k is in NC. 
In general, a problem of this kind is stated as a maximal subgraph problem for 

a given property n, which is to find a maximal subset of vertices which induces 

a subgraph satisfying rr. For example, MIS is the problem for property “no two 
vertices are adjacent”. This paper deals with the problem for property “maximum 

* Corresponding author. 

03043975/95/$09.50 0 1995-Elsevier Science B.V. All rights reserved 

SSDI 0304-3975(94)00221-5 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82489257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


58 T. Shoudai, S. Miyano / Theoretical Computer Science 148 (1995) 57-65 

degree k”. A graph property rr is called local if the diameter of any minimal graph 
violating x is bounded by some constant. For such local properties rr, our scheme can 
solve the maximal subgraph problem. In particular, if rr is local, hereditary and 
testable in NC, the maximal subgraph problem for “x and maximum degree k” can be 
solved in NC. 

It has been shown that most of the lexicographically first maximal (abbreviated to 
lfm) subgraph problems are P-complete [12]. Therefore, no NC algorithms exist for 
the lfm subgraph problems if P # NC. On the other hand, the problem of finding any 
maximal subgraph which satisfies a given property seems to allow NC algorithms for 
many properties. However, only a few are shown to be in NC. As we mentioned above, 
MIS is one of them. In [12], the maximal edge-induced forest problem and the 
maximal edge-induced bipartite subgraph problem are shown to be in NC. With some 
restrictions, the maximal edge-induced outerplanar subgraph problem [lo] and the 
maximal vertex-induced acyclic subgraph problem restricted to directed graphs with 
degree at most 3 also allow NC algorithms [l 11. The results in this paper add a new 

family of such problems. 

2. Preliminaries and definitions 

A graph G = (V, E) means an undirected graph without any multiple edges and 
self-loops. For a subset U E I’, we define as E[U] = { {a, v> E E 1 u, u E U}. The graph 
G[U] = (U, ECU]) is called the vertex-induced subgraph of U. For a subset F E E, 
we define V[F] to be the set of endpoints of the edges in F. We denote by 
(F ) = (V[F 1, F) the graph formed from F and call it the edge-induced subgraph of F. 

For a vertex u, the degree of u is denoted by deg,(u). We denote by deg(G) = 

max{deg,(u) 1 u E V}. 

Let k 2 0 be any integer. The maximum degree k vertex-induced subgraph problem 

(VIMS(k)) is stated as follows: 

VIMS(k) 
Instance: A graph G = (V, E). 
Problem: Find a maximal subset U c V such that G[U] is of degree at most k. 

In a similar way, the maximum degree k edge-induced subgraph problem (EIMS(k)) is 
defined as follows: 

EIMS(k) 
Instance: A graph G = (V, E). 
Problem: Find a maximal subset F c E such that (F ) is of degree at most k. 
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3. Finding bounded degree maximal subgrapbs 

Theorem 1. Let G = (V,E) be a graph with 1 VI = II and IEl = m. VZMS(k) for G can 
be computed in time O(k’(log(n + m))‘) with n2m processors on an ERE W PRAM, for 

k 3 0. 

Proof. We show an NC algorithm by employing the NC algorithm for MIS. Let 
G = (V, E) be a graph for which we are finding a maximal subset U of vertices whose 
induced subgraph G[U] is of degree at most k. 

For subsets Wand U of vertices with W n U = 8, let Er = { {u, w} I u # w, u, w E W 
and there is UEU such that {u,u} E E and {w,u} E E}. Then let 
Hr = (W, E [ W] u ET). The required set U of vertices is computed together with 
a set W of vertices such that W n U = 0. Initially, let W = V and U = 8. At each 
iteration of the algorithm, a maximal independent set I of HF is computed and added 
to U while vertices which make the degree of some vertex greater than k are deleted 
from W together with I. This is iterated k2 times. Formally the algorithm is described 
as follows: 

1 begin /* G = (V, E) is an input */ 
2 w4-V;u+--& 
3 for i +- 1 to k2 do 

4 begin 

5 Find a maximal indepdendent set I of HF; 
6 UcUuI; 
7 W-W-I; 
8 WC W- {w E WI deg(G[U u {w}]) > k} 
9 end 

10 end 

We show that this algorithm computes a maximal subset U whose induced 
subgraph is of degree at most k. 

Let W, = Vand U,-, = 0. Then, the graph H rt is the same as G = (V, E). Therefore, 
in the first iteration, a maximal independent set of G is computed at line 5. For 
i = 1, . . . , k2, let Ui, Ii and Wi be the contents of variables U, I and W at the end of the 
ith iteration, respectively. Obviously, Wi n Ui = 0 for i = 0, . . . . k2. We assume that 
the induced subgraph G[Ui- 1] is of degree at most k. 

