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a b s t r a c t

In the context of service-oriented computing, behavioural contracts are abstract
descriptions of the message-passing behaviour of services. They can be used to check
properties of service compositions such as, for instance, client-service compliance. To
the best of our knowledge, previous formal models for contracts consider unidirectional
send and receive operations. In this paper, we present two models for contracts with
bidirectional request–response operations, in the presence of unboundedly many instances
of both clients and servers. The first model takes inspiration from the abstract service
interface language WSCL, the second one is inspired by Abstract WS-BPEL. We prove that
two different notions of client-service compliance (one based on client satisfaction and
another one requiring mutual completion) are decidable in the former while they are
undecidable in the latter, thus showing an interesting expressiveness gap between the
modelling of request–response operations in WSCL and in Abstract WS-BPEL.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

One interesting aspect of Service Oriented Computing (SOC) and Web Services technology is the need to describe in
rigorous terms not only the format of the messages exchanged among interacting parties (as done, e.g., with the standard
languageWSDL [36]), but also the order in which such messages should be received and transmitted (as done, e.g., with the
languagesWSCL [35],WSCI [34], and Abstract WS-BPEL [29]). This specific aspect is clearly described in the Introduction of
theWeb Service Conversation Language (WSCL) specification [35], one of the proposals of theWorldWideWeb Consortium
(W3C) for the description of the so-called Web Services abstract interfaces.

Defining which XML documents are expected by a Web service or are sent back as a response is not enough. It is
also necessary to define the order in which these documents need to be exchanged; in other words, a business level
conversation needs to be specified. By specifying the conversations supported by a Web service – by defining the
documents to be exchanged and the order in which they may be exchanged – the external visible behaviour of a Web
service, its abstract interface, is defined.

The abstract interface of services, sometimes called behavioural contracts (simply contracts in the following) can be used
in several ways. For instance, one could check the compliance between a client and a service, that is, a guarantee for the
client that the interaction with the service will in any case be completed successfully. One could also check, during the
service discovery phase, the conformance of a concrete service to a given abstract interface by verifying whether the service
implements at least the expected functionalities and does not require more.
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Formal models are called for to devise rigorous forms of reasoning and verification techniques for services and abstract
interfaces. To this aim, theories of behavioural contracts based on CCS-like process calculi [25] have been thoroughly
investigated (see e.g. [5,8,10,13,14]). However, these models lack expressiveness in at least one respect: they cannot be
employed to describe bidirectional request–response interactions, in contexts where several instances of the client and of
the service may be running at the same time. This situation, on the other hand, is commonly found in practice-oriented
contract languages, like the abstract service interface language WSCL [35], WSCI [34], and Abstract WS-BPEL [29] where
also bi-directional interactions are supported. The typical trick for implementing bi-directional on top of uni-directional
interactions, that exploits call backs, requires the generation of fresh sessions or operation names in the presence ofmultiple
dynamically generated instances. But this is not possible if the underlying calculus is CCS, as it does not providemechanisms
for generation and communication of new names.

The WSCL language is a graphical notation similar to traditional
flowcharts. There are four classes of basic actions: the one-way actions
Send and Receive, and the two-way actions SendReceive and ReceiveSend.
An example of ReceiveSend action is on the right.

<<ReceiveSend>>
Purchase

in: PurchaseRQ
out: PurchaseAcceptedRS
out: InvalidPayementRS

out: OutOfStockRS

In the example, an operation is represented that receives a purchase order and replies with three possible messages for ac-
ceptance, invalid payment, or out of stock, respectively.

WSCI is a richer XML-based language used to describe the behaviour of the actors involved in a multiparty service
composition. Different from WSCL, in WSCI it is possible to indicate an activity to be executed between the receive and
the send actions of a two-way input operation, as the process tns:BookSeats executed within the request–response
operation tns:TAtoTraveler/bookTickets in the example below:

<action name = "ReceiveConfirmation"
role = "tns:TravelAgent"
operation = "tns:TAtoTraveler/bookTickets">

<call process = "tns:BookSeats" />
</action>

Abstract WS-BPEL is an XML-based language, but dif-
ferent from WSCI, the request–response operations are
modelled with two distinct receive and reply actions,
that are correlated because they are executed with the
same partner (see the example on the right). Between the
receive and the reply actions any other action could be
specified.

<receive partnerLink="purchase"
portType="lns:OrderPT"
operation="sendOrder"
variable="PO">

...
<reply partnerLink="purchase"

portType="lns:OrderPT"
operation="sendOrder"
variable="Invoice">

In this paper, we present a formal investigation of contract languages of the type described above, that is allowing
bidirectional request–response interactions, taking place between instances of services and clients. We present two formal
contract languages that, for simplicity, include only the request–response pattern1: the first language is inspired by WSCL
while the second one by Abstract WS-BPEL. We consider these two approaches as they represent the two ends of the
spectrum of the different forms of request–response operations described above: in WSCL there is only one ReceiveSend
event, while in Abstract WS-BPEL an arbitrary amount of other actions can be performed between two correlated receive
and reply activities.

In both the two models that we present, the request–response interaction pattern is decomposed into sequences of
more fundamental send–receive–reply steps: the client first sends its invocation, then the service receives such an invocation,
and finally the service sends its reply message back to the client. The binding between the requesting and the responding
sides (instances) of the original operation is maintained by employing naming mechanisms similar to those found in the
π-calculus [26]. In both models, we do not put any restriction on the number of client or service instances that can be
generated at runtime, so that the resulting systems are in general of infinite-state. The difference between the two models
is that in the former it is not possible to describe intermediate activities of the service taking place between the receive and
the reply steps, while this is possible in the latter.

We define client-service compliance on the basis of themust testing relation of [16]: a client and a service are compliant
if all completed interactions between them leads the client to a successful state. Our main results show that client-service

1 As discussed in Section 4, the languages that we propose are sufficiently expressive to model also the one-way communication pattern.
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compliance is decidable in theWSCL-inspiredmodel,while it is undecidable in theAbstractWS-BPELmodel: this points to an
interesting expressiveness gap between the two approaches for the modelling of the request–response interaction pattern.
In the former case, the decidability proof is based on a translation of contracts into finite Petri nets. This translation does
not reproduce faithfully all steps of computation (namely, intermediate steps of the request–response interaction are not
represented in the Petri net), however the translation is complete, in the sense that it preserves and reflects the existence of
unsuccessful computations, which is enough to reduce the original compliance problem to a decidable problem in finite Petri
nets. This yields a practical compliance-checking procedure, obtained by adaptation of the classical Karp–Miller coverability
tree construction [23].

We check the robustness of our approach for verifying client-service compliance by taking into consideration also a
different notion of compliance. Inmultiparty service compositions, for instance, there is no clear distinction between clients
and services as one partner could play both the roles. In those cases, a symmetric notion of compliance in which all the
involved partners should reach successful completion is more appropriate. We first define a more restrictive notion of
compliance, that we call mutual compliance, that guarantees completion of both the client and the service in any possible
computation.We show then that our decision procedure can be slightlymodified to cope alsowith this notion of compliance.

1.1. Structure of the paper

The rest of the paper is organized as follows. In Section 2, we present the two formal models and the definition of client-
service compliance. Section 3 contains the Petri nets semantics and the proof of decidability of client-service compliance
for theWSCLmodel. Section 4 reports on undecidability for the Abstract WS-BPELmodel. In Section 5, we consider mutual
compliance and we show how to modify the decision procedure defined in Section 3 to cope with this symmetric version of
compliance. Finally, in Section 6 we draw some conclusions and discuss related and further work.

This paper is the full and extended version of [4]: the proofs of the technical results have been included, some additional
examples have been introduced, a new part on mutual compliance has been added, and the related work section has been
enriched.

2. Behavioural contracts with request–response

We presuppose a denumerable set of contract variables Var ranged over by X, Y , . . . , a denumerable set of names Names
ranged over by a, b, r, s, . . . . We use I , J , . . . to denote sets of indices.

Definition 2.1 (WSCL Contracts). The syntax of WSCL contracts, C , D, . . . , is defined by the following grammar (the
auxiliary syntactic category G is used to denote guarded contracts)

G ::= invoke


a,

i∈I

bi.Ci

  recreply

a,

i∈I

bi.Ci

  √

C,D ::=


i∈I

Gi
 C |C

 X  recX .C

where recX ._ is a binder for the contract variable X . We assume guarded recursion, that is, given a contract recX .C all the free
occurrences of X in C are inside a guarded contract G. In the following, we will consider only closed contracts, i.e. contracts
in which any occurrence of a variable X is bound by a corresponding recX ._ primitive.

A client contract is a contract containing at least one occurrence of the guarded success contract
√
, while a service contract

is a contract not containing
√
. In the following, we will denote the set of all WSCL contracts as C.

G is used to denote guarded contracts, ready to perform either an invoke or a receive on a request–response operation a:
the selection of the continuation Ci depends on the actual reply message bi. A set of guarded contracts Gi can be combined
into a choice


i∈I Gi; if the index set I is empty, we denote this term by 0. Contracts can be composed in parallel. Note that

infinite-state contract systems can be defined using recursion (see example later in the section). In the following, we use
Names(C) to denote the set of names occurring in C , and C and S to denote, respectively, client and service contracts. Before
presenting the semantics of WSCL contracts, we introduce BPEL contracts as well.

Definition 2.2 (BPEL Contracts). BPEL contracts are defined likeWSCL contracts in Definition 2.1, with the only difference
that guarded contracts are as follows

G ::= invoke


a,

i∈I

bi.Ci

  receive(a).C
 reply(a,b).C

 √
.

Note that receive(a) acts as a binder for a. Consequently, notions of free and bound names and alpha equivalence arise as
expected. In the following, we will identify terms up to alpha-equivalence.

We now define the operational semantics of both models. We will interpret theWSCL contract recreply

a,


i∈I bi.Ci

as

the BPEL contract receive(a).


i∈I


reply(a,bi).Ci


, which receives an invocation on the operation a and then replies with one
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Table 1
Operational semantics of contracts.

(i)
Gl

α
−→ G′

l l ∈ I
i∈I

Gi
α

−→ G′

l

(ii)

r ∉ Names


i∈I

bi.Ci



invoke


a,

i∈I

bi.Ci


(r)

−→


i∈I

(r⟨bi⟩.Ci) | a⟨r⟩

(iii)
r ∉ Names(C)

receive(a).C
a⟨r⟩
−→ C{r/a}

(iv) reply(r,b).C
τ

−→ C | r⟨b⟩ (v)
C1

a⟨b⟩
−→ C′

1 C2
a⟨b⟩
−→ C′

2

C1|C2
τ

−→ C′

1|C
′

2

(vi) r⟨b⟩
r⟨b⟩
−→ 0 (vii) r⟨b⟩.C

r⟨b⟩
−→ C

(viii)
√

√

−→ 0 (ix)
C1

α
−→ C′

1 α ≠ (r)

C1|C2
α

−→ C′

1|C2

(x)
C1

(r)
−→ C′

1 r ∉ Names(C2)

C1|C2
(r)

−→ C′

1|C2

(xi)
C{recX .C/X}

α
−→ C′

recX.C
α

−→ C′

(a, b, r ∈ Names, symmetric version of the rules for parallel composition omitted)

of the messages bi. We shall rely on a run-time syntax of contracts, which is obtained from the original one by extending
the clause for guarded contract, thus

G ::= · · ·
 a⟨r⟩  r⟨b⟩.C .

The terms a⟨r⟩ and r⟨b⟩.C are used to represent an emitted but pending invocation of a request–response operation a: the
name r represents a (fresh) channel r that will be used by the invoked operation to send the reply message back to the
invoker. From now onwards we will call (WSCL) contract any term that can be obtained from this run-time syntax. In the
following, we let Labels

△
= {τ ,

√
} ∪ {a⟨b⟩, a⟨b⟩, (a) | a, b ∈ Names}. Moreover, by C{r/a} we denote the term obtained from

C by replacing with r every free occurrence of a, while C{recX .C/X} denotes the usual substitution of free contract variables
with the corresponding definition.

Definition 2.3 (Operational Semantics). The operational semantics of contracts is given by the minimal labelled transition
system, with labels taken from the set Labels, satisfying the axiom and rules in Table 1.

In the following, we use C
α

−→ to say that there is some C ′ such that C
α

−→ C ′. Moreover, we use C −→ C ′ to denote

reductions: C −→ C ′ if C
τ

−→ C ′ or C
(r)

−→ C ′ for some r . A computation is a finite or infinite sequence of reduction steps
D1 −→ D2 −→ · · · −→ Dn −→ · · ·. It is a maximal computation if it is infinite or it ends in a state Dn such that Dn has no
outgoing reductions.

Wenow formalize the notion of client-service compliance resorting tomust-testing [16]. Intuitively, a client C is compliant
with a service contract S if all the computations of the system C |S lead to the client’s success. Other notions of compliance
have been put forward in the literature [8,9]; we have chosen this one, based on client satisfaction, because of its technical
and conceptual simplicity (it has been adopted e.g. in [13], one of the pioneering papers on client-service compliance).

Definition 2.4 (Client–Service Compliance). A client contract C is compliant with a service contract S if for every maximal

computation C |S −→ D1 −→ · · · −→ Dl −→ · · · there exists k such that Dk

√

−→.

Example 2.5 (Internal and External Nondeterminism). One aspect that traditionally influences client-service compliance is
the interplay between internal and external nondeterminism. In any conversation, the set of alternatives that the client
expects as a reply should cover all the possible choices of the service. Consider the following WSCL contracts C1 and S1
representing a client that invokes a service on an operation ‘‘op’’: the service can reply ‘‘yes’’ or ‘‘no’’, while the client is ready
to accept the replies ‘‘yes’’, ‘‘no’’, and ‘‘maybe’’.

C1
△
= invoke


op, yes.

√
+ no.

√
+ maybe.

√
S1

△
= recreply (op, yes + no).

It is easy to see that C1|S1 has only two possible maximal computations, both of them ending in a state in which the success
action

√
is offered. Hence, we can conclude that C1 is compliant with the service S1. If we swap the possible choices between

the client and the service, we obtain the following contracts.

C2
△
= invoke


op, yes.

√
+ no.

√
S2

△
= recreply (op, yes + no + maybe).

In this case, the service can internally decide to replywith ‘‘maybe’’ (by applying rule (iv)), and such a reply cannot be received
by the client. Formally, C2|S2 has a computation leading to a deadlock state in which the client is waiting to receive the reply.
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This maximal computation does not offer the client’s success
√
, hence we can conclude that C2 is not compliant with the

service S2.

Example 2.6 (An Impatient Client and a Latecomer Service). This example shows that even very simple WSCL scenarios
could result in infinite-state systems. Consider a client C that either asks the box office service S for some tickets or decides
to wait for them by listening to an offerTicket. Our client is impatient: at any time, it can decide to stop waiting and issue a
new request. This behaviour can be described in WSCL as follows

C
△
= recX .


invoke (requireTicket, ok.X) + recreply


offerTicket, ok.

√
.

Consider the box office service S, defined below, that is always ready to receive a requireTicket invocation and then
responds by notifying (performing a call-back) on offerTicket.

S
△
= recX .recreply (requireTicket, ok.(invoke (offerTicket,ok)|X)).

It could happen that invoke (offerTicket,ok) on the service side and recreply

offerTicket,ok.

√
on the client side never

synchronize, as below

C | S → requireTicket⟨r⟩ | r⟨ok⟩.C | S (by (ii))
→ r⟨ok⟩.C | r⟨ok⟩ | S | invoke (offerTicket,ok) (by (v))
→ C | S | invoke (offerTicket,ok) (by (v))

→→→C | S | invoke (offerTicket,ok) | invoke (offerTicket,ok) (by (ii), (v), (v))
...

...
→→→C | S | invoke (offerTicket,ok) | · · · | invoke (offerTicket,ok)  

n

.

Hence, the term C |S could generate an infinite-state system where each state is characterized by an arbitrary number n of
invoke (offerTicket,ok) parallel components. This infinite computation, moreover, does not traverse states inwhich the client
can perform its

√
action, thus C is not compliant with S according to Definition 2.4.2

Example 2.7 (Unboundedly Many Instances of Client and Service). A BPEL client C can recursively spawn instances that
invoke the operation ‘‘service’’ provided by a service S. This repetitive behaviour is controlled by a ‘‘continue’’ operation
of the client (representing, for instance, the interaction with a human agent) that nondeterministically replies either with
yes to continue the spawning of instances, or with no to stop the client.

C
△
= recX .


invoke


continue, yes.(invoke (service, ok) | X)

+ no.
√


|

recY .receive(continue).(reply(continue,yes).Y + reply(continue,no)).

Also the service S is able to spawn unboundedly many instances, one for each of the replies to the invocations coming
from the client instances.

S
△
= recX .receive(service).(reply(service,ok) | X).

We complete this section by presenting the notion of stableWSCL contract that will be used in the proof of Theorem 3.11.
Informally, a contract is stable if there are no pending replies.

Definition 2.8 (Stable Contracts). A WSCL contract C (in the run-time syntax) is said to be stable if it contains neither
unguarded reply(r ,b) actions nor pairs of matching terms of the form r⟨b⟩ and r⟨b⟩.

Notice that everyWSCL contract (according to the syntax of Definition 2.1) is stable. The following lemma shows that if one
stable contract performs one computation and becomes unstable, then it can always return stable.

Lemma 2.9. Suppose C is stable and that C −→ C ′. Then, there exists C ′′ stable such that C ′
−→ C1 −→ · · · −→ Cl −→ C ′′

(l ≥ 0) and for each i = 1, . . . , l it holds that Ci

√

−→/ .

Proof. If C ′ is not stable then it may contain both unguarded reply actions and pairs of the form r⟨b⟩ and r⟨b⟩. According
to the operational semantics of contracts, all unguarded reply actions and r⟨b⟩ and r⟨b⟩ can be consumed performing a
sequence of reductions. Therefore, a stable contract C ′′ can be reached from C ′ without traversing any state capable of

√

−→. �

2 Other definitions of compliance, see e.g. [8], resort to should-testing [31] instead of must-testing: according to these alternative definitions C and S
turn out to be compliant due to the fairness assumption characterizing the should-testing approach.
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3. Decidability of client-service compliance for WSCL contracts

We translateWSCL contract systems into finite place/transitions Petri nets [30], an infinite-state model in which several
reachability problems are decidable (see, e.g., [18] for a review of decidable problems for finite Petri nets). The translation
into Petri nets does not faithfully reproduce all the steps of computation of contracts. In particular, the operational semantics
of contracts includes amechanism for the generation of unboundedlymany distinct names used to bind a service instance to
the corresponding client instance in a bi-directional interaction. A faithful Petri net encoding should distinguish two distinct
pairs of bound client-service instances, thus distinct places should be used. Obviously, this is not possible in a finite Petri net.
The Petri net semantics thatwepresentmodels bi-directional request–response interactions as a unique event, thusmerging
together events that are kept distinct in the operational semantics of contracts: the reception of the invocation and the
emission and the reception of the reply. We will prove that this alternative modelling preserves client-service compliance
because in WSCL the invoker and the invoked contracts do not interact with other contracts during the request–response.