Let {w, u} be an edge in E with w E I+$ and u E Vi. Line 8 deletes every vertex which 
is adjacent to more than k vertices in Ui or adjacent to a vertex u in Ui with 
degGcsl(u) = k. Therefore, u is adjacent to at most k vertices in Ui and 
deg,ts u (w)1(u) < k. Hence, for each w in Wi, we see that 

At(w) = C 
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To show that W becomes empty after k2 iterations, it suffices to prove that each w in 
w satisfies 

fori= 1 , . . . , k2. Since w is not in the maximal independent set Ii of H 2:; computed by 
line 5, w is adjacent to a vertex u in Ii E I+‘_ 1 via an edge (w, u} in E [ Wi- 1 ] or E 21,‘. 

Case 1: If {w,u}EE[W~_~], then {w,u} is an edge in G[Uiu {w}]. Hence, 
degcrs,(,),(v) 2 1. Since u E Ui, u $ Ui_1 and {w, U> E E, we see that Ai > 

Ai-l(w) + &7~~,, {W}](U) > Ai-l(w). 

Case 2: If {w, u} E Ez::, then there is a vertex u E Ui- 1 with {w, u} E E and 
(u,u} EE. Since UE Wi-1, Wi_lnUi_1=@ and W#U, we see u$Ui_lu{w}. 

Hence, {u, u} is not an edge in G [Ui- I u {w} 1. On the other hand, u is in Vi and 
U is in Ui_1 S Ui. Hence, {u, a} is an edge in G[Ui u {w}]. Therefore, 
deg,,, u c,,,),(u) > deg,,,_, v cw),(u). Since u E Ui and {w, u> E E, we see that 
A,(W) > Ai_ 1 (W). 

We now show that deg(G[Ui]) < k. For a vertex u in Vi- 1, if u is adjacent to 
a vertex w in Ii via an edge in E, then no other vertex in Ii is adjacent to u since Ii is 
also an independent set with respect to Ez::. Therefore, the degree of u in 
G[Ui_ 1 u Zi] remains at most k since deg(G[Ui_ 1 u (w}]) < k by the algorithm. For 

a vertex u in Ii, deg,,,_, u lil (u) is at most k since u is adjacent to at most k vertices in 
Vi- 1 and since Ii is an independent set with respect to E [ Wi- 1 1. Hence, 

deg,r,_, v I,,(U) < k. 
Since only vertices which violate the condition of maximum degree k are deleted 

from W, the resulting set U is a maximal subset inducing a subgraph of maximum 
degree k when W becomes empty. Then, this algorithm correctly computes a maximal 
vertex-induced subgraph of maximum degree k. Since the problem of finding a maxi- 
mal independent set in a graph is solvable in O((log(n + m))‘) time using n2m 
processors on an EREW PRAM [S] and since the other part of the for-loop can be 
easily executed using the same amount of time and processors, we can see that 
VIMS(k) is computed in O(k’(log(n + m))“) time using n2m processors on an EREW 
PRAM. Cl 

This theorem also states that the problem can be solved in NC2 since MIS can be 
solved in NC2 [S]. 

Theorem 2. Let G = (V, E) be a graph with 1 VI = n and IE 1 = m. EZMS(k) for G can be 
computed in time O(k(log(n + m))‘) with n2m processors on an ERE W PRAM, for 
k> 1. 

Proof. For this problem, we use maximal matchings instead of maximal independent 
sets. The algorithm is similar to that in Theorem 1 and repeats the following 
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procedure 2k times, where initially Z = E and F = 0. 

1 begin 

2 Find a maximal matching M of (Z ); 

3 F+-FuM; 
4 Z+Z-M; 

5 Z+-Z-{e~ZJdeg((Fu{e}))>k) 
6 end 

Let Z0 = E and F. = 0. In the same way as Theorem 1, let Fi, Mi and Zi be the 

contents of F, M and Z just after the ith iteration. 

For an edge e = {u, u} E Zi, 

&(c) = degcFz, {er,(n) + dego U (e,,(a) d 2k 

holds since all edges making the degree greater than k are deleted from Z by line 5. To 

see that Z becomes empty after 2k iterations, it suffices to show that 

Bile) > Bi- I (e) 

holds for edges in Zi. 

Since e is not in Mi and Mi is a maximal matching in (Zi _ I ), e shares a vertex with 

some edge e’ in Mi. Without loss of generality, we may assume that u is shared by 

e and e’. Then, deg(.,(,),(u) is greater than degcF,_,,,;,),(u) since edge e’ is not 

contained in (Fi 1 u {e} ). 