Another difference with the operational semantics of contracts is that in the Petri net semantics when the client contract
enters in a successful state, i.e. a state with an outgoing transition

√
, the corresponding Petri net enters a particular

successful state and blocks its execution. This way, a client contract is compliant with a service contract if and only if in
the corresponding Petri net all computations are finite and finish in a successful state. In fact, if a client is compliant with
a service, we have that all the completed contract computations traverse a state in which the client is successful. As we
will show, this last property is verifiable for finite Petri nets using a finite symbolic representation of all possible Petri net
computations inspired by the so-called coverability tree [23].

3.1. A Petri net semantics for WSCL contracts

We first recall the definition of Petri nets. For any set S, we let Mfin(S) be the set of the finite multisets (markings) over S.

Definition 3.1 (Petri Net). A Petri net is a pair N = (S, T ), where S is the set of places and T ⊆ Mfin(S) × Mfin(S) is the set
of transitions. A transition (c, p) is written c ⇒ p. A transition c ⇒ p is enabled at a marking m if c ⊆ m. The execution of
the transition produces the marking m′

= (m \ c) ⊕ p (where \ and ⊕ are the multiset difference and union operators).
This is written as m[⟩m′. A dead marking is a marking in which no transition is enabled. A marked Petri net is a triple
M = (S, T ,m0), where (S, T ) is a Petri net and m0 is the initial marking. A computation in M leading to the marking m
is a sequencem0[⟩m1[⟩m2 · · ·mn[⟩m.

Note that in c ⇒ p, the marking c represents the tokens to be ‘‘consumed’’, while the marking p represents the tokens
to be ‘‘produced’’. The Petri net semantics that we present for WSCL contracts decomposes contract terms into multisets
of terms, that represent sequential contracts at different stages of invocation. We introduce the decomposition function in
Definition 3.3. Instrumental to this definition is the set Pl(C), for C aWSCL contract, introduced in Definition 3.2. Let us first
introduce the auxiliary functions

· and unf(·). The function
C yields the syntactic size of a given contract C:

i∈I

Gi

 =
X = 1

C1|C2
 =

C1
+ C2

 recX .C
 = 1 +

C.
The function unf(C) performs the unfolding of any recX ._ in C not under the scope of one of the following prefixes:
invoke (·,·), receive( · ), reply( · , · ), a⟨b⟩. unf(C) is defined by induction on the pairs (n1, n2), ordered lexicographically,
where n1 is the number of unguarded (i.e. not under an invoke (·,·), receive( · ), reply( · , · ), a⟨b⟩) sub-terms of the form
recX .D′ in C and n2 =

C.
unf(recX .D) = unf(D{recX .D/X})

unf(D1|D2) = unf(D1)|unf(D2) unf(C) = C, otherwise.

Definition 3.2 (Pl(C)). The set Pl(C) is defined as follows:

Pl(C)
△
=


i∈I

Gi, a↑

i∈I

bi.Ci, c↓

i∈I

bi.Ci :


i∈I

Gi,

i∈I

bi.Ci occur in unf(C), a, c ∈ Names(unf(C))


.

The three kinds of places have the following meaning:


i∈I Gi represents a sequential process, a↑


i∈I bi.Ci represents
a process that after emission of an invocation on a is waiting for the reply, while c↓


i∈I bi.Ci represents a blocked process

because the reply c is different from the admitted replies bi.
The function dec(·) transforms every WSCL contract C , as given in Definition 2.1, into a multisetm ∈ Pl(C).

Definition 3.3 (Decomposition). The decomposition dec(C) of a WSCL contract C is decC (unf(C)). The auxiliary function
decC (D) is defined in Table 2.

Note that by definition, contracts of the form


i∈I Gi, as in Definition 2.1, are mapped by dec(·) into themselves:
dec(


i∈I Gi) = decC (


i∈I Gi) =


i∈I Gi, for any C .
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Table 2
The auxiliary function decC (D).

decC


i∈I

r⟨bi⟩.Di


= a↑


i∈I

bi.Di if a⟨r⟩ occurs in C

decC


i∈I

r⟨bi⟩.Di


= c↓


i∈I

bi.Di if r⟨c⟩ occurs in C and c ≠ bi for every i ∈ I

decC (a⟨b⟩) = ∅ decC (D1|D2) = decC (D1) ⊕ decC (D2) decC (D) = D, otherwise

Table 3
Transitions schemata for the Petri net semantics of WSCL contracts.

i∈I

Gi


⇒


a↑

j∈J

bj.Cj


if Gk = invoke


a,

j∈J

bj.Cj


for some k ∈ I


a↑

j∈J

bj.Cj,

i∈I

Gi


⇒ dec(Cy) ⊕ dec(Dz) if

Gk = recreply


a,

l∈L

cl.Dl


for some k ∈ I and

by = cz for some y ∈ J , z ∈ L


a↑

j∈J

bj.Cj,

i∈I

Gi


⇒


cz↓

j∈J

bj.Cj


⊕ dec(Dz) if

Gk = recreply


a,

l∈L

cl.Dl


for some k ∈ I and

z ∈ L s.t. cz ≠ bj for every j ∈ J

Example 3.4. As an example of decomposition we consider the contract C |S as defined in the Example 2.6:

dec(C |S) =

invoke(requireTicket, ok.recX .


invoke(requireTicket, ok.X )
+recreply(offerTicket, ok.

√
)


+recreply(offerTicket, ok.
√

)


,
recreply(requireTicket, ok.(invoke (offerTicket,ok) |

recX .recreply (requireTicket, ok.(invoke (offerTicket,ok)|X))))

.

Note that the decomposition generates two tokens, one corresponding to the client and one corresponding to the service,
both obtained by unfolding the corresponding recursive definitions.

There are three kinds of transitions in the Petri net we are going to define:

• transitions representing the emission of an invocation;
• transitions representing (atomically) the reception of the invocation and the emission and reception of the reply;
• transitions representing (atomically) the reception of the invocation and the emission of a reply that will never be

received by the invoker because it is outside the set of admitted replies.

These three cases are taken into account in the definition below.

Definition 3.5 (Petri Net Semantics). Let C be aWSCL contract system as in Definition 2.1. We define Net(C) as the Petri net
(S, T ) where:

• S = Pl(C);
• T ⊆ Mfin(S) × Mfin(S) includes all the transitions that are instances of the transitions schemata in Table 3.

We define themarked net Netm(C) as the marked net (S, T ,m0), where the initial marking ism0 = dec(C).

Example 3.6. We continue the Example 3.4 by showing the Petri net associated to C |S as defined in Example 2.6. The
places of the initial marking are fully defined in the Example 3.4; here they are denoted more compactly as follows
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C ′ △
= invoke (requireTicket, ok.C)

+recreply

offerTicket, ok.

√
S ′ △

= recreply(requireTicket,
ok.(invoke (offerTicket,ok)|S)).

The marked net Netm(S|C) is depicted on the right. A bunch
of unreachable places (like ok↓ok.

√
, ok↑ok.

√
, . . .) has been

omitted for the sake of clarity.
This example shows how the Petri net

C ′ S ′

requireTicket↑ok.C

invoke (offerTicket,ok)

offerTicket↑ok
√

t1

t2

t3t4

semantics models bi-directional request–response interactions as a unique event. Recall that

recreply

requireTicket, ok.(invoke (offerTicket,ok)|S)


= receive(requireTicket).reply(requireTicket,ok).(invoke (offerTicket,ok) | S) .

The first rule in Table 3 simulates the application of rule (ii). Indeed, in the Petri net above transition t1 simulates the
following:

C ′
| S ′ (r)

−→ requireTicket⟨r⟩ | r⟨ok⟩.C | S ′.

The second rule in Table 3, which gives rise to transition t2, simulates the sequence of application of rules (v), (iv) and (v).
The first application of (v) allows for the synchronization between the invocation requireTicket⟨r⟩ and receive(requireTicket):

requireTicket⟨r⟩ | r⟨ok⟩.C | S ′
τ

−→ r⟨ok⟩.C | reply(r ,ok).(invoke (offerTicket,ok) | S).

Thanks to (iv) the invoked part selects (the only) possible reply ok:

r⟨ok⟩.C | reply(r ,ok).(invoke (offerTicket,ok) | S)
τ

−→ r⟨ok⟩.C | r⟨ok⟩ | invoke (offerTicket,ok) | S.

Finally, thanks to (v), the selected reply is received by the invoker

r⟨ok⟩.C | r⟨ok⟩ | invoke (offerTicket,ok) | S
τ

−→ C | invoke (offerTicket,ok) | S.

We divide the proof of the correspondence between the operational and the Petri net semantics of WSCL contracts into
two parts: we first prove a soundness result showing that all Petri net computations reflect computations of contracts, and
then a completeness result showing that contract computations leading to a state inwhich there are nouncompleted request–
response interactions are reproduced in the Petri net.

In the proof of the soundness result we use the following structural congruence rule to remove empty contracts and in
order to rearrange the order of contracts in parallel compositions. Let ≡ be the minimal congruence for contract systems
such as

C |0 ≡ C C |D ≡ D|C C |(D|E) ≡ (C |D)|E recX .C ≡ C{recX .C/X}.

As usual, we have that the structural congruence respects the operational semantics.

Proposition 3.7. Let C and D be two contract systems such that C ≡ D. If C
α

−→ C ′, then there exists D′ such that D
α

−→ D′ and
C ′

≡ D′.

The following result establishes a precise relationship between the form ofm and the form of C when dec(C) = m.

Lemma 3.8. Let C be a WSCL contract system and suppose dec(C) = m. The following holds:

(1) m = {


i∈I Gi} ⊕ m′ if and only if C ≡


i∈I Gi | D, for some D such that dec(D) = m′;
(2) m = {a ↑


j∈J bj.Cj} ⊕ m′ if and only if C ≡


j∈J r⟨bj⟩.Cj | a⟨r⟩ | D, for some D and r such that r /∈ Names(D) and

dec(D) = m′;
(3) m = {c↓


j∈J bj.Cj} ⊕ m′ if and only if c ≠ bj for each j ∈ J and C ≡


j∈J r⟨bj⟩.Cj | r⟨c⟩ | D, for some D and r such that

r /∈ Names(D) and dec(D) = m′.

Proof. Recall that dec(C) = decC (unf(C)) and note that unf(C) ≡ C .

(⇐) Follows from the definition of dec(C).
(⇒) (1) Ifm = {


i∈I Gi}⊕m′ then rule decC (C1|C2) = decC (C1)⊕decC (C2) has been applied at least once. Therefore, there

are C1 and C2 such that C ≡ C1|C2 and decC (C1) = {


i∈I Gi} and decC (C2) = dec(C2) = m′. Moreover, the only
rule that could have been used in order to infer that decC (C1) = {


i∈I Gi} is decC (D) = D. Therefore, we have that

C1 =


i∈I Gi and C =


i∈I Gi|C2.
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(2) As before, ifm = {a↑


j∈J bj.Cj}⊕m′ then there are C1 and C2 such that C ≡ C1|C2 and decC (C1) = {a↑


j∈J bj.Cj} and
decC (C2) = m′. Moreover, the only rule that could have been used in order to infer that decC (C1) = {a↑


j∈J bj.Cj}

is decC (


j∈J r⟨bj⟩.Dj) = a↑


j∈J bj.Dj and this guarantees that a⟨r⟩ ∈ C . Recall that decC (a⟨r⟩) = ∅. Therefore, we
have that C1 =


j∈J r⟨bj⟩.Cj and C =


j∈J r⟨bj⟩.Cj | a⟨r⟩ | C2.

Moreover, Given that C2 is a run-time term, r is guaranteed to be fresh by rule (x), hence r /∈ Names(C2) and
decC (C2) = dec(C2) = m′.

(3) Again, if m = {c↓


j∈J bj.Cj} ⊕ m′ then there are C1 and C2 such that C ≡ C1|C2 and decC (C1) = {c↓


j∈J bj.Cj} and
decC (C2) = m′. Moreover, the only rule that could have been used in order to infer that decC (C1) = {c↓


j∈J bj.Cj}

is decC (


j∈J r⟨bj⟩.Dj) = c↓


j∈J bj.Dj and this guarantees that r⟨c⟩ occurs in C and that c ≠ bj, for each j ∈ J . Recall
that decC (a⟨r⟩) = ∅. Therefore, we have that C1 =


j∈J r⟨bj⟩.Cj and C =


j∈J r⟨bj⟩.Cj | r⟨c⟩ | C2.

Given that C2 is a run-time term, r is guaranteed to be fresh by rule (x), hence r /∈ Names(C2) and decC (C2) =

dec(C2) = m′. �

Proposition 3.9. Let C be a WSCL contract. Consider the Petri net Net(C) = (S, T ) and a marking m of Net(C) such that
dec(D) = m, for some contract D. We have that m is dead if and only if D has no outgoing reductions.
Proof. (⇒) Suppose m is dead, we have to prove that any D, with dec(D) = m, has no outgoing reductions. The proof is by
induction on the structure ofm. The casem = ∅ is trivial.

Supposem = {


i∈I Gi} ⊕m′, hence D ≡


i∈I Gi|C ′, with dec(C ′) = m′ (Lemma 3.8). By definition,m′ is dead, therefore,
by induction, C ′ has no outgoing reductions. Moreover:

• Gk ≠ invoke

a,


j∈J bj.Cj

, for each k ∈ I (otherwise the first kind of transition would apply tom);

• Gk = recreply

ak,


l∈Lk
cl.Dl


but m′ does not contain ak ↑


j∈J bj.Cj, for each k ∈ I (otherwise either the second

or the third kind of transition would apply to m). Therefore, by Lemma 3.8, there is no ak⟨r⟩ |


j∈J r⟨bj⟩.Cj in C ′ (by
dec(C ′) = m′).

Therefore, by Proposition 3.7, D ≡


i∈I Gi|C ′ has not outgoing reductions.
Supposem = {a↑


j∈J bj.Cj}⊕m′, hence D ≡


j∈J r⟨bj⟩.Cj | a⟨r⟩ | C ′, with r /∈ Names(C ′) and dec(C ′) = m′ (Lemma 3.8).

By definition, m′ is dead; therefore, by induction, C ′ has no outgoing reductions. Moreover m′
≠ {


i∈I Gi} ⊕ m′′ with

Gk = recreply

a,


l∈L cl.Dl

, for some k ∈ I . Otherwise either the second or the third kind of transition would apply to

m. Hence, by definition of dec(·), C ′ cannot contain an unguarded subterm of the form recreply

a,


l∈L cl.Dl

and D has no

outgoing reductions.
Supposem = {c↓


j∈J bj.Cj}⊕m′. Then c ≠ bj, for each j and D ≡


j∈J r⟨bj⟩.Cj | r⟨c⟩ | C ′, with dec(C ′) = m′ (Lemma 3.8).

By definition, m′ is dead, therefore, by induction, C ′ has no outgoing reductions and by inspection of the semantics of
contracts it is easy to see that D has no outgoing reductions too.

(⇐) By induction on the structure of m and by Lemma 3.8 it can be easily seen that if D has an outgoing reduction then
we have a contradiction andm is not dead. �

In order to prove that the Petri net semantics preserves client-service compliance, we need to introduce the notion of
successmarking. A successmarkingm contains at least one token in aplace corresponding to a successful client state, formally,
m(


i∈I Gi) > 0 for some contract


i∈I Gi such that Gk =
√
, for some k ∈ I .

We are now ready to prove the soundness result.
Theorem 3.10 (Soundness). Let C be aWSCL contract. Consider the Petri net Net(C) = (S, T ) and let m be amarking of Net(C).
If m[⟩m′ then for each D such that dec(D) = m there exists a computation D

△
= D0 −→ D1 −→ · · · −→ Dl, with dec(Dl) = m′.

Moreover, if m is not a success marking then there exists no j ∈ {0, . . . , l − 1} such that Dj

√

−→.
Proof. The proof proceeds by case analysis on the three possible kinds of transition.
(1) If m[⟩m′ by applying the first kind of transition then m = {


j∈J Gj} ⊕ m′′, with Gk = invoke


a,


i∈I bi.Ci

for a k ∈ J .

Moreover, m′
= {a↑


i∈I bi.Ci} ⊕ m′′.

By Lemma 3.8 and by rule (ii), D ≡


j∈J Gj | C ′
−→ a⟨r⟩ |


i∈I r⟨bi⟩.Ci | C ′ △

= D′ and dec(D′) = m′.
(2) If m[⟩m′ by applying the second kind of transition then m = {a ↑


j∈J bj.Cj,


i∈I Gi} ⊕ m′′, with Gk =

recreply

a,


l∈L cl.Dl

, for some k ∈ J , and by = cz for some y ∈ J and z ∈ L. By Lemma 3.8, if dec(D) = m then

D ≡ a⟨r⟩ |


j∈J r⟨bj⟩.Cj |


i∈I Gi | C ′, for any C ′ such that dec(C ′) = m′′. Therefore, by Gk = recreply

a,


l∈L cl.Dl

:

D −→


j∈J

r⟨bj⟩.Cj


l∈L

reply(r ,cl).Dl

 C ′ (by rule (v))

−→


j∈J

r⟨bj⟩.Cj | r⟨cz⟩ | Dz | C ′ (by rule (iv))

−→ Cy | Dz | C ′ △
= D′ (by rule (v))
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with dec(D′) = dec(Cy) ⊕ dec(Dz) ⊕ m′′
= m′. Notice that each intermediate state in the reduction sequence from D to

D′ cannot perform a successful transition.
(3) Ifm[⟩m′ by applying the third kind of transition thenm = {a↑


j∈J bj.Cj,


i∈I Gi}⊕m′′, withGk = recreply


a,


l∈L cl.Dl

,

for some k ∈ J , and there is z ∈ L such that by ≠ cz for each y ∈ J . By Lemma 3.8, if dec(D) = m then
D ≡ a⟨r⟩ |


j∈J r⟨bj⟩.Cj |


i∈I Gi | C ′, for any C ′ such that dec(C ′) = m′′. Therefore, by Gk = recreply


a,


l∈L cl.Dl

, we

get

D −→


j∈J

r⟨bj⟩.Cj


l∈L

reply(r ,cl).Dl

 C ′ (by rule (v))

−→


j∈J

r⟨bj⟩.Cj | r⟨cz⟩ | Dz | C ′ △
= D′ (by rule (iv))

with dec(D′) = {cz↓


j∈J bj.Cj} ⊕ dec(Dz) ⊕ m′′
= m′. As in the previous case, each intermediate state in the reduction

sequence from D to D′ cannot perform a successful transition. �

We nowmove to the completeness part.