It is easy to see that deg( (Fi )) < k since Mi is a matching of (Zi _ 1 ) and since each 

edge e in Mi satisfies deg((Fi_1 u {e})) < k. 

By the argument above we see that the resulting F is a maximal set of edges such 

that deg( (F )) d k. Since a maximal matching can be found in NC [6,8], the total 

algorithm can be implemented in NC. For example, by Luby’s parallel MIS algorithm 

C81, our algorithm can be implemented on an EREW PRAM in time 

O(k(log(n + m))‘) using n2m processors. 0 

4. Maximal subgraph problem for a local property 

Let rc be a property on graphs. We say that a graph G = (V, E) is a minimal graph 

violating 7~ with respect to vertices if G violates x and the vertex-induced subgraph 

G [ U] of U satisfies rc for every subset U of V with U # V. The property rc is called 

local with respect to vertices if A(X) = sup{diameter(G) 1 G is a minimal graph violat- 

ing n: with respect to vertices} is finite. 

Remark 1. A minimal graph violating a property rc with respect to vertices must be 

connected if rr is local. 
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A property rc on graphs is called hereditary with respect to vertices if for every graph 
G = (V, E) satisfying n, the vertex-induced subgraph G [U] also satisfies rc for every 
subset U E V. 

Theorem 3. Let 7c be a graph property which is local and hereditary with respect to 
vertices. Then a maximal subgraph of a graph G = (V, E) which satisfies rc and whose 
maximum degree is at most A can be computed in O(A “‘“‘T,(n)(log(n + m))‘) time using 

a polynomial number of processors on an ERE W PRAM, where T,(n) is the time needed 
to decide whether a graph with n vertices and m edges satisfies rc. 

Proof. For subsets W and U of vertices with W n U = 8, let Er = {{v, w} E 

WI disto(” v (“, ,,,(v, w) < n(x) with v # w} and N,(w) = (u E U 1 distoI,,(u, w) 6 

n(n) - l}, where disto( (v, w}) is the length of the shortest path between v and w in G. 
Then, let H r = ( W, E [ W] u E r). The required set U of vertices is computed together 
with a set W of vertices such that W n U = 8. The algorithm is described as follows: 

1 begin /* G = (V, E) is an input */ 
2 WtV;Ue@; 
3 while W # $i do 
4 begin 

5 Find a maximal independent set Z of Hr; 
6 ucuvz; 
7 Wt w-z; 
8 Wt W- {w E W 1 G[U u (w>] violates rc or deg(G[U u {w}]) > A} 

9 end 

10 end 

E 7 represents tuples of two vertices such that if the vertices are added to U at the 
same step, an induced subgraph of U may violate the property. We show that this 
algorithm computes a maximal subset U whose induced subgraph is of degree at most 
A and satisfies n. 

Let W,= Vand Z-J,=@. For i= l,..., A ‘(‘) let Ui, Ii and K be the contents of , 

variables U, Z and W at the end of the ith iteration, respectively. Obviously, 
w n Ui = 0 for i = 0, . . ..A I@). We assume that the induced subgraph G [Ui_ 1] 
satisfies rc and the maximum degree of G [ Vi _ 1 ] is at most A. 

Let {w, u} be an edge in E with w E Wi and u E Vi. Line 8 deletes every vertex which 
is adjacent to more than A vertices in Ui or adjacent to a vertex v in Ui with 
deg,cojl(v) = A. Therefore, u is adjacent to at most A vertices in Ui and 

deg,r”,i, (,,I(u) < A. Moreover, INu,,,(w)l < A i(x)-1. Hence, for each w in Wi, we see 
that 
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Claim 1. A,(W) > Ai_ 1 (W) fir each W in Wi. 

Proof. Since w is not in the maximal independent set Ii of Hz:,’ computed by line 5, 
w is adjacent to a vertex v in Ii G W,_1 via an edge {w,D} in E[Wi_l] or Ez_:. 

Case 1: (w,D} EE[FV-~]. Then {w,v} is an edge in G[Ui u {w}]. Hence, 
deg,[,,,+,),(u) > 1. Since u E N,(w) and u # N,,_,(w), we see that A;(w) > 

Ai-l(w) + ~egG~uz,~w)+) > Ai-i(wl 
Case 2: {w, v} E Ez::. Then there is a path w, ur, . . . . u&-r, v with k < R(x) and 

UjEUi-i (j= l,..., k-l) in G[Ui_, u {w,u}]. Since DE K-1, Wi_l n Ui-1 =f~ 

andw#u,weseev$U,_i u{w}.Hence,{v,~~_~}i~notanedgeinG[U~_~ u {w}]. 
On the other hand, u is in Ui and uk _ 1 is in Ui _ 1 c Vi. Hence, {a, uk _ 1 > is an edge 

in GCUi- 1 u {w}l. Therefore, hGCu,, +)l(uk-l) > bGcu,_, u i,&km I). Since 
fd,t- 1 E N”,_,(W) c N”,(W), we see that Ai > Ai- 1 (w). 