Theorem 3.11 (Completeness). Let C be a WSCL contract and let D be a contract reachable from C through the computation
C = C0 −→ C1 −→ · · · −→ Cn = D. If D is stable then there exists a computationm0[⟩m1[⟩m2 · · ·ml−1[⟩ml of themarked Petri

net Netm(C) such that dec(D) = ml. Moreover, if there exists no k ∈ {0, . . . , n} such that Ck

√

−→ then for every j ∈ {0, . . . , l}
we have that mj is not a success marking.

Proof. The proof is by induction on the length n of the derivation C = C0 −→ C1 −→ · · · −→ Cn = D. The base case
(n = 0) is trivial. In the inductive case there are two possible cases: Cn−1 is stable or it is not stable. In the first case the proof
is straightforward. In the second case, there are two possible scenarios to be considered: either Cn−1 contains an unguarded
action reply(r ,b) term, or it contains a pair of matching terms r⟨b⟩ and r⟨b⟩ (but not both). We consider the first of these two
cases, the second one can be treated similarly.

Let Cn−1 be a non stable contract containing an unguarded action reply(r ,b). This action cannot appear unguarded in the
initial contract C: let Cj, with j > 0, be the first contract traversed during the computation of C in which the action reply(r ,b)
appears unguarded. Hence, we have that Cj−1 −→ Cj consists of the execution of a receive action. We now consider a
different computation from C toD obtained by rearranging the order of the steps in the considered computation C = C0 −→

C1 −→ · · · −→ Cn = D. Namely, let C = C0 −→ C1 −→ · · · −→ Cj−1 −→ C ′

j −→ · · · −→ C ′

n−2 −→ Cn−1 −→ Cn = D
be the computation obtained by delaying as much as possible the execution of the receive action generating the unguarded
action reply(r ,b). In the new computation, this action appears for the first time in the contract Cn−1. Moreover, C ′

n−2 must
be a stable contract otherwise Cn is not stable. Hence, we can straightforwardly prove the thesis by applying the inductive
hypothesis to the shorter computation C = C0 −→ C1 −→ · · · −→ Cj−1 −→ C ′

j −→ · · · −→ C ′

n−2 leading to the stable
contract C ′

n−2. �

As a simple corollary of the last two theorems, we have that client-service compliance is preserved by the Petri net
semantics.

Corollary 3.12 (Compliance Preservation). Let C and S be respectively a WSCL client and service contract, as in Definition 2.1.
We have that C is compliant with S if and only if in the marked Petri net Netm(C |S) all the maximal computations traverse at least
one success marking.

Proof. (⇒) Trivial by Theorem 3.10.
(⇐) Suppose that in Netm(C |S) all the maximal computations traverse at least one success marking and suppose by

contradiction that C is not compliantwith S. Thismeans that there is amaximal computation from C |S that does not traverse

a state D such that D
√

−→. This computation can either end in a state D′ with no outgoing reductions or can be infinite.
In the first case we get a contradiction by Theorem 3.11. Indeed there would be a maximal computation from Netm(C |S)

traversing only non-success markings.
Consider the second case. From the infinite sequence of reductions, we can build an infinite set of maximal computations

of arbitrary length, starting from C and ending in a stable state (Lemma 2.9) without traversing a success state. By
Theorem 3.11, for each of these maximal computations there exists a corresponding maximal computation in the net
Netm(S|C) that does not traverse a success marking. We can arrange these computations so as to form a tree where m′

is a child of m iff m[⟩m′: this is an infinite, but finitely-branching, tree. By König’s lemma, in Netm(S|C) there exists then an
infinite computation that does not traverse a success marking and we get a contradiction. �

3.2. Verifying client-service compliance using the Petri net semantics

In the light of Corollary 3.12, checkingwhether C is compliantwith S reduces to verifying if all themaximal computations
in Netm(C |S) traverse at least one success marking. In order to verify this property, we proceed as follows:



258 L. Acciai et al. / Science of Computer Programming 78 (2013) 248–267

Table 4
An algorithm for checking the guaranteed reachability of success markings.

(1) If the initial markingm0 is not a success marking then consider a root node, label it withm0 , and tag it ‘‘new’’.
(2) While ‘‘new’’ nodes exist do the following:

(a) Select a ‘‘new’’ node labelled with the markingm (remove the tag ‘‘new’’).
(b) If no transitions are enabled atm, return FALSE.
(c) While there exist enabled transitions atm, do the following for each of them:

(i) Obtain a markingm′ that results from firing the transition.
(ii) If on the path from the root to the selected node there exists a markingm′′ such thatm′

⊇ m′′ then return FALSE.
(iii) Ifm′ is not a success marking introduce a new node labelled withm′ , tag it ‘‘new’’, and draw an arc from the selected node to the new one.

(d) Remove the tag ‘‘new’’ from the markingm.
(3) Return TRUE.

• we first modify the net semantics in such a way that the net computations block if they reach a success marking;
• we define a (terminating) algorithm for checking whether in the modified Petri net all the maximal computations are

finite and end in a success marking.

The modified Petri net semantics simply adds one place that initially contains one token. All transitions consume such a
token, and reproduce it only if they do not introduce tokens in success places, i.e., places


i∈I Gi such that Gk =

√
for some

k ∈ I .

Definition 3.13 (Modified Petri Net Semantics). Let C be a WSCL contract and Net(C) = (S, T ) the corresponding Petri net
as defined in Definition 3.5. We define ModNet(C) as the Petri net (S ′, T ′) where:

• S ′
= S ∪ {run}, where run is an additional place;

• for each transition c ⇒ p ∈ T , then T ′ contains a transition that consumes the multiset c ⊎ {run} and produces either p,
if p contains a place


i∈I Gi such that Gk =

√
for some k ∈ I , or p ⊎ {run}, otherwise.

Themarked modified net ModNetm(C) is defined as the netModNet(C) with initial markingm0 where

m0 =


dec(C) ⊎ {run} if dec(C) is not a success marking
dec(C) otherwise.

We now state an important relationship between Netm(C) andModNetm(C). It can be proved by relying on the definition
of modified net.

Proposition 3.14. Let C be aWSCL contract, Netm(C) (resp. ModNetm(C)) the corresponding Petri net (resp. modified Petri net).
We have that all the maximal computations of Netm(C) traverse at least one success marking if and only if in ModNetm(C) all the
maximal computations are finite and end in a success marking.

We now present the algorithm for checking whether in a Petri net all the maximal computations are finite and end in
a success marking. In the algorithm and in the proof, we utilize the usual covering preorder over multisets on Places(C):
namely, m ⊆ m′ iff for each p, m(p) ≤ m′(p). It is well known by Highman’s Lemma [19] that this preorder, corresponding
to the extension to multisets of the equality relation on a finite set (the set of places), is a well-quasi-order, that is, in any
infinite sequence of multisetsm0,m1, . . . there is a pair of multisetsmi and mj, with i < j, such thatmi ⊆ mj.

Theorem 3.15. Let C be a WSCL contract as in Definition 2.1 and let ModNetm(C) = (S, T ,m0) be the corresponding modified
Petri net. The algorithm described in Table 4 always terminates. Moreover, it returns TRUE iff all the maximal computations in
ModNetm(C) are finite and end in a success marking.

Proof. Suppose by contradiction that the algorithmdoes not terminate. Thismeans that there exists an infinite computation
from m0 of the form m0[⟩m1[⟩ · · · [⟩mn[⟩ · · · such that, for each mi: (i) mi is not a success marking and (ii) for no mj, with
0 ≤ j < i, it holds thatmj ⊆ mi.

The last assertion implies that there exists an infinite sequence of elements in S that are not related by the preorder ⊆,
and this would violate the fact ⊆ is a well-quasi-order.

Assume now that the algorithm returns FALSE. This may happen at (b) or at (c)-ii. In the first case, we have found a
maximal computation ending at m and not traversing a success state. In the second case, it is easy to see that we can
build computations of arbitrary length that do not traverse success, again implying the existence of an infinite unsuccessful
computation (via König’s lemma). The case when the algorithm returns TRUE is obvious. �

4. Undecidability of client-service compliance for BPEL contracts

We now move to the proof that client-service compliance is undecidable for BPEL contracts. The proof is by reduction
from the termination problem in Random Access Machines (RAMs) [27], a well known Turing powerful formalism based on
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registers containing nonnegative natural numbers. The registers are used by a program, that is a set of indexed instructions
Ii which are of two possible kinds:

• i : Inc(rj) that increments the register rj and then moves to the execution of the instruction with index i + 1 and
• i : DecJump(rj, s) that attempts to decrement the register rj; if the register does not hold 0 then the register is actually

decremented and the next instruction is the one with index i+ 1, otherwise the next instruction is the one with index s.

Without loss of generality we assume that given a program I1, . . . , In, it starts by executing I1 with all the registers empty
(i.e., all registers contain 0) and terminates when trying to perform the first undefined instruction In+1.

In order to simplify the notation, in this section we introduce a notation corresponding to standard input and output
prefixes3 of CCS [25]. Namely, we model simple synchronization as a request–response interaction in which there is only
one possible reply message. Assuming that this unique reply message is ok (with ok ∈ Names not necessarily fresh), we
introduce the following notation:

a.P = invoke (a,ok.P) a.P = receive(a).reply(a,ok).P.

In order to reduce RAM termination to client-service compliance, we define a client contract that simulates the execution
of a RAM program, and a service contract that represent the registers, such that the client contract reaches the success

√
if

and only if the RAM program terminates.
Given a RAM program I1, . . . , In, we consider the client contract C as follows

C
△
=


i∈{1,...,n}

[[Ii]] | instn+1.
√

[[Ii]]
△
=


recX .


insti.incj.ack.(insti+1 | X)


if Ii =


i : Inc(rj)


recX .


insti.decj.(ack.(insti+1 | X) + zero.(insts | X))


if Ii =


i : DecJump(rj, s)


.

An increment instruction Inc(rj) is modelled by a recursive contract that invokes the operation incj, waits for an
acknowledgement on ack, and then invokes the service corresponding to the subsequent instruction. On the contrary, a
decrement instruction DecJump(rj, s) invokes the operation decj and then waits on two possible operations: ack or zero. In
the first case the service corresponding to the subsequent instruction with index i + 1 is invoked, while in the second case
the service corresponding to the target of the jump is invoked instead.

We now move to the modelling of the registers. Each register rj is represented by a contract representing the initially
empty register in parallel with a service modelling every unit subsequently added to the register

[[rj]]
△
= recX .


decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| UNITj

UNITj
△
= recX .unitj.


X | receive(uj).ack.recY .(decj.reply(uj,ok) + incj.unitj.invoke


uj,ok.ack.Y


)

.

The idea of the encoding is to model numbers with chains of nested request–response interactions. When a register is
incremented, a new instance of a contract is spawn invoking the operation unitj, and a request–response interaction is
opened between the previous instance and the new one. In this way, the previous instance blocks waiting for the reply.
When an active instance receives a request for decrement, it terminates by closing the request–response interaction with
its previous instance, which is then re-activated. The contract that is initially active represents the empty register because
it replies to decrement requests by performing an invocation on the zero operation.

We extend structural congruence ≡, introduced in Section 3, to ≡ren to admit the injective renaming of the operation
name

C ≡ren D if there exists an injective renaming σ such that Cσ ≡ D.

Clearly, injective renaming is an equivalence and preserves the operational semantics.

Proposition 4.1. Let C and D be two contract systems such that C ≡ren D. If C
α

−→ C ′, then there exists D′ and a labelα′ obtained

by renaming the operation names in α such that D
α′

−→ D′ and C ′
≡ren D′.

Now, we introduce {{rj, c}} that we use to denote the modelling of the register rj when it holds the value c. Namely,
{{rj, 0}} = [[rj]], while if c > 0 then

{{rj, c}}=



b0⟨ok⟩.ack.recX .(decj.zero.X + incj.unitj.invoke

uj,ok.ack.X


) |

b1⟨ok⟩.ack.recY .(decj.reply(b0,ok) + incj.unitj.invoke

uj,ok.ack.Y


) |

· · · |

bc−1⟨ok⟩.ack.recY .(decj.reply(bc−2,ok) + incj.unitj.invoke

uj,ok.ack.Y


) |

recY .(decj.reply(bc−1,ok) + incj.unitj.invoke

uj,ok.ack.Y


) |

UNITj.

3 The input and output prefixes correspond also to the representation of the one-way interaction pattern in contract languages such as those in [13,8,
14].
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In the following theorem, stating the correctness of our encoding,we use the following notation: (i, c1, . . . , cm) to denote the
state of a RAM in which the next instruction to be executed is Ii and the registers r1, . . . , rm respectively contain the values
c1, . . . , cm, and (i, c1, . . . , cm) →R (i′, c ′

1, . . . , c
′
m) to denote the change of the state of the RAM R due to the execution of the

instruction Ii.

Theorem 4.2. Consider a RAM R with instructions I1, . . . , In and registers r1, . . . , rm. Consider also a state (i, c1, . . . , cm) of the
RAM R and a corresponding contract C such that C ≡ren insti|[[I1]]| · · · |[[In]]|instn+1.

√
|{{r1, c1}}| · · · |{{rm, cm}}. We have that

• either the RAM computation has terminated, thus i = n + 1
• or (i, c1, . . . , cm) →R (i′, c ′

1, . . . , c
′
m) and there exists l > 0 such that C −→ C1 −→ · · · −→ Cl and

– Cl ≡ren insti′ |[[I1]]| · · · |[[In]]|instn+1.
√

|{{r1, c ′

1}}| · · · |{{rm, c ′
m}}

– for each k (1 ≤ k < l): Ck

√

−→/ .

Proof. Suppose i ≠ n + 1. The proof proceeds by distinguishing two cases depending on the instruction i:

i : Inc(rj): for the sake of simplicity, suppose rj = 0. Then (i, c1, . . . , cj−1, 0, cj+1, . . . , cm) →R (i + 1, c1, . . . , cj−1, 1,
cj+1, . . . , cm).

The contract C corresponding to (i, c1, . . . , cj−1, 0, cj+1, . . . , cm) is:

C ≡ren D
△
= insti | · · · | recX .(insti.incj.ack.(insti+1 | X)) | · · · |instn+1.

√
|{{r1, c1}} | · · ·

| recX .

decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| UNITj | · · · | {{rm, cm}}

and

D →
∗

· · · | ack.

insti+1 |[[Ii]]


| · · · |instn+1.

√
|{{r1, c1}} | · · ·

| unitj.invoke

uj,ok.ack.recX .


decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| UNITj | · · · | {{rm, cm}}

→
∗

· · · | ack.

insti+1 | [[Ii]]


| · · · |instn+1.

√
|{{r1, c1}} | · · ·

| r⟨ok⟩.ack.recX .

decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| ack.recY .(decj.reply(r ,ok) + incj.unitj.invoke


uj,ok.ack.Y


)

| UNITj | · · · | {{rm, cm}}

→ · · · | insti+1 |[[Ii]] | · · · |instn+1.
√

|{{r1, c1}} | · · ·

| r⟨ok⟩.ack.recX .

decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| recY .(decj.reply(r ,ok) + incj.unitj.invoke


uj,ok.ack.Y


)

| UNITj | · · · | {{rm, cm}}
△
= D′

where D′ corresponds to the state (i + 1, c1, . . . , cj−1, 1, cj+1, . . . , cm) and clearly each D′′ in the derivation from
D to D′ cannot perform a successful transition. Therefore, by Proposition 4.1, C →

∗ C ′ with C ′
≡ren D′.

i : DecJump(rj, s): suppose again that rj = 0. Then, (i, c1, . . . , cj−1, 0, cj+1, . . . , cm) →R (s, c1, . . . , cj−1, 0, cj+1, . . . , cm).
The contract C corresponding to (i, c1, . . . , cj−1, 0, cj+1, . . . , cm) is:

C ≡ren D
△
= insti | · · · | recX .(insti.decj.(ack.(insti+1|X) + zero.(insts|X))) | · · · |instn+1.

√

| {{r1, c1}} | · · · | recX .

decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| UNITj | · · · | {{rm, cm}}

and

D →
∗

· · · | ack.(insti+1|[[Ii]]) + zero.(insts|[[Ii]])) | · · · |instn+1.
√

|{{r1, c1}} | · · ·

| zero. recX .

decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| UNITj | · · · | {{rm, cm}}

→
∗ insts | · · · | [[Ii]] | · · · |instn+1.

√
|{{r1, c1}} | · · ·

| recX .

decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| UNITj | · · · | {{rm, cm}}

△
= D′

where D′ corresponds to the state (s, c1, . . . , cj−1, 0, cj+1, . . . , cm) and clearly each D′′ in the derivation from D to
D′ cannot perform a successful transition. Again, by Proposition 4.1, C →

∗ C ′ with C ′
≡ren D′.

Suppose now that rj ≠ 0, e.g. let rj = 1. Then

(i, c1, . . . , cj−1, 1, cj+1, . . . , cm) →R (i + 1, c1, . . . , cj−1, 0, cj+1, . . . , cm).
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The contract C corresponding to (i, c1, . . . , cj−1, 1, cj+1, . . . , cm) is:

C ≡ren D
△
= insti | · · · | recX .(insti.decj.(ack.(insti+1|X) + zero.(insts|X))) | · · · |instn+1.

√

| {{r1, c1}} | · · ·

| r⟨ok⟩.ack.recX .

decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| recY .(decj.reply(r ,ok) + incj.unitj.invoke


uj,ok.ack.Y


)

| UNITj | · · · | {{rm, cm}}

and

D →
∗

· · · | ack.(insti+1|[[Ii]]) + zero.(insts|[[Ii]])) | · · · |instn+1.
√

|{{r1, c1}} | · · ·

| r⟨ok⟩.ack.recX .

decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| reply(r ,ok) | UNITj | · · · | {{rm, cm}}

→ · · · | ack.(insti+1|[[Ii]]) + zero.(insts|[[Ii]])) | · · · |instn+1.
√

|{{r1, c1}} | · · ·

| r⟨ok⟩.ack.recX .

decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| r⟨ok⟩ | UNITj | · · · | {{rm, cm}}

→ · · · | ack.(insti+1|[[Ii]]) + zero.(insts|[[Ii]])) | · · · |instn+1.
√

|{{r1, c1}} | · · ·

| ack.recX .

decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| UNITj | · · · | {{rm, cm}}

→ · · · | insti+1|[[Ii]] | · · · |instn+1.
√

|{{r1, c1}} | · · ·

| recX .

decj.zero.X + incj.unitj.invoke


uj,ok.ack.X


| UNITj | · · · | {{rm, cm}}

△
= D′

where D′ corresponds to the state (i + 1, c1, . . . , cj−1, 0, cj+1, . . . , cm) and clearly each D′′ in the derivation from
D to D′ cannot perform a successful transition. As before, by Proposition 4.1, C →

∗ C ′ with C ′
≡ren D′. �

As a corollary we get that client-service compliance is undecidable.