Thus, W becomes empty within A a(Z) iterations of the while-loop. 0 

Claim 2. deg(G [Vi]) d A. 

The proof of this claim is similar to the case of Theorem 1. 

Claim 3. G [Ui] satisfies 71. 

Proof. We assume that G[Ui] does not satisfy n. Then, there is a minimal subset 
S c Vi such that G [S] violates 7~. Since S c Ui and Ui = Vi- 1 u Zi, we see that 
S = (S n Vi_ 1) u (S n Ii). If S n Ii consists of only one vertex V, Vi- i u {v} already 
violates rc. Therefore, there are two distinct vertices v, w such that {v, w} E E or there 
are at most A(z) - 1 vertices in S n Ui_ 1 which construct a path between v and w since 
diameter (G[S]) 6 L(rc). For each case, {u,w} are in E[Wi_l] or Ez:: since 
V, w E Ii E Wi_ 1. This contradicts the fact that u, w E S n ii c Ii and Ii is a maximal 
independent set with respect to E [ Wi] u E z’:. Hence, G [ Vi] satisfies 71. 0 

Since only vertices which violate the property rc or the condition of maximum 
degree A are deleted from Wand since rc is hereditary, the resulting set U is a maximal 
subset which induces a subgraph satisfying x when W becomes empty. 

MIS can be solved on an EREW PRAM in O((log(n + m))‘) time using a poly- 
nomial number of processors [S]. It is not hard to see that the steps other than MIS 
can also be implemented on a EREW PRAM in O((log(n + m))2) time using a poly- 
nomial number of processors. Hence, the total algorithm can be implemented using 
the same amount of time and processors. q 

Remark 2. At line 8 of the algorithm, for each w E W, it is sufficient to decide whether 
G[N,(w) LJ {w}] satisfies x and deg(G[Nn(w) u {w}]) < A. Therefore, the time 
needed to compute line 8 depends only on A and L(X). 
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Theorem 3 also states that the problem can be solved in NC2 for graphs of 
a constant degree. 

Theorem 1 is a special case of Theorem 3 for rc = “maximum degree k”, I(z) = 2 
and d = k. For a graph of maximum degree A and 71 = “k-cycle free”, it takes 
0(ALk/2~(logn)2) time to find a maximal subgraph satisfying rc of maximum degree 
A since J(X) = Lk/2J. 

5. Concluding remarks 

A straightforward method to solve VIMS(k) (resp., EIMS(k)) is to use the poly- 
nomial-time greedy sequential algorithm that computes the lfm subset U of vertices 
(resp., F of edges) such that deg(G[U]) (resp., deg( (F))) is at most k [2,12]. 

Most problems computed by greedy algorithms of this kind are known to be 
P-complete and therefore hardly efficiently parallelizable [l, 12,133. In fact, the lfm 
maximum degree k vertex-induced subgraph problem is P-complete [12]. However, 
the situation is different for edge-induced subgraphs. 

The class CC is defined to be the class of sets log-space reducible to C-CVP, the 
comparator circuit value problem [9]. A comparator circuit is a usual circuit such 
that it contains only comparators C which are gates with two inputs u,u and two 
outputs uu, u + v and no duplication of the value of an output is allowed. 

CC lies as NLOG c CC s P [3] and is closed under complement [9]. Currently, 
CC-complete problems are believed to be neither P-complete nor in NC. Some 
CC-complete problems are reported in [9]. The lfm matching problem is one of them 
(stated as a work due to S.A. Cook in [9]). Since a matching is a subgraph of degree at 
most 1, it is natural to guess that the lfm maximum degree k edge-induced subgraph 
problem, denoted LF-EIMS(k), is also CC-complete for all k 3 1. We can show that 
this is the case. Since the proof technique is the same as that for the lfm matching 
problem, we omit the proof. 

Theorem 4. LF-EIMS(k) is CC-complete for k 2 1. 

We have shown that parallel MIS algorithms are useful to solve the maximal 
subgraph problem for a property “local and of degree at most A”. However, the idea of 
using MIS does not seem to work for other properties, for example, “acyclic”, 
“planar”, which are not local. MIS locates at an interesting position in the NC 
hierarchy. It is in NC2 but unlikely to belong to classes such as AC’ and DET shown 
in [2]. It is not difficult to see that the algorithms shown in this paper can be 
transformed by NC’-reductions to MIS. Hence, the results in this paper give some 
new problems NC1-reducible to MIS. 
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