Corollary 4.3. Consider a RAM R with instructions I1, . . . , In and registers r1, . . . , rm. Consider the client contract C =

inst1|[[I1]]| · · · |[[In]]|instn+1.
√

and the service contract S = {{r1, 0}}| · · · |{{rm, 0}}. We have that C is compliant with S if and
only if R terminates.

Proof. The proof proceeds by proving that both directions hold in the most general case: C |S ≡ren inst1|[[I1]]| · · · |[[In]]|
instn+1.

√
|{{r1, 0}}| · · · |{{rm, 0}}.

(⇐) Suppose R terminates. Theorem 4.2 can be applied to guarantee that C and S are compliant. The proof proceeds by
induction on the number n of steps needed by R to terminate.

Suppose n = 0, hence R has terminated. In this case C ≡ren instn+1|[[I1]]| · · · |[[In]]|instn+1.
√
, hence (Proposition 4.1)

there exists exactly one computation from C | S as below.

C | S →≡ren [[I1]]| · · · |[[In]]|
√

| S
√

−→ .

Clearly, this computation guarantees the compliance of C and S.

Suppose now n > 0 and (i, c1, . . . , cm) →R (i′, c ′

1, . . . , c
′
m)

△
= R′. Theorem 4.2 and Proposition 4.1 guarantee

that there exists l > 0 such that C | S −→ D1 −→ · · · −→ Dl and Dl ≡ren insti′ |[[I1]]| · · · |[[In]]|instn+1.
√

|{{r1, c ′

1}}

| · · · |{{rm, c ′
m}} and that Dk

√

−→/ , for any 1 ≤ k ≤ l. By looking at the proof of the theorem, it is also clear that any Dk
cannot originate other transitions, apart from that already considered in the computation above. Therefore, D can only
evolve into Dl and then, by applying the induction hypothesis to R′, it follows that C and S are compliant.

(⇒) Suppose now that C and S are compliant. To prove that R terminates it is sufficient to suppose, by contradiction, that
it is not the case. By Theorem 4.2, this implies that there exists an infinite (hence maximal) computation C | S →

D1 → · · · → Dl → · · · where Dk

√

−→/ , for any k. This, by Theorem 4.2, contradicts the hypothesis that C and S are
compliant. �

5. Mutual compliance

In Section 2, we have introduced a notion of compliance based on client’s satisfaction: whenever the client reaches a
success state the whole system is successful. Hence, the success of the system is established by ignoring what happens on
the service side. This could leave the service in an inconsistent state. Let us consider for example a service demanding an
additional confirmation from the client before executing the required task. In case the client decides to abandon the session
before sending this final approval the (current instance of the) service is blocked. This situation could require the usage of
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timeout mechanisms, especially in the presence of recursive services having at most only one active instance at a time (this
could be the case e.g. when the service accesses critical data). A concrete example could be an e-banking service demanding
the executive password of the client before performing any operation, e.g. bank transfer, shares purchase, . . ., as below.

C
△
= invoke


e − bank,ok.recreply


login,log_data.C ′


C ′ △

= invoke

transfer,ok.recreply


send_data,tran_data.

√
B

△
= recreply


e − bank,ok.invoke


login,log_data.B′


B′ △

= recreply(transfer, ok.invoke(send_data, tran_data.
invoke (confirm,pw) + recreply (abort ,ok)))

+ recreply

other ,ok.B′′


B′′ △

= . . . .

It is easy to see that when the client decides to ‘‘abandon’’ the request without notifying the service (tran_data.
√
), a

pending session rests on the service sidewaiting for the confirmation (invoke (confirm,pw)) or the abort (recreply (abort ,ok)).
In order to avoid such problems, we introduce another notion of compliance, called mutual compliance, where the

synchronization of client and service’s success actions is mandatory in order to establish the success of the whole system.
In this section, we modify the syntax and semantics of WSCL contracts to distinguish between clients and services’

successes and introduce the notion of mutual compliance. We then prove that this new notion of compliance is still
decidable, by slightly modifying the reasoning of Section 3. We do not consider BPEL contracts as the undecidability result
proved in Section 4 easily extends also to mutual compliance. In fact, it is easy to reduce mutual compliance to the notion
of client-service compliance in Section 4 that considers only the client’s success action

√
: it is sufficient to model mutual

success as a synchronization between the client and the service, and only after such a synchronization the client executes
its action

√
.

5.1. WSCL contracts and mutual compliance

Guarded contracts are defined as follows:

G ::= invoke


a,

i∈I

bi.Ci


| recreply


a,

i∈I

bi · Ci


|
√

C |
√

S

where
√

C and
√

S denote the success of the client and the service, respectively.
The run-time syntax of contracts extends the syntax introduced inDefinition 2.1 in order to take into account the occurred

synchronization of
√

C and
√

S:

C ::= · · · |
√

.

A client contract is a contract C containing at least one occurrence of the guarded contract
√

C and no occurrences of
√

S and
√
, while a service contract is a contract S containing at least one occurrence of the guarded contract

√

S and no
occurrences of

√

C and
√
.

The operational semantics of contracts is extended, as expected, by adding to the rules in Definition 2.3 the following
ones:

√

C

√

C
−→ 0

√

S

√

S
−→ 0

C
√

C
−→ C ′ S

√

S
−→ S ′

C |S
τ

−→ C ′
|S ′

|
√

.

Mutual compliance is defined in the same way as client-service compliance over the modified transition system and, as
before, it makes sense only in case of dyadic communications and cannot be applied in a multi-party setting.

Definition 5.1 (Mutual Compliance). A client contract C and a service contract S aremutually compliant if for everymaximal

computation C |S −→ D1 −→ · · · −→ Dl −→ · · · there exists k such that Dk

√

−→.

Notice that, with the new semantics, Dk

√

−→ in the definition above implies a previous synchronization in the
computation of

√

C and
√

S.

Example 5.2 (An e-bank Service). Consider the e-bank process B introduced at the beginning of this section and another
version of the client, D, that confirms the execution of the bank transfer before exiting the session. The two processes are
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reported below.

D
△
= invoke


e − bank,ok.recreply


login,log_data.D′


D′ △

= invoke

transfer,ok.recreply


send_data,tran_data.recreply


confirm,pw.

√

C


B

△
= recreply


e − bank,ok.invoke


login,log_data.B′


B′ △

= recreply(transfer, ok.invoke(send_data, tran_data.
invoke


confirm,pw.

√

S


+ recreply


abort ,ok.

√

S


))

+recreply

other ,ok.B′′


.

There is a sole computation from D|B, reported below, which guarantees mutual compliance of the two.

D|B −→
∗ recreply


login,log_data.D′


| invoke


login,log_data.B′


−→

∗ D′
|B′

−→
∗ recreply


send_data,tran_data.recreply


confirm,pw.

√

C


| invoke


send_data,tran_data.invoke


confirm,pw.

√

S


+ recreply


abort ,ok.

√

S


−→

∗ recreply

confirm,pw.

√

C


| invoke


confirm,pw.

√

S


+ recreply


abort ,ok.

√

S


−→

∗ √

C |
√

S

−→
√

√

−→ .

5.2. Decidability of mutual compliance

As before, decidability is obtained by translatingWSCL contracts into Petri nets. The definition of the Petri net associated
to a contract is essentially the same as in Section 3, except for the presence of new places for

√

C and
√

S and of a new
transition allowing the synchronization of the two and leading to the success state labelled by

√
, as below.

i∈I

Gi,

j∈J

Gj


⇒ {

√
} if Gk =

√

C and Gl =
√

S for some k ∈ I and l ∈ J .

Example 5.3. Consider the e-bank service B and the client D from Example 5.2. The marked net Netm(B|D) is depicted in
Fig. 1.

In the remaining part of the section, we prove that soundness and completeness of the translation still hold and that
mutual compliance is preserved by the translation.

The relationship betweenmarkings and contracts introduced in Lemma 3.8 needs to bemodified by adding a fourth item
as below.

Lemma 5.4 (Extension of Lemma 3.8). Let C be a WSCL contract system and suppose dec(C) = m. The following holds:

(1) if m = {


i∈I Gi} ⊕ m′ then C ≡


i∈I Gi | D, for some D such that dec(D) = m′;
(2) if m = {a↑


j∈J bj.Cj} ⊕ m′ then C ≡


j∈J r⟨bj⟩.Cj | a⟨r⟩ | D, for some D and r such that r /∈ Names(D) and dec(D) = m′;

(3) if m = {c ↓


j∈J bj.Cj} ⊕ m′ then c ≠ bj for each j ∈ J and C ≡


j∈J r⟨bj⟩.Cj | r⟨c⟩ | D, for some D and r such that
r /∈ Names(D) and dec(D) = m′;

(4) if m = {
√

} ⊕ m′ then C ≡
√

| D, for some D such that dec(D) = m′.

The remaining propositions and theorems are still valid; little changes in the proofs of Proposition 3.9 and Theorem 3.10
are needed. In case of Proposition 3.9, it is sufficient to extend the proof of (⇒) by adding another item guaranteeing the
absence of synchronization of

√

C and
√

S. In case of Theorem 3.10, it is necessary to extend the proof by considering the
new kind of net transition. In both cases, the changes are minimal and easy to adjust, and the whole proofs are omitted.

The following version of Corollary 3.12 carries over.

Corollary 5.5 (Mutual Compliance Preservation). Let C and S be respectively a WSCL client and service contract, as defined in
Section 5.1. We have that C and S are mutually compliant if and only if in the marked Petri net Netm(C |S) all the maximal
computations traverse at least one success marking.

This result is essentially the same as that reported in Corollary 3.12; therefore the reasoning introduced in Section 3.2 applies
to the newnotion of compliance: the algorithm introduced in Table 4 togetherwith Theorem3.15 guarantee the decidability
of mutual compliance.
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B

invoke

login,log_data.B′



login↑log_data.B′

recreply (transfer,ok. . . .)
+recreply (other ,ok.B2)



invoke (send_data,tran_data. . . .)

send_data↑tran_data. . . .
invoke


confirm,pw.

√

S


+recreply


abort ,ok.

√

S

 

confirm↑pw.
√

S

√

S

D

e-bank↑ok. . . .

recreply

login,log_data.D′



invoke (transfer,ok. . . .)

transfer↑ok. . . .

recreply (send_data,tran_data. . . .)

recreply

confirm,pw.

√

C



√

C

√

Fig. 1. Netm(B|D).

Example 5.6 (A Login Service and its Client). Consider a login service, L, thatwaits for a login request or for an abortmessage.
In case of login, it receives the credentials of the requester and either enters a successful state or notifies the failure and
restart its execution from the beginning. In case of abort, it ends in a successful state. Consider a client, C , that is the
complementary of L.

L
△
= recX .


recreply


login,xpw.

√

S + xpw.invoke (failed_login,ok.X)

+ recreply


abort_login,ok.

√

S


C

△
= recY .


invoke


login,pw.(

√

C + recreply (failed_login,ok.Y ))

+ invoke


abort_login,ok.

√

C


.

Suppose L′ and C ′ correspond to the one step unfolding of L and C , the marked net Netm(L′
|C ′) is depicted in Fig. 2.

It is easy to see that there exists an infinite computation, involving transitions t2, t5, t8 and t9, which does not traverse
the success state

√
; therefore, the two contracts are not mutually compliant. Notice that by considering the notion of

compliance introduced in Definition 2.4, the two contracts are compliant: the infinite computation above would traverse
infinitely often a successful state (each occurrence of

√

C should be replaced by
√

in Fig. 2; therefore, the state labelled by
√

C + recreply (failed_login,ok.C) should be considered successful).

6. Related work and conclusion

We have presented two models of contracts with bidirectional request–response interaction, the first one inspired by
WSCL and the second one by BPEL; we have studied notions of compliance based on must testing and established an
expressiveness gap between the two models showing that compliance is decidable in the first one while it is undecidable
in the second one. Intuitively, this expressiveness gap follows from the fact that in the BPEL contract model, different from
WSCL, a service can start a new bidirectional interaction in between a receive and a reply action. In this way, unboundedly
many client-service instances can generate a chain of nested bi-directional interactions. In contrast, in the WSCL contract
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L′

√

S

invoke (failed_login,ok.L)

failed_login↑ok.L

C ′

abort_login↑ok.
√

C

login↑pw. . . .√

C

√

C + recreply (failed_login,ok.C)

√

t1 t2

t3

t6

t4
t5

t7

t8

t9

Fig. 2. Netm(L′
|C ′).

model, even if unboundedly many instances of client and services can be spawn, it is not possible to generate a chain of
nested interactions of unbounded depth.

This paper is in the line of recent research dedicated to the formal analysis of service behavioural contracts exploiting
process calculi. To the best of our knowledge, though, only one-way operations have been considered so far. An initial theory
of contracts for client-service interaction has been proposed by Carpineti et al. [13] and then independently extended along
different directions by Bravetti and Zavattaro (see e.g. [8]) by Laneve and Padovani [24], and by Castagna et al. [14]. Themain
objective of those papers was to define a subcontract relation suitable to check the replaceability of one service with another
one without affecting the correctness of a modelled system. The approach in [13] considers a notion of system correctness
similar to the one used in this paper and inspired by must-testing. A corresponding subcontract relation, enhancing the
must-testing preorder, is defined in [24]. By making use of explicit interfaces indicating the operations used by one service
to interact with the external environment, both in-width and in-depth refinements are admitted: a subcontract can have
additional behaviour, available either as new choices in branches or as longer continuations, but only if this additional
behaviour is activated by actions on operations that are not in the interface. A notion of correctness in which all the involved
partners should eventually reach successful completion (similar to themutual compliance considered in this paper) has been
presented in [8], where a corresponding subcontract relation is also introduced.

Similar to contracts, session types [20] are devoted to the analysis of the dialogues among clients and servers, or
more generically, among the participants of any interaction. Several works on session types consider dyadic interactions
(see e.g. [32] and references therein), in such cases the so called duality of types guarantees the correctness of the
communications, hence the compliance of the two partners. Other works (see e.g. the series of work starting from [21]
which is discussed below) consider multiparty interactions, i.e. interactions involving multiple participants. In this case,
correctness of the protocol is guaranteed by a projection function, which will be discussed in the following. In both dyadic
andmultiparty session types, a subtyping relation plays the same role as the subcontract one: it guarantees the replaceability
of a participant with another one without affecting the interaction in a sensible way.

The global completion approach is particularly appropriate for systems where there is no clear distinction between
clients and services as in the so called service choreographies. A formal study of the relationship between choreography
languages (such as WS-CDL [33]) and process calculi has been performed by Carbone, Honda and Yoshida. In [12], they
introduce a π-calculus like choreography language in which the basic atom is the interaction among two distinct partners,
and basic atoms can be combined with the usual sequential, choice and composition operators. By exploiting the theory of
session types, they prove the correctness of a projection algorithm that extracts from a global choreographic description the
behaviour of each involved partner expressed in a calculus more similar to the π-calculus in which there are two kinds of
basic atoms representing input and output actions separately. In [21], they extend their work by considering asynchronous
communication, thus moving to a setting closer to ours. Different from our calculi, in their language the full power of the
π-calculus communication paradigm can be used, thus allowing for the generation and communication of fresh channels.
In our calculi, on the contrary, this possibility is constrained by the request–response pattern.

The relationship between contract theories and choreography languages has been investigated in [10]. In all the above
theories, the defined subcontract relation is influenced by the operations that a service can use to interact with the external
environment, as invocations on these operations could activate the additional behaviour available in refinements. A different
approach is taken in [14], where dynamic filters are automatically synthesized in order to guarantee that such an additional
behaviour cannot be wrongly activated. A slightly different approach, reflecting the choreography language BPEL4Chor [15],
has been considered by researchers coming from the Petri nets area (see, for instance, [1]): each participant is represented
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by an open workflow net (a special class of Petri nets) representing only the public view of the partner behaviour, and a
choreography is obtained as the composition of the descriptions of the involved partners. Despite the different modelling
approach, a notion of correctness similar to our mutual compliance is considered in which all the partners should reach a
final state. Moreover a contract refinement theory is defined (and named accordance) to check whether the private view
of a service conforms with the public view of a choreography participant. In [1], different from our setting, there is no
direct representation of the request–response pattern and of the corresponding ability to run multiple instances of the
same partner.

It is worth mentioning that similar decidability and undecidability results have been proved also in the context of
coordination languages, see [11] for a survey about these results. Coordination languages allow concurrent processes
to interact through shared data spaces in which messages can be inserted and retrieved via coordination primitives.
This communication paradigm is radically different from Web Services, where interaction is via uni-directional and bi-
directional invocations of operations. Random Access Machines and Petri nets have been used also in the context of
coordination languages, but rather different reduction techniques have been used. Concerning Random Access Machines,
some coordination languages includes explicit test-for-absence operations that makes the encoding of test-for-zero trivial.
In languages without test-for-absence primitives, very specific nondeterministic encodings have been defined using, for
instance, publish–subscribe coordinationmechanisms. Also the encodings into Petri nets are rather different as coordination
languages simply require the representation of shared data as tokens in corresponding places, without requiring the
representation of the binding between a client and the corresponding service instance.

As for future work, we plan to investigate the complexity of our decision procedure. Given that we rely on results based
on the well-quasi order theory, a high (exponential) complexity is expected.We also plan to investigate the (un)decidability
of other definitions of compliance present in the literature. In fact, the must-testing approach – the one that we consider
in this paper – has been adopted in early works about service compliance (see e.g. [13]). More recent papers consider more
sophisticated notions. For instance, the should-testing approach [31] (adopted, e.g., in [8] in the context of process calculi
and in [28] for Petri nets) admits also infinite computations if in every reached state there is always at least one path leading
to a success state.

It would be interesting to apply the techniques presented in this paper to more sophisticated orchestration languages,
like the recently proposed calculi based on the notion of session [7,6]. For instance, in [3], a type system is presented ensuring
a client progress property – basically, absence of deadlock – in a calculus where interaction between (instances of) the client
and the service is tightly controlled via session channels. It would be interesting to check to what extent the decidability
techniques presented here apply to this notion of progress. Also connectionswith behavioural types [22,2] deserve attention.
In the setting of process calculi, these types aremeant to provide behavioural abstractions that are in general more tractable
than the original process. In the present paper, the translation function ofWSCL contracts into Petri nets can be seen too as
a form of behavioural abstraction. In the case of tightly controlled interactions (sessions) [3], BPP processes, a proper subset
of Petri nets featuring no synchronization [17], have been seen to be sufficient as abstractions. For general pi-processes, full
CCSwith restriction is in general needed. Onewould like to undertake a systematic study of how communication capabilities
in the original language (unconstrained interaction vs. sessions vs. request–response vs....) trade off with tractability of the
behavioural abstractions (CCS vs. BPP vs. Petri nets vs....).
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